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Problems and Results
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ABSTRACT

I published many papers on this and related subjects .

This paper wí11 contain relatively little new material . I just

give a short discussion of some problems which I thought about

in the last few months .

1 .

	

Ramsey's theorem and generalizations .

First I discuss some problems connected with Ramsey's

and its generalizations . r(Gl ,G2 )

integer R so that if we color the edges of K Q by two colors

in an arbitrary way, then there always is either a monochromatic

a monochromatic

theorem

Gl in the first color or

color . Burr

If G1 is a

r(m,n)

	

It

In several

r(n,n)

Levíne

result .

G2 in the second

has two excellent survey articles

Km and G2 a Kn

is well known that

we write r(G1 ,G2 ) as

cln2n/2 < r(n,n) < c2(2n-
)

	

(c2 < 1) .

	

(1)
n- 1

stated that

but recently J . Winn

doubts on the validity of the proof

of my older results

<
c3(2n)

	

1(log log n)

	

,

threw some

i

I offer 100 dollars for the proof that

1ím r(n,n) l/n = C
n->-

331

is the smallest

on this subject .

and E .

of this

(2)
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exists and another 250 dollars for the value of C

	

I also

offer 100 dollars for a constructive proof of

r(n,n) > (1+c)n .

	

(3)

Peter Frankl gave a nonconstructive proof of r(n,n) > n
k

for every k if n > n0 (k) and this was improved by F . Chung

to

r(n,n) > ec (log n) 4/3

2and Peter Frankl proved r(n,n) > ec(log n) , but so far a

constructive proof of (3) is nowhere in sight .

We have

	

2

	

2
c n

	

c n

2

	

2 < r(3,n) < l 1

	

(4)
(log n)

The lower bound of (4) was proved by me, the upper bound by

Ajtai, Komlós and Szemeredt in a forthcoming paper which will be

published in the European Journal of Combinatorics . Graver and

Yackel proved more than 10 years ago that r(3,n) <
cn2 log log n .

log n
Both the upper and the lower bound of (4) are proved by

probabilistic methods . The probabilistic method very likely

eventually will give
r(k,n) > nk-1-E

	

(5)

but so far the proof of (5) even for k = 4 seems to present

great difficulties .

There seems to be no doubt that

lim r(n+l,n+1)/r(n,n) = C

and that
n-

n-
but we could not even prove that

r(n +1,n) - r(n,n) > nk

	

(6)

holds for every k if n > n 0 (k) . We could prove (6) only

for k = 2 ; also r(n + 1,3) - r(n,3) -- seems to present dif-

lim r(n + l,n)/r(n,n) = C1/2 ,
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fículties . "We" in this case stands for Burr, Faudree, Rousseau,

Schelp, V .T . Sós and myself . For references, see [3, 4, 5, 12,

13, 14, 15] .

2 .

	

The sizeRamseynumber .

In a quadruple paper Faudree, Rousseau, Schelp and I

started to investigate the size Ramsey number r(G1 ,G2 ) , the

smallest integer for which there is a graph G of r(Gl ,G2 )

edges so that if we color the edges of G by two colors either

color I contains a copy of G1 or color II a copy of G2 . Our

most interesting unsolved problem states : Denote by Pn a

path of length n,

	

and write r(Pn) instead of r(Pn' Pn) .

Is it true that

r(Pn)/n i -, r(Pn)/n2 -} 0?

	

(7)

We are sure that the first equation of (7) holds, but are

less sure about the second .

