Ramsey-Minimal Graphs
 for Matchings

S.A. BURR
P. ERDÖS
R.J. FAUDREE
C.C. ROUSSEAU
R.H. SCHELP*

ABSTRACT
This paper investigates $R(G, H)$ in the special case where G is a t-matching and H is a 2-matching. Here $R(G, H)$ is the set $\left\{F \mid F \rightarrow(G, H)\right.$ and $F^{\prime} \nrightarrow(G, H)$ for each proper subgraph F^{\prime} of F$\}$.

1. Introduction.

Let F, G, and H be (simple) graphs without isolated vertices. Write $F \rightarrow(G, H)$ to mean that if each edge of F is colored red or blue, then either the red subgraph of F contains a copy of G or the blue subgraph contains a copy of H. The class $A(G, H)=\{F \mid F \rightarrow(G, H)\}$ is essential in Ramsey theory and is non-empty by the classical theorem of F.P. Ramsey. Furthermore, the generalized Ramsey number is
$R(G, H)=\min _{\operatorname{F\varepsilon A}(G, H)}|V(F)|$ and the size Ramsey number is
$r(G, H)=\min _{F \in A(G, H)}|E(F)|$.
In this paper we concern ourselves with the edge minimal members of $A(G, H)$, called (G,H)-minimal graphs. Thus we formally define this family as $R(G, H)=\left\{F \in A(G, H) \mid F^{\prime} \neq(G, H)\right.$ for each proper subgraph F^{\prime} of $\left.F\right\}$.

The problem of characterizing the family $R(G, H)$ for a fixed pair of graphs (G, H) is extremely difficult. It is the purpose of this paper to consider such a characterization for what should be the simplest case, when G is a t-matching and H is a 2-matching.

Before we consider the difficulties involved in any general characterization of $R(G, H)$, we give some general information of what is known. This information will motivate our looking first at $R(G, H)$ in the special case when G and H are both matchings.

The pair (G, H) is called Ramsey-finite or Ramsey-infinite depending on the cardinality of $R(G, H)$. An early general result was given by Nešetřil and Rödl.

Theorem 1 [9,10]. The pair (G, H) is Ramsey-infinite if at least one of the following holds:
(i). G and H are both 3 -connected.
(ii). $X(G)$ and $X(H) \geq 3$.
(iii). G and H are both forests, neither of which is a union of stars.
This theorem leaves an obvious gap when G or H has connectivity two or less and part (iii) is not satisfied. Special cases for graphs which fit in this gap have been considered in other papers [1-8]. In particular the case when G is a matching has been completely settled.

Theorem 2 [2]. If G is a matching and H is an arbitrary graph, then the pair (G, H) is Ramsey-finite.
2. The Main Results.

This result and several others in $[3,4,5]$ suggest the following eonjectures.
(1). If the pair (G, H) is Ramsey-finite, then also the pair $\left(G \cup \ell S_{1}, H \cup \mathrm{mS}_{1}\right)$ is Ramsey-finite, where jS_{1} denotes a j-matching.
(2). The pair (G,H) is Ramsey-infinite, unless both G and H are stars with an odd number of edges or at least one of G or H contains a single edge component.

There are examples of graphs G (and or H) which have single edge components, yet the pair (G, H) is Ramsey-infinite. Hence the converse of (2) definitely fails. The complete classification of those pairs (G, H) which are Ramsey-finite remains a major unsolved problem.

From Theorem 2 we know $R(G, H)$ is finite when either G or H is a matching. Thus the most nacural place to begin with the difficult classification of $R(G, H)$ is when both G and H are matchings. In the remainder of the paper we consider this classification problem for $G=t S_{1}$ and $H=2 S_{1}$.

It is clear that $R\left(S_{1}, H\right)=\{H\}$. However, the determination of even $R\left(2 S_{1}, H\right)$ is non-trivial. Thus as a special case we consider the finite family $R\left(t S_{1}, 2 S_{1}\right)$. Clearly $(t+1) S_{1} \in R\left(t S_{1}, 2 S_{1}\right)$. For convenience let $R^{\prime}\left(t S_{1}, 2 S_{1}\right)=R\left(t S_{1}, 2 S_{1}\right)-\left\{(t+1) S_{1}\right\}$.

Now we note that $F \in R^{\prime}\left(t S_{1}, 2 S_{1}\right)$ if and only if each of the following holds.
(a). F contains a t-matching which is maximal.
(b). For each vertex v of $F, F-v$ contains a t-matching.
(c). For each $\mathrm{C}_{3} \leq \mathrm{F}, \mathrm{F}-\mathrm{C}_{3}$ contains a t-matching. This characterization is easy to verify. It follows from the following observation. When the edges of F are two-colored
such that no $2 \mathrm{~S}_{1}$ appears as a subgraph of the blue graph, then the biue gajh must be a triangle or must have all its edges incider: :o the same vertex.

