Discrete Mathematics 33 (1981) 227–237 North-Holland Publishing Company

1981 MAR 2 4

RAMSEY-MINIMAL GRAPHS FOR STAR-FORESTS

Stefan A. BURR City College, CUNY, New York, USA

P. ERDÖS

Hungarian Academy of Science, Hungary

R.J. FAUDREE, C.C. ROUSSEAU, R.H. SCHELP

Memphis State University, TN 38152, USA

Received 14 January 1980 Revised 21 May 1980

It is shown that if G and H are star-forests with no single edge stars, then (G, H) is Ramsey-finite if and only if both G and H are single stars with an odd number of edges. Further $(S_m \cup kS_1, S_n \cup lS_1)$ is Ramsey-finite when m and n are odd, where S_i denotes a star with i edges. In general, for G and H star-forests, $(G \cup kS_1, H \cup lS_1)$ can be shown to be Ramsey-finite or Ramsey-infinite depending on the choice of G, H, k, and l with the general case unsettled. This disproves the conjecture given in [2] where it is suggested that the pair of graphs (L, M) is Ramsey-finite if and only if (1) either L or M is a matching, or (2) both L and M are star-forests of the type $S_m \cup kS_1$, m odd and $k \ge 0$.

1. Introduction

Let F, G and H be (simple) graphs. Write $F \rightarrow (G, H)$ to mean that if each edge of F is colored red or blue, then either the red subgraph of F, denoted $(F)_{R}$, contains a copy of G, or the blue subgraph, denoted $(F)_{B}$, contains a copy of H. The class of all graphs F (up to isomorphism) such that $F \rightarrow (G, H)$ has been studied extensively, e.g. the generalized Ramsey number r(G, H) is the minimum number of vertices of a graph in this class.

A graph F will be called (G, H)-minimal if $F \rightarrow (G, H)$ but $F' \not\rightarrow (G, H)$ for each proper subgraph F' of F. If G, H and F have no isolated vertices, F' can be replaced by F - e, where e is any edge of F. Here F - e denotes the graph with vertex set the same as F and edge set that of F less edge e. The class of (G, H)-minimal graphs will be denoted by $\mathcal{R}(G, H)$. The pair (G, H) will be called Ramsey-finite if $\mathcal{R}(G, H)$ is finite, and Ramsey-infinite otherwise.

Several recent papers discuss the problem of determining whether the pair (G, H) is Ramsey-finite (see [2, 3, 4, 7]). In particular Nešetřil and Rödl [7] showed that (G, H) is Ramsey-infinite if both G and H are 3-connected or if G and H are forests neither of which is a union of stars. It is shown in [4] that (G, H) is Ramsey-finite if G is a matching and H arbitrary. In addition, if (G, H) is Ramsey-finite for each graph H, then the results of [5] indicate that G must be

a matching. The purpose of this paper is to discuss one of the remaining gaps, which is to determine whether (G, H) is Ramsey-finite or infinite whenever G and H are star-forests, i.e., a forest of stars.

At this point we introduce some further notation and terminology. The word "coloring" will always refer to coloring each edge of some graph red or blue. A coloring of F with neither a red G or blue H will be called (G, H)-good. The modifier (G, H) may be dropped when the meaning is clear. For notational convenience a (G, H)-good coloring of F will be frequently symbolized by $G \not\leq (F)_R$ and $H \not\leq (F)_B$. Here the symbol " \leq " is read "subgraph of". The degree of a vertex x in $(F)_R$ (or $(F)_B$) will be denoted by $d_R(x)$ (or $d_B(x)$). A cycle on n vertices $\{x_1, x_2, \ldots, x_n\}$ with x_i adjacent to x_{i+1} for each i will be denoted by $(x_1, x_2, \ldots, x_n, x_1)$. The symbol mG will refer to m disjoint copies of the graph G. Also S_n will denote a star with n edges. This notation, instead of the usual $K_{1,n}$, was selected because of its frequent appearance and its simplicity. Further notation will follow that of standard references [1] and [6].

2. Stars

In this section we decide whether (G, H) is Ramsey-finite or infinite in the special case in which G and H are stars. Since (G, H) is Ramsey-finite whenever G is a matching [4], we deal only with nontrivial stars, i.e., not single edge stars. We will show that (S_s, S_t) is Ramsey-infinite except when both s and t are odd, in which case $\Re(S_s, S_t) = \{S_{s+t-1}\}$.

To begin we state a well-known "old" theorem which is used strongly in what follows.

Theorem 1 (Petersen [8]). A connected graph G is 2-factorable if and only if it is regular of even degree.

Theorem 2. Let s and t be odd positive integers and let F be an arbitrary graph. If $\Delta(F) \le s+t-1$, then F can be colored such that $S_s \not\leq (F)_R$ and $S_i \not\leq (F)_B$.

Proof. Embed F in a regular graph F' of degree s+t-2. By Petersen's Theorem (Theorem 1) F' is 2-factorable when s+t-2>0, so color (s-1)/2 of the factors red and (t-1)/2 of the factors blue. Clearly $F' \neq (S_s, S_t)$ so that $F \neq (S_s, S_t)$.

