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I will mainly discuss somewhat unconventional problems on sieves,
primes and congruences. First some questions on sieves. Let B, (x) (B for
Brun) be the smallest integer so that we can assign k residues a®, i=
1,..., k,mod p for every p, k <p < Bi(x)so that every integer n < x should
satisfy at least one of the congruences

n=a;" (modp).

This probiem is of course not new, it goes back at least to Brun, but ] am
not sure if and when it has been formulated explicitly. For references see the
well-known, recent book of Halberstam-Richert, Sieve Methods. As far as |
know the sharpest current results are

c1x? cax(log log x)2

< = ;
log x Bi(x) log x log log log x

(1)

The lower bound is due to Iwaniec and the upper bound to Rankin.
Rankin’s result immediately gives that for infinitely many k

log k log log k log log log log k
(log log log k)* :

Prs1—Px>cC (2)

Inequality (2) was proved more than 40 years ago and the only improve-
ment since then was to increase the value of c. Clearly any improvement of
the upper and lower bounds in (1) and (2) would be of great importance in
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the theory of the distribution of primes. I offer 10 000 dollars for a proof that
(2) holds for every ¢ and infinitely many k. This will probably require a new
idea since (2) seems to be the natural boundary of the method used there. I
refer to the book of Halberstam and Richert for the results on B,(x) for
k > 1. The case k = 1 connects up with an interesting problem of Jacobstahl.
Let 1=a,<::-<ag,u=n—1 be the sequence of integers relatively prime
to n. Put
g(n)=max (a1 —ax), G(n)= max g(m).

l=m=n
Rankin’s result (2) implies that
¢ logn loglog n log log log log n

> L
Gn) (log log log n)* 2)
and Jacobstahl conjectured
logn 2
G(n)< (————) .
(n)<e log log n

It is perhaps more illuminating to put
max g(n)=C(r)

where the maximum is taken over all integers n which have r distinct prime
factors. Jacobstahl conjectured

Clr)<cyr®, (3)

and he further conjectured that C(r) is assumed if n is the product of the first
r primes. Perhaps the true order of magnitude of C(r) is r (log r)“.
Itis easy to see that for every n (v(n) denotes the number of distinct prime
factors of a)
1 -1
gm =+ I1(1-) . @)

pin

I often tried to find two integers m, <m,<n, (m,, m,) =1 for which

min (g(m), g(mz)) >log n.

I was not successful; perhaps g(m) can be abnormally large, i.e. larger than
the bound given by (2") only if m is divisible by all (or most) of the small
primes. The strongest form of this conjecture would state: Let m, <m,=<n,
(mq, my)=1. Then

log

—_n % "
- (logloglogn)?. (2")

min (g(m,), g(mz))<c T
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The conjecture (2”) may very well go too far. I hope to be able to
investigate these questions, but I am not very optimistic of success.
I now state one of my favorite old conjectures:

eln) n

Y (aksi—ax)’<C ;

k=1 e(n)

It is surprising that (4) is probably really difficult—I offer 500 dollars for a

proof or disproof. Hooley has several results which indicate that (4) is

probably true. In particular Hooley proved (4) if 2 is replaced by an
exponent less than 2. It seems certain that for every »

r

(4)

@ln) n

Y (ara—a) <CG——=. (4
k=1 w(n)
Perhaps
@ln)
Z e M1 % <C|?G(").
k=1

Now I state a few problems on unconventional sieves. Let f(m) be a
number theoretic function. n issaid to be a barrier for f(m) if forevery m <n
we have m+f(m)<n. A function can only have a barrier if it does not
increase fast. I wanted to prove that Y, ., »(n)2 ™" is irrational (this problem
is still open) and this led me to the problem whether »(n) has infinitely many
barriers. The answer is almost certainly yes, but a proof can perhaps not be
expected, since if # is a barrier than n —1=p and n —2 =24 where p and ¢
are primes. It is a well-known, unsolved problem whether infinitely many
pairs of such primes exist. Faced with this situation I hoped that I could
prove that for some £ > 0 ev(n) has infinitely many barriers. I failed to do so,
but if we would know a little more about sieves where the number of omitted
residues mod p is a slowly increasing function of p we would probably
succeed. Selfridge and I investigated if d(n) has infinitely many barriers.
Observe that max(n —1+d(n—1), n —2+d(n —2))=n +2. Thus the best
one can hope here is that for infinitely many »