We use this characterization to get some information about $R\left(t S_{1}, 2 S_{1}\right)$. First let $F_{1} \in R^{\prime}\left(t_{1} S_{1}, 2 S_{1}\right), F_{2} \in R^{\prime}\left(t_{2} S_{1}, 2 S_{1}\right)$, and let $F_{1} \cdot F_{2}$ denote the graph formed from F_{1} and F_{2} by identifying a Eixed vertex of F_{1} with a fixed vertex of F_{2}. Since F_{1}, respectively F_{2}, satisfies (a), (b), (c) above for $t=t_{1}$, respectively t_{2}, it is easy to check that both $F_{i} \cup F_{2}$ and $F_{1} \cdot F_{2}$ satisfy (a), (b), (c) for $t=t_{1}+t_{2}$. Essentially the converse of this result also holds. It is straightforward to show that if F is connected and $F \in R^{\prime}\left(t S_{1}, 2 S_{1}\right)$, then F contains no bridges. Thus let $F \in R^{\prime}\left(t S_{1}, 2 S_{1}\right)$ and in addition have connectivity one, i.e., F has a cut vertex and no bridges. Let w be a cut vertex of F belonging to an end block. Define F_{1} as any end block of F contairing w and define F_{2} as $F-\left(F_{1}-w\right)$. Note F_{2} is a union of the remaining blocks of F, other than F_{1}. Neither F_{1} nor F_{2} are edges so that both F_{1} and F_{2} have edges not incident to w. Since F satisfies (b), $F-w$ has a t-matching so that $F_{i}-w$ contains a t_{i}-matching, $t_{i} \geq 1, \quad(i=1,2)$ such that $t=t_{1}+t_{2}$. But this t_{i}-matching in $F_{i}-w$ is a maximal matching in $F_{i}(i=1,2)$, otherwise F would contain a matching greater than t, contrary to (a). Also since F satisfies (b) and (c), it follows that $F_{i}(i=1,2)$ satisfies (b) and (c) when $t=t_{i}$. It is interesting to note that each $t_{i} \geq 2$, since neither F_{i} can be a C_{3}. We summarize the consequences of this discussion in the following two theorems.

Theorem 3. Let $F_{1} \in R^{\prime}\left(t_{1} S_{1}, 2 S_{1}\right)$ and $F_{2} \in R^{\prime}\left(t_{2} S_{1}, 2 S_{1}\right)$. Then $F_{1} \cup F_{2}, F_{1} \cdot F_{2} \in R^{\prime}\left(\left(t_{1}+t_{2}\right) S_{1}, 2 S_{1}\right)$.
.). F. i. l.et F have comectivity one, $F \subset R\left(1 S_{1}, 2 S_{1}\right)$. Then there exists a partition $\left(t_{1}, t_{2}\right)$ of t such that $F=F_{1} \cdot F_{2}$ with $F_{1} \in R^{\prime}\left(t_{1} S_{1}, 2 S_{1}\right)$ and $F_{2} \in R^{\prime}\left(t_{2} S_{1}, 2 S_{1}\right)$.

Corolitamy 5. Let t_{0} be a fixed positive integer and let $H=\left\{F \mid F\right.$ is 2-connected and $\left.F \in R\left(t_{0} S_{1}, 2 S_{1}\right)\right\}$. Then $R\left(t_{0} S_{1}, 2 S_{1}\right)=H \cup L \cup\left\{\left(t_{0}+1\right) S_{1}\right\}$ where $L=\left\{L \mid L=F_{1} \cdot F_{2}\right.$ or $L=F_{1} \cup F_{2}$ with $F_{1} \in R^{\prime}\left(t_{1} S_{1}, 2 S_{1}\right), F_{2} \varepsilon R^{\prime}\left(t_{2} S_{1}, 2 S_{1}\right)$, and $\left(t_{1}, t_{2}\right)$ a partition of $\left.t_{0}\right\}$.

Since it is clear that for each $\ell \geq 2, C_{2 \ell+1} \varepsilon R\left(\ell S_{1}, 2 S_{1}\right)$, the following corollary is a specialization of Theorem 3.

Corollary 6. Let G be a graph with its blocks B_{1}, B_{2}, \ldots, B_{k} being the odd cycles $C_{i_{1}}, C_{i_{2}}, \ldots, C_{i_{k}}$, with each $i_{j} \geq 5$, such that $\sum_{j=1}^{k} \frac{i_{j}-1}{2}=t$. Then $G \in R\left(t S_{1}, 2 S_{1}\right)$.

This last corollary does produce a fairly large subset of graphs in $R\left(t S_{1}, 2 S_{1}\right)$. For example the graphs of $R\left(8 S_{1}, 2 S_{1}\right)$ which have four different C_{5} 's as their only blocks are listed in Figure 1. From Corollary 5 it is apparent that $R\left(t S_{1}, 2 S_{1}\right)$ is completely determined by its 2 -connected members. Even these could prove very difficult to find; for example, $\mathrm{H}_{1} \in R\left(6 \mathrm{~S}, 2 \mathrm{~S}_{1}\right)$ and $\mathrm{H}_{2} \in \mathrm{R}\left(10 \mathrm{~S}_{1}, 2 \mathrm{~S}_{1}\right)$ with H_{1} and H_{2} shown in Figure 5.