Corollary 3. If s and t are odd positive integers, then $\Re(S_s, S_t) = \{S_{s+t-1}\}$.

Proof. Clearly $S_{s+t-1} \in \mathcal{R}(S_s, S_t)$. Also if $F \in \mathcal{R}(S_s, S_t)$, then by Theorem 2, $\Delta(F) \ge s+t-1$. Hence $F \in \mathcal{R}(S_s, S_t)$ implies $S_{s+t-1} \le F$, so that $F = S_{s+t-1}$.

Theorem 4. If s and t are even positive integers, then (S_i, S_i) is Ramsey-infinite.

228

Proof. Let *l* be an odd positive integer, $l \ge s+t-1$. Recall that K_l is the edge disjoint union of (l-1)/2 spanning cycles $G_1, G_2, \ldots, G_{(l-1)/2}$. Define *F* as the union of the cycles $G_1, G_2, \ldots, G_{(s+t-2)/2}$. Clearly *F* has *l* vertices and is regular of degree s+t-2. It is easy to see that $F \rightarrow (S_s, S_t)$. If this were not the case, then there would exist a coloring of *F* with $(F)_R$ regular of degree s-1 and $(F)_B$ regular of degree t-1. This is impossible since then both $(F)_R$ and $(F)_B$ have an odd number of vertices of odd degree. Furthermore if $e \in E(F)$, then $F - e \not\rightarrow (S_s, S_t)$. To see this assume without loss of generality that $e \in E(G_{(s+t-2)/2})$. Then color alternating edges of the path $G_{(s+t-2)/2} - e$ together with all the edges of $G_1, G_2, \ldots, G_{(s-2)/2}$ red and the remaining edges of F - e blue. This gives a good coloring of F - e. Hence we have shown that $F \in \Re(S_s, S_t)$. Since *l* is any odd positive integer greater than s+t-2, the result follows.

Theorem 5. Let s be odd $(s \ge 3)$ and t be an even positive integer. Then (S_s, S_t) is Ramsey-infinite.

Proof. Let *l* be an odd positive integer, $l \ge s+t$. Then K_l is the edge disjoint union of (l-1)/2 spanning cycles $G_1, G_2, \ldots, G_{(l-1)/2}$. Suppose that G_1 is the cycle $(x_1, x_2, \ldots, x_l, x_1)$. Define the graph $F(\beta)$ as the edge disjoint union of the cycles $G_2, G_3, \ldots, G_{(s+t-1)/2}$ and the edges $\{x_2, x_3\}, \{x_4, x_5\}, \ldots, \{x_{l-1}, x_l\}$ of G_1 , together with free edge β attached at vertex x_1 , i.e., edge β has one of its end vertices identified with x_1 and the other end vertex remains of degree 1 in $F(\beta)$. Thus $F(\beta)$ is a graph on l+1 vertices, *l* of them of degree s+t-2, and the remaining vertex (an end vertex of β) is of degree 1.

We show that $F(\beta)$ can be colored such that $S_s \not\leq (F(\beta))_R$ and $S_t \not\leq (F(\beta))_B$, but under such colorings β is colored blue. To see that such a coloring exists, color the edges of $G_2, G_3, \ldots, G_{(s+1)/2}$ red and the remaining edges blue. Note that under this coloring β is colored blue. Also under all good colorings of $F(\beta)$ each of the *l* vertices of degree s+t-2 must be of red degree s-1 and blue degree t-1. Thus edge β is colored blue, otherwise $(F(\beta)-\beta)_B$ is a graph on *l* vertices, regular of degree t-1, i.e., has an odd number of vertices of odd degree. We have shown that $F(\beta)$ has good colorings, but under all such colorings β is colored blue.

Next we show $F(\beta)$ is minimal with respect to the property that under good colorings β is colored blue. By this we mean that if $e \in E(F(\beta))$, $e \neq \beta$, then $F(\beta) - e$ has a good coloring with β colored red. To establish this let $e \in E(F(\beta))$, $e \neq \beta$. Since $s \ge 3$, let G_2 be the cycle $(y_1, y_2, \ldots, y_b, y_1)$. Without loss of generality assume $e \in E(G_1 \cup G_2)$ and that e is incident to y_1 . Then color the edges $\{y_2, y_3\}, \{y_4, y_5\}, \ldots, \{y_{l-1}, y_l\}$ of G_2 and all the edges of $G_{(s+3)/2}, G_{(s+5)/2}, \ldots, G_{(s+t-1)/2}$ blue. This remaining edges of $F(\beta) - e$ are colored red. This coloring is a (S_s, S_t) -good coloring of $F(\beta) - e$ with edge β colored red.