max (m+d(m))=n+2. (5)
For example n =24 satisfies (5). We convinced ourselves that if there is any
n > 24 which satisfies (5) it must be enormous—far beyond the reach of our
computers and tables (and unfortunately probably our brains). Perhaps it
would be more reasonable to conjecture that

max (m+d(m))—n -0 (6)

m<n

as n-»>. I feel that (5) if true is completely hopeless; (6) if true could
perhaps be attacked.
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I was often blocked in my work by sieve problems of the following kind:
Let px < n be any set of primes satisfying ¥ (1/p;) > ¢. Is it true that to every
£ >0thereisa k (k depends only on ¢ and £ and not on » or the set of primes
pi),so thatif {a{"}, j=1,..., k is an arbitrary set of k residues mod p; then
the number of integers x <n

x2a’(modp), j=1,...,k

is less than ex? For many related problems and results see our forthcoming
paper with 1. Ruzsa in the Journal of Number Theory.

Is it true that to every ¢ there is a k so that if we omit (p; —1)/2 residues
mod p; where p1, ..., pr are any k primes satisfying p;, =o(n) then all but en
integers <n have been omitted?

Let f(x) be the smallest integer so that there are (p; +1)/2 residues

; i +1
a}” (mod p;), f=1----‘pT, pi=f(x) ™)

so that every integer n <x satisfies at least one of the congruences (7).
Determine or estimate f(x) as accurately as possible. On the one hand it is
easy to see that we must have [, p > x, on the other hand

zﬂl’ﬂxl){ X,

where 7 is the prime counting function. These two inequalities imply
log x log log x
log 2 )

I would be interested in any improvement—however small—of (8). I have
no guess for an asymptotic formula for f(x).
Are there infinitely many integers # not of the form

ak’+b, k>1, a=1, 0<b<k? (9)

(1+e(1))logx <f(x)<(1+o0(1)) (8)

Selfridge and Wagstaff made some numerical calculations which seem to
indicate that the number of these n is indeed infinite. Perhaps (9) should be
replaced by

ak*+b, k>1, a=1, —k<b<k. (9"

(9") implies that n =0 (mod 4). I would expect that there are by infinitely
many integers n not of the form (9'). Denote Fi(x) (respectively Fa(x)) the
number of integers < x not of the form (9) (respectively (9')). The compu-
tations of Selfridge and Wagstaff seem to indicate that

M <Fi(x)<x™

and perhaps the same holds for Fy(x).
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One final question of this type: Leta; <a, <" - - . Consider the integers of
the form

ak’+b, a=1, k>1, -—a<b<a. "

How fast must a, increase that if #(n) denotes the number of represen-
tations of # in the form (9”) then A(n) =0 as n » 20? Does ai/k - o suffice?
I doubt it. Many further questions could be asked but we leave this to the
reader—I hope (against hope) that at least some of them he will be able to
answer.

Now let us discuss some problems on primes. The prime k-tuple con-
jecture of Hardy and Littlewood states as follows: Let a; <a,<---<ay be
k integers. Then the necessary and sufficient condition that there should be
infinitely many values of n for which all the integers n +a;, i=1,..., k are
primes is that for no prime p should the set a,, . . ., a, form a complete set of
residues mod p. The condition is clearly necessary; the proof of the
sufficiency seems hopeless at present since e.g. the conjecture that there are
infinitely many prime twins is a special case. The analogous question about
squarefree numbers is easy and well known. The necessary and sufficient con-
dition that for infinitely many n all the integers n+a;, i =1, ..., k should
be squarefree is that the a’s do not form a complete set of residues (mod p?)
for any prime p. The reason for this difference is that ¥,(1/p’)<c0 is
convergent and therefore we have no difficulty with the sieve. Let us now
return to the prime k-tuple conjecture. There are some interesting extremal
problems here. First of all observe that if {a,,..., a:} is a sequence of
residues which do not form a set of complete residues mod p for every p—let
us call such a set of integers a P, set—then clearly it suffices to restrict
ourselves to the primes p < k. First of all how many distinct P, sequences are
there? Two P, sequences are identical if they are identical mod p for every
p<k. It is not clear if there is a nice formula for this number. Much more
interesting and infinitely more difficult are the following extremal problems:
Determine or estimate