A few days ago we started to investigate r(K(l,n) K(m))

where K(u,v) denotes a complete bipartite graph of u white

and v black vertices . We are reasonably sure that we soon

wí11 have a simple explicit formula for r(K(l,n) K(m)) for

every n and m . One of the lemmas we will need states that

if G has (2n 2 1 ) - ( 2) - 1 edges, then G is the union of

a bipartite graph and a graph each vertex of which has degree

< n . Faudree has a very simple proof if G has at most 2n + 1

vertices and he has an induction proof which surely will give the

general case . To compute r(K(l,n), K(m)) we wí11 have to

generalize the lemma where a bipartite graph is replaced by an

r-partite graph but we do not expect serious difficulties . We

also tried to determine r(K(2,n) K(m)) , but here we are much

less optimistic . We conjectured that for every Q and

n > n0 (2)

r(K(2,n) , K(R,n)) = 2(n-1)( 2QQ 1) + 2Q - 1

	

(8)
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Equation (8) is trivial for k = 1, but we could not prove

it for k > l . We hope to return to a more detailed study of

the size Ramsey numbers in forthcoming publications . For refer-

ence, see [7] .

3 .

	

SomeProblems on ExtremalGraphTheory .

Recently an excellent book of B . Bollobás appeared on this

topic . Also Simonovits and I have several papers on this topic

(many of them are joint papers) . Here I just mention a few

striking unsolved problems .

Let G(k;k) be a graph of k vertices and k edges .

f(n ;G(k ;k)) is the smallest integer for which every

G(n ;f(n ;G(k ;k))) contains our G(k,k) as a subgraph . f(n ;k,k)

is the smallest integer for which every G(n ;f(n ;k,Z)) contains

at least one G(k ;k) as a subgraph . In this note we will only

consider bipartite graphs G(k ;k) . By the well known results

of Stone, Simonovits and myself the asymptotic behavior of

f(n ;G(k ;k)) is determined by the chromatic number of G(k ;k) .

Here we assume that G(k ;k) is bipartite .

Brown, V .T . Sós, Rényi and I proved that

f(n ;C4 ) _ (2+o(1))n3/2 .

	

(9)

In previous papers I conjectured

1

	

n
f(n ;C4 ) =

1
2n

3/2
+ (4+0(1))4

	

(10)

but we are very far from being able to prove (10) .

Let p be a prime or a power of a prime . If

n = p2 + p + 1 , we conjectured that

f(n ;C4 ) = p2 (p+l) + p(p+l)/2 + 1 .

	

(11)

Equation (11) has very recently been proved by Füredi if

p = 2k . The general case is still open . Füredi's paper will be

published soon.

If we assume that our G(n ;t) has no C4 and C 3 then

probably
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and probably G(n ;t) can be assumed to be bipartite .

Simonovits and I proved this if we assume that G(n ;t) does not

contain a C4 and contains no odd circuit of length < 11 .

Our

has

c4 *

results are not yet published .

Let C (n) be the

2n vertices and

Simonovits and I

max t =( 1 + o (1))n3/2

	

(12)
2

graph of the n-dimensional cube .

n2n-1 edges, and C (2)

proved that

f(n ;C (3) ) < cln

but f(n ;C (3) - e) < c 2n3/2

	

We conjectured that for every

bipartite G(k ;k), where R > k,

	

there is a rational

8/5

is of

ak k , where 1 < ak
k < 2, for which

,

C (n)

course a

f(n ;G(k ;k))/nak ' k

	

c ,

	

0 < c < - ,

	

(13)

and conversely for every rational a , with 1<a < 2 there is a

bipartite G(k ;k) for which (13) holds . We are very far from

being able to prove this conjecture .

We further conjectured that if G(k ;k) is a bipartite

graph each vertex of which has valency (or degree) > 3 then

there is an ek > 0 so that

	

3
+e

f(n ;G(k,k)) > n2

	

k,

	

(14)

Conversely we conjectured that if G(k ;k) is such that

every subgraph has a vertex of degree < 2 then

f(n ;G(k ;k)) < ck n3/2 .

	

(15)

We are very far from being able to prove (14) or (15),

which seem to me to be very attractive conjectures . We further

posed the following problems . Assume that (13) holds . What are

the possible values for ak k for all the possible bipartite
,

2~
graphs satisfying k < k <

L
4

J
? What is the largest possible

r = rk for which there is a bipartite G(K,k) so that for all
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possible choices of the edges el.. . er the bipartite graph

G(k ;k+e l + . . . +er ) = G(k;k+r) has the same a as G(k ;k) ?