We now take t copies of $F(\beta)$, call them $F(\beta_1), F(\beta_2), \ldots, F(\beta_t)$, and identify the vertices of degree one. Call this graph G and name the identified vertex v, i.e., G has the vertex v with incident edges $\beta_1, \beta_2, \ldots, \beta_t$. Observe that $G \rightarrow (S_s, S_i)$, since the only good colorings of the $F(\beta_i)$ would make all β_i blue giving a blue S_i with central vertex v. Also for $e \in E(G)$, G - ecan be given a (S_s, S_t) -good coloring. If $e \in F(\beta_1)$ give $F(\beta_1) - e$ the good coloring described above with β_1 (if present) colored red and $F(\beta_i), i \ge 2$, the good coloring described above with β_i colored blue. This coloring shows G - e can be good colored so that $G - e \not \rightarrow (S_s, S_i)$. Hence $G \in \mathcal{R}(S_s, S_t)$.

Since l is any odd positive integer, $l \ge s + t$, we have that $R(S_s, S_t)$ is infinite.

3. Star-forests

In this section we consider the more general pair

$$\left(\bigcup_{i=1}^{s} S_{m_i}, \bigcup_{j=1}^{t} S_{m_j}\right), \quad s \ge 2 \text{ or } t \ge 2,$$

and ask whether it is Ramsey-infinite. This is answered affirmatively when all the stars are nontrivial, i.e., not single edges. In light of the results of the previous section and the previously mentioned result that (mS_1, H) is Ramsey-finite for arbitrary H, one might expect, if M and L are matchings, that $(G \cup M, H \cup L)$ is Ramsey-finite if and only if (G, H) is Ramsey-finite. We shall see this isn't the case even when G and H are star-forests.

Lemma 6. Let $F_1 = \bigcup_{i=1}^{s} S_{n_i}$ and $F_2 = \bigcup_{i=1}^{t} S_{m_i}$ with $n_1 \ge n_2 \ge \cdots \ge n_s$ and $m_1 \ge m_2 \ge \cdots \ge m_i$. Let $g_i = \max\{n_i + m_j - 1 \mid i+j = l+1\}$ for $l = 1, 2, ..., k, k \le s+t-1$. Then

$$\left(\bigcup_{i=1}^{k} S_{s_{i}}\right) \rightarrow \left(\bigcup_{i=1}^{z} S_{n_{i}}, \bigcup_{j=1}^{k-z+1} S_{m_{j}}\right) \text{ for } z \leq s \text{ and } 1 \leq k-z+1 \leq t.$$

In particular if z = s and k = s + t - 1, then

$$\left(\bigcup_{l=1}^{s+t-1} S_{g_l}\right) \rightarrow (F_1, F_2).$$

Proof. Color $\bigcup_{l=1}^{k} S_{g_l}$. Assume for some r, r < z, that $\bigcup_{i=1}^{r} S_{n_i} < (\bigcup_{l=1}^{k} S_{g_l})_R$ but $\bigcup_{i=1}^{r+1} S_{n_i} \not\leq (\bigcup_{l=1}^{k} S_{g_l})_R$. Since the g_i are nonincreasing, we can assume without loss of generality that $S_{n_i} \leq (S_{g_i})_R$ for $1 \leq i \leq r$. Therefore $S_{n_{r+1}} \not\leq (\bigcup_{l=r+1}^{k} S_{g_l})_R$. But $g_i \geq n_{r+1} + m_{l-r} - 1$ for $l = r+1, r+2, \ldots, r+k-z+1$. Hence $S_{m_{l-1}} \leq (S_{g_l})_R$ for $l = r+1, r+2, \ldots, r+k-z+1$. Hence $S_{m_{l-1}} \leq (S_{g_l})_R$ for $l = r+1, r+2, \ldots, r+k-z+1$, so that $\bigcup_{i=1}^{z} S_{n_i} \not\leq (\bigcup_{l=r+1}^{k} S_{g_l})_R$ implies that

$$\bigcup_{i=1}^{k-z+1} S_{m_i} \leq \left(\bigcup_{i=1}^k S_{g_i}\right)_B.$$

Lemma 7. The pair $(S_s \cup S_t, S_l)$ is Ramsey-infinite for s, t, $l \ge 2$.

Proof. We assume throughout the proof that $s \ge t$. Consider a disjoint family of

sets $\{A_i\}_{i=1}^k$ (k even, $k \ge 6$) with

$$|A_1| = s + t - 1,$$
 $|A_2| = t,$ $|A_i| = t(l-1)$ for $i = 3, ..., k-2,$
 $|A_{k-1}| = t,$ $|A_k| = 1.$

Let G = G(s, t, l, k) be the graph with vertex set $\bigcup_{i=1}^{k} A_i$, each A_i an independent set in G, such that each of the following hold:

(1) The pairs (A_1, A_2) and (A_{k-1}, A_k) generate complete bipartite graphs.

(2) The pair (A_i, A_{i+1}) generates a regular bipartite graph of degree t+l-3 when *i* is odd $(3 \le i \le k-3)$ and regular of degree 1 when *i* is even $(4 \le i \le k-4)$.

(3) The pairs (A_2, A_3) and (A_{k-2}, A_{k-1}) generate bipartite graphs with the vertices of $A_2(A_{k-1})$ of degree l-1 and the vertices of $A_3(A_{k-2})$ of degree 1. (This degree is relative to the subgraphs generated by the pairs (A_2, A_3) and (A_{k-2}, A_{k-1}) .)