min a, = f(k) and min f a;=F(k) (10)

i=1

where the minimum is to be taken over all the P,-sequences 0<a;<::-<
ay. There is no reason to assume that the extremal sequences giving the
solutions of these two problems coincide. It would be of interest to deter-
mine these extremal sequences for small values of k. The sequences for k =4
will probably begin to be interesting. Clearly many other related extremal
problems could be asked; we restrict ourselves to state one more problem:
Consider all the sequences of one of the classes of P, (i.e. the sequences of
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our class are all congruent mod p for all p < k). Consider

max min a = G(k).
Py
Estimate G (k) as well as possible. In other words: in each class consider the
sequence a; <- ' - < a, which minimizes a, and then take the class for which
this minimum is maximum. I never considered this problem before and I
hope the reader will forgive me if it turns out to be trivial or uninteresting.
It was often conjectured that

mx+y)smx)+7w(y) (11)

holds for every x =y > 0. It was a great surprise to me when a few years ago
Hensley and Richards proved that (11) is incompatible with the prime
k-tuple conjecture. More precisely they proved that if the prime k-tuple
conjecture holds, then there is an absolute constant ¢ so that for all
sufficiently large y and infinitely many x

cy
mx+y)—mx)—7w(y)>——. 12
Very recently Richards and I wrote a paper on this subject at the end of
which we disagree about a conjecture. Richards believes that (12) holds for
every ¢ and suitable x and y and I believe that for sufficiently large ¢ and all

X,y
m(x+y)—w(x)—m(y)<cy/(logy)*. (13)

I repeat my meta-conjecture: None of us will ever know the answer, at
least not in this world.

In conversation a few years ago somebody (let us refer to him or her as S)
pointed it out to me that the conjecture wr(x +y)<ax(x)+x(y) was not
reasonable. The *“‘correct’ conjecture should have been

m(x+y) < i)+ 2m(3). (14)
S argued that amongst all the intervals of length y the interval (—y/2+y/2)
can be expected to contain the largest number of primes. I agree with S; (14)
would of course imply (13).

Montgomery-Vaughan and Selberg proved

o —— . (15)
log y

This sharpens a previous result of Selberg. It would be very nice if in (15) one
could replace 2 by 2 — ¢, but at the moment this seems far beyond our reach.
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X and I asked: Are there infinitely many 2k-tuples (k > 1) of consecutive
primes pp41<: < Pnsa2x satisfying p,o; +1 = pusr+i- for some ¢ =1(k) and
i=1,...,k? The prime k-tuple conjecture of course implies this; the point
is to try to prove this without any hypotheses. We were unable to make any
progress with this problem.

One could try to extend the prime k-tuple conjecture for infinite
subsequences. It is easy to see that there are sequences a; <a><- - - which
increase as fast as we wish and which do not form a complete set of resnducs
mod p for any p and nevertheless there is no integer n for which all the
numbers a;+n, i=1,2,... are all primes (or are all squarefree). On the
other hand it follows from the prime k-tuple conjecture that there are two
infinite sequences a; <@, <':+; b1<bhy<-:: so that all the sums a; +b;
1<i<j<oo are all primes. It is not hard to prove that there is an infinite
sequence u; <u,<' - for which all the sums u; + u; are all squarefree. Can
these sequences be of polynomial growth? I am sure that the answer is
negative. Perhaps they can be of exponential growth. Let more generally
a;<a;<---beany scquence of positive identity. Is it true that there is an
infinite sequence b;<b,<--- and a fixed integer ¢ so that all the sums
bi+bj+ti#jare as?