Perhaps r2k = 2k - 1 . Let k = (k- 1) 2 + 1 . G(2k ;k) has

the vertices xl '

	

xk ' yl '

	

' ' yk

	

its edges are

(xi ,yj ) , 1 < i < k - 1 , 1 < j <k-1 and (x k ,yk) .

	

It has

often been conjectured that K(k- I,k- 1) has a = 2 -
	 1

k- 1
An old result of Kövarí, V .T . Sós, Turdn and myself states that

a < 2 -
kl

1 for this graph and an old result of myself states

that the a belonging to K(k,k) - e is also < 2 - k 1 1 and

we obtain K(k,k) - e from our graph by adding 2k - 1 edges .

What is the largest Rk for which there is a G(k ;k) so

that the omission of any Rk edges does not decrease a ?

Finally, I state an old and interesting conjecture of V .T .

Sós and myself . Is it true that every G(n ;[ n (k2 1) ] +1) con-

tains as a subgraph every tree of k + 1 vertices? The con-

jecture, if true, is best possible since a G(n;[ n (k2 1) ]) does

not have to contain a star K(l,k) . Szemerédi has a recent

result which seems to prove a slightly weaker result . For

references, see [2,10] .

4 .

	

Some Applications of the robability method .

I conjectured and Ajtai, Komlós and Szemerédi proved that

there is an f(c), f(c) > 0 for c > 2 and f(c) 3 1 as

c

	

~, so that every G(n ;cn) contains a path of length

(f(c) + o(1))n .

	

In their forthcoming paper they strengthened

and extended several further results of a paper of Rényi and

myself .

Ajtai, Komlós and Szemerédi proved the following surprising

and interesting result . Let G(n ;[kn]) be a graph which con-

tains no triangle . Then it contains an independent set having

more than c n kogk vertices . Without the factor log k the

result is trivial and the course does not need the assumption
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that G(n ;[knj) contains no triangle . They also show that

apart from the value of c their result is best possible . It

seems likely that for every r there is a gr (k) which tends

to infinity as k tends to infinity, so that if G(n ;[kn]) is

a graph which contains no K(r) then it contains an independent

set of more than c n gr (k)/k vertices . But this conjecture is

open for every r > 4 .

Some time ago I heard the following conjecture . Let G(n)

be a graph of n vertices . Denote by C(G(n)) the smallest

integer for which the vertices of G(n) can be covered by

C(G(n)) cliques . E(G(n)) is the largest integer for which

G(n) has E(G(n)) edges no two of which are in the same clique .

Is it true that E(G(n)) = C(G(n)) ? The probability method

easily gives that the conjecture is false . If we choose each

edge of G(n) with probability 2 then for almost all graphs

E(G(n)) < c 1 (log n) 2 , and it is well known and easy to see

that the largest clique contained in almost all graphs is less

than c2 log n . Thus, for almost all graphs,

C(G(n))
> c

n	
E(G(n))

	

(log n) 3

In fact it is not hard to prove that

	 n	C(G(n))	n	

C4 (log n) 3

	

G(n)
< max

E(G(n)) < c3 (log n) 3

Let t be fixed and sufficiently large . The probability

method gives that there is a G(n) with E(G(n)) < t and
c

C(G(n)) > n t

	

I did not succeed in determining the smallest

value of t for which this holds for some C t > 0 . It would

be easy to give crude upper bounds for t .

Rényi and I proved that almost all graphs

G(2n ;(1+ e)n log n) have a complete matching - the result is no

longer true without the additive term e . In fact we proved a
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stronger result . Recently Shamír asked the following very nice

question . For JGI = 3n, how many triples of G must we

choose so that for almost all choices of the triples there

should be a subsystem of n disjoint triples? Shamir showed

that n2 triples certainly suffice . But the correct order of

magnitude may be very much less . For references, see [8, 9, 16,

18] .