The graph G has no edges other than those indicated in (1), (2) and (3) above and is shown for s = 5, l = 3, t = 3, and k = 8 in Fig. 1.

Color G and suppose that G contains no red $S_s \cup S_t$ and no blue S_t . First note that d(x) = s + t + l - 2 for $x \in A_2$. Since $S_1 \not\leq (G)_B$, $d_R(x) \geq s + t - 1$ for $x \in A_2$. Also $S_s \cup S_t \notin (G)_R$ so that the number of vertices collectively adjacent in $(G)_R$ to any two distinct vertices in A_2 is at most s + t - 1. Hence all the edges between vertices of A_1 and A_2 are red and between A_2 and A_3 are blue. This implies that the pair (A_3, A_4) generates a regular bipartite graph of degree t - 1 in $(G)_R$ and a regular bipartite graph of degree l - 2 in $(G)_B$. Then all the edges between vertices of A_4 and A_5 are blue. Hence the coloring of the edges between all pairs (A_i, A_{i+1}) are determined for $i \leq k - 3$. They are colored like those between the pair (A_3, A_4) if *i* is odd and like those between the pair (A_4, A_5) when *i* is even. This implies that the edges between A_{k-2} and A_{k-1} are blue, which in turn forces the edges between A_{k-1} and the vertex of A_k to be colored red. This gives $S_s \cup S_t \leq (G)_R$, a contradiction. Hence $G \rightarrow (S_s \cup S_0, S_1)$.

Next let $e = \{x_i, x_{i+1}\} \in E(G), x_i \in A_i, x_{i+1} \in A_{i+1}, i \ge 2$. Consider the case when e is colored red in the coloring given above. Under this coloring there exists a

Fig. 1.

path with vertices $x_i, x_{i+1}, \ldots, x_k$, where $x_i \in A_i$ for each j, with the edges $\{x_i, x_{i+1}\}, \{x_{i+2}, x_{i+3}\}, \ldots, \{x_{k-1}, x_k\}$ in $E((G)_R)$ and the edges $\{x_{i+1}, x_{i+2}\}, \{x_{i+3}, x_{i+4}\}, \ldots, \{x_{k-2}, x_{k-1}\}$ in $E((G)_B)$. Replace this red-blue alternately colored path by a blue-red alternately colored one, i.e., interchange the colors on this path leaving unchanged the rest of G as colored. The case when e is blue is handled similarly. It follows that G - e under this modified coloring is $(S_s \cup S_i, S_i)$ -good. Thus $G - e \notightharpoondown (S_s \cup S_i, S_i)$. Thus removing appropriate edges between A_1 and A_2 gives a graph $G' \in \Re(S_s \cup S_i, S_i)$ of diameter k - 1. Since k can be taken arbitrarily large we have that $\Re(S_s \cup S_i, S_i)$ is an infinite set.

Lemma 8. Let u, w, r, z be positive integers with $u \ge w \ge 2$, $r \ge z \ge 2$. Set

$$A = \{F \in \mathcal{R}(S_u \cup S_w, S_z) \mid F \to (S_w, S_r \cup S_z)\},\$$

$$B = \{F \in \mathcal{R}(S_w, S_r \cup S_z) \mid F \to (S_u \cup S_w, S_z)\}.$$

Then either A or B has infinitely many elements.

Proof. Without loss of generality assume $z \ge w$. Suppose neither A or B have infinitely many elements, and let k be chosen so that k-1 exceeds the diameter of all the graphs in $A \cup B$. Let $G_1 = G(u, w, z, k)$ and $G_2 = G(r, z, w, k)$ where G(s, t, l, k) is the graph G defined in the proof of Lemma 7. Since $G_2 \rightarrow$ $(S_w, S_r \cup S_s)$ and all subgraphs of G_2 in $\mathcal{R}(S_w, S_r \cup S_s)$ are of diameter k-1 we have that $G_2 \not\rightarrow (S_u \cup S_w, S_z)$, otherwise G_2 contains a subgraph of diameter k-1in $A \cup B$. Take a $(S_u \cup S_w, S_z)$ -good coloring of G_z and select distinct vertices x, $y \in A_2$ of the graph G_2 . Since d(x) = d(y) = r + z + w - 2 and $S_2 \not\leq (G_2)_B$, $d_R(x)$ and $d_{\mathbb{R}}(y)$ are both at least r+w-1. But $S_u \cup S_w \not\leq (G_2)_{\mathbb{R}}$ so that $r+w-1 \leq \infty$ u+w-1, giving that $u \ge r$. Also $G_1 \to (S_u \cup S_w, S_z)$, and all subgraphs of G_1 in $\Re(S_u \cup S_w, S_z)$ are of diameter k-1, so that as above $G_1 \neq (S_w, S_r \cup S_z)$. Give G_1 a $(S_w, S_r \cup S_z)$ -good coloring and select distinct vertices $x, y \in A$ of the graph G_1 . Since d(x) = d(y) = u + w + z - 2 and $S_w \neq (G_1)_R$, $d_R(x)$ and $d_R(y)$ are both at least $u+z-1 \ge r+z-1$. But $S_r \cup S_z \not\le (G_1)_B$ so that $d_B(x) = d_B(y) = r+z-1$, which means that x and y have common adjacencies in $(G_1)_{B}$ and u = r. This implies that w = z so that $G_1 \rightarrow (S_u \cup S_w, S_z)$ implies $G_1 \rightarrow (S_w, S_r \cup S_z)$, a contradiction. Hence A or B is an infinite set.

