RECIPROCALS OF CERTAIN LARGE ADDITIVE FUNCTIONS

BY

J.-M. DE KONINCK, P. ERDÖS AND A. IVIĆ

1. Introduction and statement of results

Let $\beta(n)=\sum_{p \mid n} p$ and $B(n)=\sum_{p^{n} \| n} \alpha p$ denote the sum of distinct prime divisors of n and the sum of all prime divisors of n respectively. Both $\beta(n)$ and $B(n)$ are additive functions which are in a certain sense large (the average order of $B(n)$ is $\pi^{2} n /(6 \log n)$, [1]). For a fixed integer m the number of solutions of $B(n)=m$, is the number of partitions of m into primes, while the number of solutions of $\beta(n)=m, \mu^{2}(n)=1$ is the number of partitions of m into distinct primes. There is a certain analogy between the relation of $\beta(n)$ to $B(n)$ and the relation of the well-known additive functions $\omega(n)=\sum_{p \mid n} 1$ and $\Omega(n)=\sum_{p^{-} \mid n} \alpha$. Asymptotic estimates of $B(n)$ were investigated in [1], revealing the connection between $B(n)$ and large prime factors of n. In this paper we turn our attention to sums involving reciprocals of $\beta(n)$ and $B(n)$. We shall prove the following theorems:

Theorem 1. For any $\varepsilon>0$ and $x \geq x_{0}(\varepsilon)$,
(1) $x \exp \left(-(2+\varepsilon)(\log x \cdot \log \log x)^{1 / 2}\right) \leq \sum_{2 \leq n \leq x} 1 / B(n)$

$$
\leq \sum_{2 \leq n \leqslant x} 1 / \beta(n) \leq x \exp \left(-\left(\frac{1}{2}-\varepsilon\right)(\log x \cdot \log \log x)^{1 / 2}\right) .
$$

Theorem 2. There exist positive constants $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
\sum_{2=n=x} B(n) / \beta(n)=x+O\left(x \exp \left(-C_{1}(\log x \cdot \log \log x)^{1 / 2}\right)\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{2=n n s x} \beta(n) / B(n)=x+O\left(x \exp \left(-C_{2}(\log x \cdot \log \log x)^{1 / 2}\right)\right) \tag{3}
\end{equation*}
$$

Theorem 3.

$$
\begin{equation*}
\sum_{n=x}^{\prime} 1 /(B(n)-\beta(n))=C x+O\left(x^{1 / 2} \log x\right) \tag{4}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
C=\int_{0}^{1}\left(F(t)-6 \pi^{-2}\right) t^{-1} d t, \quad F(t)=\prod_{p}\left(1+\sum_{k=2}^{\infty}\left(t^{p(k-1)}-t^{p(k-2)}\right) p^{-k}\right) . \tag{5}
\end{equation*}
$$

\]

and Σ^{\prime} denotes summation over $n \leq x$ such that $B(n) \neq \beta(n)$.

2. Proofs

We first prove the lower bound in (1). Let

$$
A_{k}=\left\{n \mid(n \leq x) \wedge\left(\mu^{2}(n)=1\right) \wedge\left(p(n) \leq x^{1 / k}\right)\right\} .
$$

where we shall use $p(n)$ to denote the largest prime factor of n, x will be sufficiently large and $k=(\log x / \log \log x)^{1 / 2}$. If n is a product of k different primes each not exceeding $x^{1 / k}$, then $n \in A_{k}$. There at least $U=3 k x^{1 / k} /(4 \log x)$ primes not exceeding $x^{1 / k}$, which means

$$
\begin{equation*}
\sum_{n \in A_{6}} 1 \geq\binom{ U}{k}=\frac{U(U-1) \cdots(U-k+1)}{k!} \geq\left(\frac{2}{3} U\right)^{k} / k! \tag{6}
\end{equation*}
$$

since $U-k+1 \geq 2 U / 3$ for x sufficiently large. From Stirling's formula or by induction it is seen that $(k / 2)^{k}>k!$ for $k \geq 6$, which when combined with (6) gives

$$
\begin{equation*}
\sum_{n \in A_{i}} 1 \geq x \log ^{-k} x \tag{7}
\end{equation*}
$$

Now for $n \in A_{k}$ we have $B(n)=\beta(n) \leq p(n) \omega(n) \ll \frac{x^{1 / k} \log x}{\log \log x}$, hence

$$
\begin{align*}
\sum_{2=n \in A_{*}} 1 / B(n) & =\sum_{2=n \in A_{4}} 1 / \beta(n) \gg x^{-1 / k} \log ^{-1} x \sum_{n \in A_{k}} 1 \tag{8}\\
& \geq x^{1-1 / k} \log ^{-k-1} x=x \exp \left(-2(\log x \cdot \log \log x)^{1 / 2}\right) \log ^{-1} x,
\end{align*}
$$

which proves the lower bound in (1). To prove the upper bound in (1) write

$$
\begin{align*}
\sum_{2 \leq n \leq x} 1 / \beta(n) & =\sum_{2 \approx n \leq x, p(n) \leq y} 1 / \beta(n)+\sum_{n=x, p(n)>y} 1 / \beta(n) \tag{9}\\
& \leq \sum_{2 \leq n \leq x, p(n) \leq y} 1+y^{-1} \sum_{n \leq x, p(n)>y} 1 \leq \psi(x, y)+x y^{-1}
\end{align*}
$$