5 .

	

Miscellaneous problems .

Hajnal and I conjectured that if G has infinite chromatic

number then 2r+l

	

'

1

integers for which G has a circuit of length 2r + 1 . In

fact perhaps the set of these (2r+ 1) 's has positive upper

density . As far as I know, nothing has been done with this con-

jecture . We also conjectured that for every G(n ;kn) ,
1 > c log k, where r runs through the integers for whichr
our G(n ;kn) has a circuit of length r . It is easy to see

that this conjecture, if true, is best possible . Szemerédi and

Gyárfas very recently proved this conjecture ; probably his

method wí11 give the best possible value for c .

During our meeting I heard from mathematicians at New

Orleans the following nice problem. Let G(n) be a graph of

n vertices . (G(n) is not complete and not the empty graph .)

Assume that if we add any new edge to G(n) (i .e ., we join two

vertices of G(n) which are not joined in G(n)) then the

clique number always increases and further if we omit an arbi-

trary edge of G(n) then the independence number increases .

Can one characterize these graphs? Are there infinitely many of

them? So far, only three such

where 2r + 1 runs through the

graphs are known : C 5 ; the

unique graph of 17 vertices which, together with its comple-

ment, has no K4 ; and, as V .T . Sös observed, the graph of 13

vertices which has no K 3 and whose complement has no K 5 .
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Let E be the n-dimensional Euclidean space . Join two

points of En if their distance is 1 . Denote by X(En ) the

chromatic number of this graph. These problems were initiated

by Hadwiger and Nelson . It was conjectured that X(E2) = 4,

but now it is generally believed that X(E2) > 4

	

In any

case it is known that X(E2 ) < 7 .

I conjectured that if

	

S1 = n then to every e > 0 there

is an n so that, if

A1 C S,1 < i < tn ,tn > (2-e) n ,

then for every Tin < r < 1y

	

(2 - n)n there are two sets Ai and

Aj for which IAí n Al l = r

	

This conjecture, if true, would

imply that X(En ) > (1 +c) n . Very recently Peter Frankl proved

a slightly weaker result from which he immediately deduced

X(En) > (l+c)n . Larman and Rogers proved X(E n) < (3 +o(1)) n ;

presumably

lim X(En)1/n = C
n

exists and it would be interesting to determine C .

In a forthcoming paper, Simonovits and I investigate

(among others) the following problem . Join two points of the

n-dimensional unit sphere by an edge if their distance is 1 .

Determine or estimate the chromatic number of this graph .

Trivially it is greater than cn, but perhaps it tends to

infinity exponentially .

I asked : Let S be a set in E 2 . Join two points of S

if their distance is 1 . Assume that the girth of this graph

is k .

	

Is it true that for every k there is a set S so

that the resulting graph has chromatic number > 4 ? Wormald

proved that such a graph exists for k = 5 ; for k > 5 the

problem is open . A well known theorem of de Bruijn and myself

states that every infinite graph of chromatic number k con-

tains a finite subgraph of chromatic number k, thus all these
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problems are really problems on finite graphs . For example, if

X(E2) > 4,

	

then there is a finite set of points so that if we

join two points where distance is 1 we get a graph of chro-

matic number > 4 . The only trouble is that no estimate is

available on the size of this set . One final problem about

these graphs : Denote by f 2 (k) the largest integer for which

there are k numbers al , . . . , a k so that, if we join two

points of the plane when their distance is one of the a i ,

i = 1, . . . , k,

	

then the chromatic number of this graph is

f2 (k) .

	

Estimate f2 (k) as well as you can . Is f 2 (k) of

polynomial or exponential growth? Or is it something in between?

Silverman and I considered the following question : Let G

be a graph whose vertices are the integers . Join i and j if

the sum i + j is a square . Is it true that X(G) = Ít0

Clearly many related problems can be asked . For references,

see [1, 11, 17, 19] .
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