Theorem 9. The pair $(\bigcup_{i=1}^{s} S_{n_i}, \bigcup_{i=1}^{t} S_{m_i})$ is Ramsey-infinite for $n_1 \ge n_2 \ge \cdots \ge n_s \ge 2$, $m_1 \ge m_2 \ge \cdots \ge m_t \ge 2$, when $s \ge 2$ or $t \ge 2$.

Proof. First consider the case when $s \ge 2$ and $t \ge 2$. Set $u = n_{s-1}$, $w = n_s$, $r = m_{t-1}$, and $z = m_t$ and define A and B as in Lemma 8. Without loss of generality assume A is infinite. Set $g_l = \max\{n_i + m_j - 1 \mid i+j = l+1\}$ for l = 1, 2, ..., s+t-3 and color the graph $\bigcup_{l=1}^{n+t-3} S_{p_l}$. If

$$\bigcup_{i=1}^{s} S_{n_i} \neq \left(\bigcup_{i=1}^{s+i-3} S_{g_i}\right)_R \text{ and } \bigcup_{i=1}^{i} S_{m_i} \neq \left(\bigcup_{i=1}^{s+i-3} S_{g_i}\right)_B,$$

232

Ramsey-minimal graphs for star-forests

then by Lemma 6 we have

$$\begin{split} & \bigcup_{i=1}^{s-1} S_{n_i} \leqslant \left(\bigcup_{l=1}^{s+t-3} S_{g_l} \right)_R \quad \text{and} \quad \bigcup_{i=1}^{t-2} S_{m_i} \leqslant \left(\bigcup_{l=1}^{s+t-3} S_{g_l} \right)_B, \\ & \bigcup_{i=1}^{s-2} S_{n_i} \leqslant \left(\bigcup_{l=1}^{s+t-3} S_{g_l} \right)_R \quad \text{and} \quad \bigcup_{i=1}^{t-1} S_{m_i} \leqslant \left(\bigcup_{l=1}^{s+t-3} S_{g_l} \right)_B. \end{split}$$

or

Without loss of generality assume the former occurs. Take
$$H \in A$$
 and color it.
Since $S_{n_a} \leq (H)_R$ or $S_{m_{i-1}} \cup S_{m_i} \leq (H)_B$ it follows that

$$\left(\bigcup_{l=1}^{s+r-3}S_{\underline{s}_{l}}\right)\cup H \to \left(\bigcup_{l=1}^{s}S_{n,r},\bigcup_{l=1}^{r}S_{m_{l}}\right).$$

Next let $e \in E(H)$ and give H - e a $(S_{n_{v-1}} \cup S_{n_v}, S_{m_v})$ -good coloring. Color the $\bigcup_{l=1}^{s-2} S_{g_l}$ red and color the $\bigcup_{l=s-1}^{s+t-3} S_{g_l}$ blue. Clearly this coloring gives a $(\bigcup_{i=1}^{s} S_{n_i}, \bigcup_{i=1}^{t} S_{m_i})$ -good coloring of $(\bigcup_{l=1}^{s+t-3} S_{g_l}) \cup (H - e)$. Since A is infinite we deduce that $\Re(\bigcup_{i=1}^{s} S_{n_i}, \bigcup_{i=1}^{t} S_{m_i})$ is infinite when both $s \ge 2$ and $t \ge 2$.

The proof when s = 1 or t = 1 is similar. Without loss of generality assume t = 1 so that $s \ge 2$. Let $H \in \mathcal{R}(S_{n_{n-1}} \cup S_{n_n}, S_{m_n})$. Observe as in the first case

$$\begin{pmatrix} s-2\\ \bigcup_{l=1}^{s-2} S_{g_l} \end{pmatrix} \cup H \to \begin{pmatrix} s\\ \bigcup_{l=1}^{s} S_{n_l}, S_{m_l} \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} s-2\\ \bigcup_{l=1}^{s-2} S_{g_l} \end{pmatrix} \cup (H-e) \not \Rightarrow \begin{pmatrix} s\\ \bigcup_{l=1}^{s} S_{n_l}, S_{m_l} \end{pmatrix},$$

where $e \in E(H)$ and $g_l = n_l + m_1 - 1$. Since $(S_{n_{l-1}} \cup S_{n_l}, S_{m_l})$ is Ramsey-infinite by Lemma 7, we have that $(\bigcup_{i=1}^{s} S_{n_i}, S_{m_i})$ is Ramsey-infinite also. This completes the proof of the theorem.

We next investigate whether (G, H) is Ramsey-finite or Ramsey-infinite when G and H are star-forests with some of the stars trivial (single edges). Unfortunately our results are incomplete and indicate that the complete solution of the problem could be difficult.