In various problems on primes it would often be useful to obtain non-
trivial estimations about the smallest solutions of systems of congruences,
e.g. Ecklund, Selfridge and I tried to estimate the smallest integer n; for
which (3*) has no prime factor <k or the smallest N, for which all primes
p <k divide (;*); we only obtained crude upper and lower bounds. Another
related question: let my be the smallest integer greater than k for which no
prime factor of H _(my+1) is in (k, 2k), or alternatively let M, be the
smallest integer greater than 2k for which l-[, (M +1) is a multiple of all
the primes g, k <q <2k. Again only rough upper and lower bounds are
available.

Before I turn to covering congruences let me state two problems on the
difference of consecutive primes. First an old problem of Turan and myself:
Put d, = pn+1—pn- There is no doubt that for every k there are infinitely
many n for whichd, 11>+ - >dusr and d, 41 <d,+2<- - <d,.r both have
infinitely solutions; we can only prove thisfor k =2. Surelyd,.1=" "' =dux
also has infinitely many solutions, but this we can not even prove for k =2,
and is probably hopeless at present. We could not even prove that there is no
no so that for every i =1, (dny+: —da,)(— 1) = 0. Perhaps here we overlook a
trivial point and I offer 100 dollars for a proof that no such n, exists. (I am of
course so sure that such an ng does not exist that I do not even offer anything
for finding an no.)

Define n; to be the smallest integer for which t;, =d, .1 —d,, > dy+1—du,
for all u <n,.
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It seems likely that the sequence n; increases very rapidly and surely
H;+1>n;+ 1 for all § > i, Similarly the sequence #; seems to increase rapidly
but I certainly cannot prove that the sequence ¢; has density 0 and in fact can-
not even prove that there are infinitely many even numbers not equal to one
of the #. There again I may be overlooking a trivial point.

Similar questions can be asked about squarefree numbers. Let g; <g,<
-++ be the sequence of consecutive squarefree numbers. It is a simple
exercise to prove that for every r there are infinitely many values of k for
which

Q1 Gk = qre2 = Gk+1= """ = Ghret — Gietre

The only problem which remains is: How fast can r increase as a function of
k?

On the other hand n; and f; can be defined here too, and I can do as little
here as with the primes. No doubt ¢,+1—¢, = 0(n ") but we are very far from
being able to prove this. Put

F(n)=max (qx+1—qx) .
qe=n
A simple argument using the Chinese Remainder Theorem and the Prime
Number Theorem gives
2 -1
. 7w logn
1 F {— —-—} =1.
lTigp (r) 12 loglogn 1 (16)
I never was able to improve (16) and I am not absolutely sure that (16) is
not best possible—though I frankly doubtit. Let1<a;<::-(a; a;)=1,and
assume that the as tend to infinity sufficiently fast. Denote by 1 =5, < b, <
-+ - the sequence of integers not divisible by any of the a’s. Define & (n) as the
integer ¢ for which

+1

[Masn<]] a.

i=1 i=1
Then a simple sieve process gives (F(n) = max,<, (b;+1— b))
-1

lim supF(n)(¢(n)n(1—al)) =1, (17)

If a; =p?, then (17) becomes (16), but I doubt very much whether p2

increases fast enough to insure equality in (16). I expect that the as have to

increase faster than polynomially to insure that (17) should hold. I hope to
investigate this problem in the near future.

Now I state a few problems connected with covering congruences. Some

of these problems are in my opinion among the most interesting ones I ever
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invented. Van der Corput and I proved that there are infinitely many odd
integers not of the form 2%+ p; in fact there is an arithmetic progression
consisting entirely of odd numbers no term of which is of the form 2* +p.