We give a few additional lists of $R(G, H)$ for very special small graphs G and H. The case analysis involved in obtaining the lists is additional evidence of the complexity of the problem under discussion.

Theorem 7. Let G_{i} denote the collection of graphs listed in figures 3-7. Then
(i). $R\left(2 \mathrm{~S}_{1}, 2 \mathrm{~S}_{1}\right)=\left\{\mathrm{C}_{5}, 3 \mathrm{~S}_{1}\right\}$;
(ii). $R\left(3 \mathrm{~S}_{1}, 2 \mathrm{~S}_{1}\right)=\left\{4 \mathrm{~S}_{1}, \mathrm{C}_{7}\right\} \cup \mathrm{G}_{1}$;

Figure 1.

Figure 2.

Figure 3.

Figure 4.

G_{4}
Figure 6.

G_{5}
Figure 7.

$$
\begin{array}{ll}
\text { (iii). } & R\left(4 S_{1}, 2 S_{1}\right)=\left\{5 S_{1}, C_{5} \cup C_{5}, C_{5} \cdot C_{5}, C_{9}\right\} \cup G_{3} ; \\
\text { (iv). } & R\left(2 S_{1}, S_{2}\right)=\left\{2 S_{2}, C_{4}, C_{5}\right\} ; \\
\text { (v). } & R\left(3 S_{1}, S_{2}\right)=\left\{3 S_{2}, C_{4} \cup S_{2}, C_{5} \cup S_{2}, C_{7}, C_{8}\right\} \cup G_{4} ; \\
\text { (vi). } & R\left(2 S_{1}, S_{3}\right)=\left\{2 S_{3}\right\} \cup G_{5} ; \text { and } \\
\text { (vii). } & R\left(2 S_{1}, K_{3}\right)=\left\{\mathrm{K}_{5}, 2 \mathrm{~K}_{3}\right\} \cup G_{2} .
\end{array}
$$

There are some obvious questions concerning $R\left(\mathrm{tS}_{1}, 2 \mathrm{~S}_{1}\right)$. For instance, what is the maximum order and size of members of $R\left(t S_{1}, 2 S_{1}\right)$? A rather large upper bound is given for the size in [2].

The results on $R\left(t S_{1}, 2 S_{1}\right)$ given above demonstrate the difficulty in finding an explicit characterization for $R(G, H)$ for arbitrary G and H. It would be extremely valuable to complete such a characterization for the special pair ($t S_{1}, 2 S_{1}$).

Another direction of interest would be to find properties common to a fixed family $R(G, H)$. This might prove fruitful for the more special class $R\left(t S_{1}, 2 S_{1}\right)$.

REFERENCES

1. S.A. Burr, A Survey of Noncomplete Ramsey Theory for Graphs, Topics in Graph Theory, New York Academy of Sciences, (1979), 58-75.
2. S.A. Burr, P. Erdös, R.J. Faudree, and R.H. Schelp, A Class of Ramsey-Finite Graphs, Proc. 9th S.E. Conf. Comb., Graph Theory, and Computing, (1978), 171-180.
3. S.A. Burr, P. Erdös, R.J. Faudree, C.C. Rousseau, and R.H. Schelp, Ramsey-Minimal Graphs for the Pair Star, Connected Graph, to appear.
4. S.A. Burr, P. Erdös, R.J. Faudree, C.C. Rousseau, and R.H. Schelp, Ramsey-Minimal Graphs for Star-Forests, Discrete Math., 33(1981), 227-237.
5. S.A. Burr, P. Erdös, R.J. Faudree, C.C. Rousseau, and R.H. Schelp, Ramsey-Minimal Graphs for Forests, to appear.
6. S.A. Burr, P. Erdös, L. Lovász, On Graphs of Ramsey Type, ARS Combinatoria, 1(1978) 1, 167-190.
7. S.A. Burr, R.J. Faudree, and R.H. Schelp, On Graphs with Ramsey-Infinite Blocks, to appear.
8. S.A. Burr, R.J. Faudree, and R.H. Schelp, A Class of Ramsey-Minimal Graphs, Proc. 8th S.E. Conf. Comb., Graph Theory, and Computing, (1977), 115-124.
9. J. Nesetril and V. Rodl, The Structure of Critical Ramsey Graphs, Acta Math. Acad. Sci. Hung., 32(1978), 295-300.
10. J. Nešetřil and V. Rod1, On Ramsey-Minimal Graphs. C-l2e?. Int. C.N.R.S. 260, Problémes Combinatoires of Th, ... \therefore. Graphes, (1978), 307-308.

City College, CUNY, Hungarian Academe of Swloner, unt Memphis State University