Theorem 10. The pair $(S_{s_1} \cup t_1S_1, S_{s_2} \cup t_2S_1)$ is Ramsey-finite when both s_1 and s_2 are odd positive integers, and t_1 and t_2 are nonnegative integers.

Proof. If either s_1 or s_2 is 1, then the result follows from [4], where it is proved that (mS_1, H) is Ramsey-finite for all graphs H. Also if $t_1 = t_2 = 0$, then the result is that of Corollary 3. Hence we assume throughout the proof that $s_1 \ge s_2 \ge 3$ and setting $t = \max\{t_1, t_2\}$, that $t \ge 1$. We also let $t^* = \max\{t_1 + t_2, t_1 + 1, t_2 + 1\}$.

It suffices to show that the number of edges for members of $\Re(S_{s_1} \cup t_1S_1, S_{s_2} \cup t_2S_1)$ is bounded above. In particular we show that if $F \in \Re(S_{s_1} \cup t_1S_1, S_{s_2} \cup t_2S_1)$ then $|E(F)| \leq k^2t^* + 1$ where $k = 4t + 2s_1 - 1$. We remark that this upper bound is undoubtedly not the best possible, only a convenient one.

The proof is by contradiction, so suppose there exists an $F \in \Re(S_{s_1} \cup t_1S_1, S_{s_2} \cup t_2S_1)$ such that $|E(F)| > k^2t^* + 1$. Let v be a vertex with $d(v) = \Delta(F)$. Since s_1 and s_2 are both odd, Theorem 2 implies that $d(v) \ge s_1 + s_2 - 1$.

Assume for the moment that d(v) > k. Remove an edge e incident to v and give F-e a good coloring. Then $d_R(v) \ge 2t+s_1$ or $d_B(v) \ge 2t+s_1$, so assume the former. If e is colored red and F-e keeps its good coloring, then $S_{s_1} \cup t_1 S_1 \le (F)_R$. Thus in $(F-e)_R$ either t_1S_1 or $S_{s_1} \cup (t_1-1)S_1$ is disjoint from v. But t_1S_1 is incident to at most $2t_1$ neighbors of v in $(F-e)_R$ and $S_{s_1} \cup (t_1-1)S_1$ is incident to at most s_1+2t-1 . Thus $d_R(v) \ge 2t+s_1$ in F-e implies, in either case, that $S_{s_1} \cup t_1S_1 \le (F-e)_R$, a contradiction. Hence $d(v) = \Delta(F) \le k$.

We next show that each edge of F is incident to a vertex of degree s_2 or more. Suppose this were not the case. Let e be an edge incident to vertices of degree less than s_2 , and consider a good coloring of F-e. It must happen that $S_{s_1} \cup (t_1-1)S_1 \leq (F-e)_R$ and $S_{s_2} \cup (t_2-1)S_1 \leq (F-e)_B$. This implies that each edge in $(F-e)_R$ is incident to or part of any collection of t_1 disjoint stars in $(F-e)_R$ and each edge in $(F-e)_B$ is incident to or part of any collection of t_2 disjoint stars in $(F-e)_B$. Since $\Delta(F) = k$, the number of edges in a star together with edges incident to the star is at most k^2 . Thus there are at most k^2t_1 edges in $(F-e)_R$ and at most k^2t_2 edges in $(F-e)_B$ implying that $|E(F-e)| \leq k^2(t_1+t_2)$. This contradicts $|E(F)| > k^2t^* + 1$, so that each edge of F is incident to a vertex of degree s_2 or more.

Next we show that there exists an edge of F whose end vertices are both of degree less than s_1 . Suppose this were not the case. Then by removing an edge e with end vertices different from v, F-e would contain at least t^*+1 disjoint stars, t^* of them of degree s_1 or more, since as in the previous discussion t^* disjoint stars can account for at most k^2t^* edges. But $d(v) \ge s_1 + s_2 - 1$ in F-e and F-e contains at least t^*+1 disjoint stars, t^* of them of degree s_1 or more, so that $F-e \rightarrow (S_{s_1} \cup t_1S_1, S_{s_2} \cup t_2S_1)$, a contradiction. Hence there exists an edge $f \in E(F)$ whose end vertices are of degree less than s_1 .

Give F-f a good coloring. Then $S_{s_1} \cup (t_1-1)S_1 \leq (F-f)_R$. But each edge of F is incident to a vertex of degree s_2 or more and $|E(F-f)| \geq k^2 t^* + 1$ so that F-e has at least t^*+1 disjoint stars with at least t^* of them of degree s_2 or more. This together with $S_{s_1} \leq (F-f)_R$ implies that the coloring given F-f is not good, a contradiction. Hence the original supposition $|E(F)| > k^2 t^* + 1$ is false and the proof is complete.

Theorem 11. Let *l*, *n* and *s* be positive integers with *l* and *n* odd and $n \ge l+s-1$. Then the pair $(S_n \cup S_s, S_l \cup kS_1)$ is Ramsey-finite for $k \ge (n+2l+s-2)^2+1$.