In 1934 Romanoff proved that the lower density of the integers of the
form 2* +p is positive. Presumably the density of these integers exists, but
this has never been proven and probably can not be proven by the methods
at our disposal at present. In 1934 Romanoff wrote to me asking if I can
prove that there are infinitely many odd integers not of the form 2* +p.
Using covering congruences I proved that there is an arithmetic progression
of odd numbers no term of which is of the form 2* + p. A system of congruences

a;(mod n;), n<- ' <my (18)

is said to be covering if every integer satisfies at least one of the congruences
(18). The simplest such system is 0 (mod 2), 0 (mod 3), 1 (mod 4), 5 (mod 6),
7 {mod 12). To prove the theorem I had to find a covering system which does
not contain the modulus 6, which is easy. The most interesting problem
which can be posed states: Is there a system (18) for every ¢ satisfying t < n,?
The present record is held by Choi who constructed such a system with
n,=20. I offer 1000 dollars for a proof or disprove of the existence of a
covering system (18) with n, arbitrarily large. If systems (18) exist for every ¢
then it is easy to see that for every r there is an arithmetic progression no
term of which is of the form 2 + 6, where 6, has r or fewer distinct prime
factors.

Linnik proved that there is an 7 so that every integer is the sum of two
primes and r powers of 2. Gallagher proved that for every ¢ >0 thereisanr
so that the lower density of the integers n which are the sum of a prime p and
r powers of 2 is greater than 1—e&. This result of course implies Linnik’s
result. Is it true that there is an r so that every integer is the sum of a prime p
and r powers of 2? Crocker proved that there are infinitely many odd
integers which are not of the form p + 2“1 + 22, The numbers not of this form
given by Crocker’s construction form a very thin sequence. I suspect that
covering congruences cannot be applied here. More precisely: Let
g1, . - -, qs be any set of odd primes and let n > no(q;, . . . , g;) be a sufficiently
large odd integer. Then there are integers u and v satisfying

2% 42° <n, (n—2”r2" 1 q,-)=1. (19)
i=1
(19) if true would of course show that covering congruences cannot be used
here.
I do not have any guess if in fact there is an r so that every » is the sum of a
prime and r or fewer powers of 2.
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I conjectured that every n#0 (mod 4) is of the form 2* + 4 where 6 is
squarefree. This conjecture if true will be certainly very hard to prove. It is
not even known that every n >ng(k) is the sum of a k-th power and a
squarefree number. There might be some chance of proving that almost all
integers n# 0 (mod 4) are of the form

2X+0  squarefree. (20)

In any case I do not believe that (20) can be disproved by covering
congruences. As far as [ know it has never been proven that every sufficiently
large n can be written in the form 2% + 6 where v(8) <loglog n (v(n) is the
number of distinct prime factors of ). In fact one would perhaps expect that
to every ¢ there is an ng so that for every n >no

n=2%+6, v(f)<eloglog @

is solvable.

An integer n is called covering if one can form a covering system from the
division 2<d, <+ - <d,(»y=n of n. It is not hard to show that the covering
numbers have a density. I conjectured and J. Haight recently proved that for
every C there are integers n for which o(n)/n > C and n is not a covering
number. This is one of the few theorems on covering systems. A possible
refinement would be: Put

o(n')

o(n)
gi(x) = max ; g2(x) =max
n<x n n'=<x
where n' runs through the integers which are not covering numbers. By
Haight’s theorem g»(x)—>c0. Is it true that

|g1(x) — g2(x)| < C?

The paper of Haight will appear in Matematika very soon.

I conjectured that for every system (18) we must have }:, ,(1/n)>1.In
other words: A covering system can never be exact. L. Mirsky and D.
Newman (independently) proved this conjecture in a very simple and
ingenious way. Herzog and Schénheim have the following interesting con-
jecture which is a far reaching generalization: Let G be a finite group (if
necessary assume it to be abelian). Let H,, H, ..., H, be cosets of G
satisfying

HnH=¢, 1<|H|<---<|H<|G].