Proof. As in the proof of Theorem 10 it sufficies to show that members of $\mathcal{R}(S_n \cup S_s, S_l \cup kS_1)$ have a bounded number of edges. We show that if $F \in \mathcal{R}(S_n \cup S_s, S_l \cup kS_1)$, then

$$|E(F)| \leq (k+1)(c^3+c) + (n-1)^2(k+2c)$$

where c = n + 2k + l + s. Since $\mathcal{R}(H, mS_1)$ is finite, we assume throughout the proof that l > 1.

Suppose there exists an

$$F \in \mathcal{R}(S_n \cup S_s, S_l \cup kS_1)$$

with $|E(F)| > (k+1)(c^3+c) + (n-1)^2(k+2c)$. By Theorem 2 we have $\Delta(F) \ge n+l-1$.

Next we show by an argument similar to the one given in Theorem 10 that $\Delta(F) \leq c$. To see this let $v \in V(F)$ such that $d(v) = \Delta(F)$ and suppose $d(v) \geq c+1$. Remove an edge e incident to v and give F-e a good coloring. Then $d_R(v) \geq n+s+1$ or $d_B(v) \geq 2k+l$ in F-e. If $d_R(v) \geq n+s+1$, then color e red with F-e keeping its good coloring. Since $S_n \cup S_s \leq (F)_R$, this means that either S_n or S_s is a subgraph of $(F)_R$ disjoint from v. But S_n and S_s contain n+1 and s+1 vertices respectively, so that $d_R(v) \geq n+s+1$ in F-e insures $S_n \cup S_s \leq (F-e)_R$ with v as central vertex of one of the stars. This contradicts the assumption that the coloring of F-e is good. Likewise if $d_B(v) \geq 2k+l$ in F-e, it follows that $S_i \cup kS_1 \leq (F-e)_B$, a contradiction. Hence $\Delta(F) \leq c$.

Let $e = \{u, v\} \in E(F)$. If d(u) < s and d(v) < s then a good coloring for F - e can be extended to a good coloring for F by coloring edge e red. Hence each edge of F is incident to a vertex of degree s or more.

We next calculate bounds on the number of vertices of F of degree n or more. For convenience let w denote this number. Clearly $w \ge k + 1$, for otherwise color all edges incident to anyone of these w vertices blue and all other edges of F red, yielding a good coloring of F.

To calculate an upper bound on w, let t be maximal such that $S_{n+l-1} \cup tS_n \leq F$. Note that $t \leq k$, since n > s and

 $S_{n+l-1} \cup kS_n \cup S_s \in \mathcal{R}(S_n \cup S_s, S_l \cup kS_1).$

Each vertex of degree *n* or more must have an incident edge which is also incident to a vertex of $S_{n+l-1} \cup tS_n$. Since $\Delta(F) \le c$, there are at most $(t+1)(c^2+1)$ such vertices. Hence $k+1 \le w \le (k+1)(c^2+1)$.

Let $H = \langle \{e \in E(F) | e = \{x, y\} \text{ and } \max\{d(x), d(y)\} \ge n\} \rangle$ and $T = \{v \in H \mid d(v) \ge n\}$. Since $|T| = w \le (k+1)(c^2+1)$ and $\Delta(F) \le c$ the number of edges assumed in F implies that there exists an $e \in E(F) - E(H)$. Give F - e a good coloring and observe that $S_n \le (F - e)_R \cap H$. We wish to show that $S_l \le (F - e)_B \cap H$. Select $v \in T$ such that $d_R(v) = \Delta((F - e)_R)$. If $d(v) \ge n + l + s$, then since $w \ge k+1$, $n \ge l+s-1$, and $S_n \cup S_s \ne (F - e)_R$, we have $S_l \le (F - e)_B \cap H$. If $d(v) \le n + l + s - 1$, then $d_R(z) \le n + l + s - 1$ for each $z \in T$. But $w \ge k + 1$ and $k \ge (n + 2l + s - 2)^2 + 1$ implies the existence of a vertex $u \in T$ such that $d(u) \ge n + 2l + s - 1$ or the existence of two disjoint stars in H, one of which is a red S_n . In either case we have $S_l \le (F - e)_B \cap H$. Thus under the good coloring of F - e, we have $S_n \le (F - e)_R \cap H$ and $S_l(F - e)_B \cap H$ with the centers of these stars in T.

Finally since $|E(F)| > (k+1)(c^3+c) + (n-1)^2(k+2c)$, $|T| \le (k+1)(c^2+1)$, and

S.A. Burr et al.

 $\Delta(F) \leq c$, there are at least $(n-1)^2(k+2c)$ edges of F-e which are outside of H. But $d(z) \leq n-1$ for $z \in V(F)-T$ and each edge of F is incident to a vertex of degree s or more. Hence there exist at least k+2c disjoint stars of degree s or more outside of T. Since $\Delta(F) \leq c$, at least k of these disjoint stars are themselves disjoint from the S_n in $(F-e)_R$ and the S_l in $(F-e)_B$ exhibited in the last paragraph. Since all of these stars are in F-e, it follows that $S_n \cup S_s \leq (F-e)_R$ or $S_l \cup kS_1 \leq (F-e)_B$, a contradiction. This final contradiction completes the proof of the theorem.

Theorem 12. Let l, n and s be positive integers with l and n odd, $n \ge s \ge 2$, $l \ge 2$, and n < l + s - 1. Then the pair $(S_n \cup S_s, S_l \cup kS_1)$ is Ramsey-infinite for all non-negative integers k.

Proof. Let t be an even integer, $t \ge 6$, and let G = G(n, s, l, t) where G is the graph constructed in the proof of Lemma 7. It is easy to see that each subgraph G' of G, $G' \in \mathcal{R}(S_n \cup S_s, S_l)$, has diameter t-1 and besides $G' \to (S_n, S_l \cup S_1)$. Set $k^* = \max\{0, k-1\}$. Then since $G' \to (S_n \cup S_s, S_l)$ and $G' \to (S_n, S_l \cup S_1)$ it follows that $G' \cup k^*S_n \cup S_s \to (S_n \cup S_s, S_l \cup kS_1)$. Also for $e \in E(G')$ give G' - e a $(S_n \cup S_s, S_l)$ -good coloring and color l-1 edges of each star in the $k^*S_n \cup S_s$ blue and the remaining edges red. This clearly gives a $(S_n \cup S_s, S_l \cup kS_1)$ -good coloring of $(G'-e) \cup k^*S_n \cup S_s$. Thus, since t is any even integer $(t \ge 6)$ it follows that $(S_n \cup S_s, S_l \cup kS_1)$ is Ramsey-infinite, completing the proof.

Let $\{H_i\}_{i=1}^m$ and $\{G_i\}_{i=1}^n$ be families of connected graphs with $(H_{i'}, G_{i'})$ Ramseyinfinite for some *i'* and *j'*. It seems reasonable to expect $(\bigcup_{i=1}^m H_i, \bigcup_{i=1}^n G_i)$ to be Ramsey-infinite. Theorem 11 together with Theorem 5 shows that this is not the case. In particular, in Theorem 11 let *s* be even and *l* odd $(l \ge 3)$. Then by Theorem 5, (S_s, S_l) is Ramsey-infinite but $(S_n \cup S_s, S_l \cup kS_l)$ is Ramsey-finite for $k \ge (n+2l+s-2)^2+1$. This example is yet another indication that it is difficult to determine whether a pair of graphs is Ramsey-finite or Ramsey-infinite.

Our results are complete when G and H are star-forests with no single edge stars. In fact we have shown for such G and H that (G, H) is Ramsey-finite if and only if both G and H are single stars with an odd number of edges (Theorems 4, 5, 9 and Corollary 3). Further we have shown that when G and H are star-forests with no single-edge stars and with (G, H) Ramsey-finite, then $(G \cup kS_1, H \cup tS_1)$ is also Ramsey-finite (Theorem 10). We have failed to determine whether or not $(G \cup kS_1, H \cup tS_1)$ is Ramsey-finite or infinite for arbitrary star-forests G and H, although it can be shown to be Ramsey-infinite for large classes of star-forests. The special case when the pair is $(S_n \cup S_s, S_t \cup kS_1), n \ge s, n$ and l odd, k large, is completely settled in Theorems 11 and 12. In particular, since $(S_n \cup S_s, S_t)$ is Ramsey-infinite for $n \ge s \ge 2$ and $l \ge 2$, it would be of interest to find the largest integer k_0 such that $(S_n \cup S_s, S_t \cup k_0S_1)$ is Ramsey-finite, n and l odd, $n \ge l+s-1$ (see Theorem 11). This leaves the following questions. For what star-forests G and *H* and what positive integers *k* and *t* is $(G \cup kS_1, H \cup tS_1)$ Ramsey-finite? In particular, if (G, H) is Ramsey-finite, is $(G \cup kS_1, H \cup tS_1)$ Ramsey-finite?

References

- M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs and Digraphs (Prindle, Weber and Schmidt, Boston, MA, 1979).
- [2] S.A. Burr, A survey of noncomplete Ramsey theory graphs, in: Topics in Graph Theory, New York Academy of Sciences (1979) 58–75.
- [3] S.A. Burr, R.J. Faudree and R.H. Schelp, On Ramsey-minimal graphs, Proc. 8th S-E Conf. Comb. Graph Theory and Computing (1977) 115–124.
- [4] S.A. Burr, P. Erdös, R.J. Faudree and R.H. Schelp, A class of Ramsey-finite graphs, Proc. 4th S-E Conf. Comb. Graph Theory and Computing (1978) 171–180.
- [5] S.A. Burr, P. Erdös, R.J. Faudree and R.H. Schelp, Ramsey-minimal graphs for star-connected graph (to appear).
- [6] F. Harary, Graph Theory (Addison-Wesley, Reading, MA. 1969).
- [7] J. Nešetřil and V. Rödl, The structure of critical Ramsey graphs, Acta Math. Acad. Sci. Hungar. 32 (1978) 295–300.
- [8] J. Petersen, Die Theorie der Regulären Graphen, Acta. Math. 15 (1891) 193–220.