Then G #\J'_, H. In other words G is not the union of disjoint cosets of

different sizes. As far as I know this conjecture has not yet been settled.
To end the paper I state a few miscellaneous problems. A well-known

theorem of van der Waerden states that if we divide the integers into two
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classes then at least one of them contains an arbitrarily long arithmetic
progression. Let f(n) be the smallest integer so that if we divide the integers
from 1 to f(n) into two classes then at least one of them contains an
arithmetic progression of n terms. Almost nothing is known about f(n);
perhaps it increases faster than any primitive recursive function, but it is not
even known that f(n)>c¢" for every ¢ if n>ng(c). I offer one hundred
dollars for a proof or disproof of this conjecture.

More than 45 years ago Turdn and I conjectured that every sequence of
positive upper density contains arbitrarily long arithmetic progressions. I
offered a few years ago one thousand dollars for a proof of this conjecture.
Szemerédi proved this conjecture by a masterpiece of combinatorial
reasoning. Recently Fiirstenberg obtained a proof using ergodic theory. Let
now f.(n) be the smallest integer so that if

l<sa < <a<f.(n), r=[cf.ln)],

is any sequence of integers then the a’s contain an arithmetic progression of
n terms. Nothing significant is known about the growth properties of f.(n).
In particular it is not known to what extent it depends on ¢ and in particular it
is not known if fi(n ) increases significantly faster than f(#n ). It might be worth
while to investigate this question but unfortunately methods seem to be
lacking.

An old conjecture states that the set of primes contains arbitrarily long
arithmetic progressions. I conjectured many decades ago thatif ¥ ;(1/a;) =
co then the a’s contain arbitrarily long arithmetic progressions. I offer 3000
dollars for a proof or disproof. It is known that there are infinitely many
triples of primes in an arithmetic progression i.e. p +q =2r is solvable in
primes infinitely often, but it is not known if there are infinitely many
quadruples of primes in an arithmetic progression and no proof is in sight.

Sierpinski proved, by using covering congruences, that if N(x) is the
number of odd positive integers k <x such that k.2" +1 is composite for
every positive integer n then N (x) > cx. Bateman asked if the number of odd
integers for which this property does not hold is also > cx. In other words: is
it true that the number of odd integers k < x of the form (p —1)/2" is greater
than cx? Odlyzko and I proved this. We also conjectured that every integer
k=1 or 5 (mod 6) is of the form (p—1)/2%3". Odlyzko showed this for
every k < 10°. There does not seem to be much hope to prove our general
conjecture.

The following somewhat vague question could be posed: Are there odd
integers k for which k2" +1 is composite but which can not be obtained
by covering congruences? Perhaps the following formulation is less vague:
Is there an integer k for which k2" +1 is composite for every n but if
Pis ..., P, is any finite set of primes then there always is an n for which
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(k2" 41, [1;-, pi) = 1? These type of questions arise in several situations—
so far all of them were unattackable.

Turdn and I asked: Let ay, ..., ax be real numbers. What are necessary
and sufficient conditions that

k
Y apn., n=1,2,... (21)
i=1

should have infinitely many changes of sign? We have observed that
Zf,l a; =0 is clearly necessary and Polya observed that if (21) has infinitely
many changes of sign then the k numbers o; =Y ,_, a; cannot all have the
same sign. Polya, Turdn and I then conjectured that if the a, are not all of the
same sign then (21) has infinitely many changes of sign. We are very far from
being able to prove this, in fact I cannot even prove that d, >d, 41+ dn.2
(dn = pn+1—p») has infinitely many solutions. I proved the following much
easier theorem: Assume that Z?;l a; =0 and a;-1#0. Then (21) changes
sign infinitely often. If the primes are replaced by squarefree numbers then it
is easy to see that our conjecture holds.

Finally T would like to call attention to the following curious situation:
Ricci and I proved that the set of limit points of d,./logn has positive
Lebesgue measure; the same is true for d,/d, ., and also for r(n)/7(n+1)
(r(n) denotes the number of divisors of n). In the case of v(n)/7(n+1) 1
proved that the set of limit points contains intervals. Nevertheless in none of
these cases could we (or anybody else) decide if a given positive real number
is a limit point of elements of our set. Perhaps I overlook a simple argument,
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