where $y=y(x)>2$ will be suitably chosen in a moment. For the function

$$
\psi(x, y)=\sum_{n \leq x, p(n) \leq y} 1
$$

we use the following estimate of [2]:

$$
\begin{equation*}
\psi(x, y)<c_{3} x \log ^{2} y \cdot \exp \left(-\alpha\left(\log \alpha+\log \log \alpha-c_{4}\right)\right) \tag{10}
\end{equation*}
$$

where c_{3} and c_{4} are some positive, absolute constants, $\lim _{x \rightarrow \infty} y=\infty$ and

$$
\begin{equation*}
3<\alpha=\log x / \log y<4 y^{1 / 2} /(\log y) \tag{11}
\end{equation*}
$$

Now we choose

$$
\begin{equation*}
y=\exp \left((\log x \cdot \log \log x)^{1 / 2}\right) \tag{12}
\end{equation*}
$$

Then (11) is satisfied for $x \geq x_{0}$ and

$$
\begin{equation*}
\psi(x, y)<_{e} x \exp \left(-\left(\frac{1}{2}-\varepsilon\right)(\log x \cdot \log \log x)^{1 / 2}\right), \tag{13}
\end{equation*}
$$

where $<_{E}$ means that the constant implied by the symbol \& depends on ε only. Substitution in (9) then gives the right-hand side inequality in (1), finishing the proof of Theorem 1.

To prove Theorem 2 it is enough to prove (2), since trivially

$$
\begin{equation*}
\sum_{2 \leq n \leq x} \beta(n) / B(n) \leq x+O(1), \tag{14}
\end{equation*}
$$

and by the Cauchy-Schwarz inequality we have

$$
\begin{equation*}
x^{2}+O(x) \leq\left(\sum_{2 \leq n \leq x} 1\right)^{2} \leq \sum_{2 \leq n \leq x} B(n) / \beta(n) \sum_{2 \leq m \leq x} \beta(m) / B(m), \tag{15}
\end{equation*}
$$

so that (2) then implies (3). Let

$$
\begin{equation*}
S=\sum_{2 \leq n=x} B(n) / \beta(n)=S_{1}+S_{2}, \tag{16}
\end{equation*}
$$

where in S_{1} summation is over $2 \leq n \leq x$ such that $B(n)<k \beta(n)$, and in S_{2} over $2 \leq n \leq x$ such that $B(n) \geq k \beta(n)$, where $k=k(x)$ is a large number which will be suitably chosen later. Note that if $B(n) \geq r \beta(n)$ for some integer $r \geq 2$, then n must be divisible by p^{r} for some prime p, so that the number of $n \leq x$ for which p^{r} divides n for some p is $<\sum_{p} x p^{-r} \ll x 2^{-r}$. Then we have

$$
\begin{equation*}
S_{2}=\sum_{r \geq k 2 \leqslant n \leq x, r \leqslant B(n) / B(n)<r+1} B(n) / \beta(n) \ll \sum_{r \geq k} x(r+1) 2^{-r} \ll x \exp \left(-C_{3} k\right) \tag{17}
\end{equation*}
$$

for some $C_{3}>0$. To estimate S_{1} write

$$
\begin{equation*}
S_{1}=S_{1}^{\prime}+S_{1}^{\prime \prime} . \tag{18}
\end{equation*}
$$

In $S_{1}^{\prime \prime}$, summation is over $2 \leq n \leq x$ such that $B(n)<k \beta(n)$ and n is divisible by p^{2} for some prime $p>L$, where $L=L(x)$ is a large number that will be suitably chosen. Thus we obtain

$$
\begin{equation*}
S_{1}^{n} \ll k \sum_{n^{2} m<x, n \geqslant L} 1 \ll k \sum_{n>L} x n^{-2} \ll k x / L . \tag{19}
\end{equation*}
$$

If $n=p_{1}^{a_{2}} \cdots p_{i}^{a_{i}}$ is counted in S_{1}^{\prime} then $a_{1}=1$ for $p_{j}>L$ and $j=1, \ldots, i$, which implies

$$
\begin{align*}
B(n) & =\left(a_{1}-1\right) p_{1}+\cdots+\left(a_{i}-1\right) p_{i}+\beta(n) \leq L\left(a_{1}+\cdots+a_{i}-i\right)+\beta(n) \tag{20}\\
& \leq L(\Omega(n)-\omega(n))+\beta(n) \leq L(\log x / \log 2)+\beta(n) .
\end{align*}
$$

Therefore we have

$$
\begin{align*}
\mathrm{S}_{1}^{\prime} & \leq \sum_{n=\leq x} 1+L(\log x / \log 2) \sum_{2 \leq n=x} 1 / \beta(n) \tag{21}\\
& \leq x+O\left(x L \log x \cdot \exp \left(-C_{4}(\log x \cdot \log \log x)^{1 / 2}\right)\right),
\end{align*}
$$

where we have used (1) to estimate $\sum_{2 s n s x} 1 / \beta(n)$. From (16)-(21) we obtain

$$
\begin{align*}
S \leq & x+O(k x / L)+O\left(x \exp \left(-C_{3} k\right)\right) \tag{22}\\
& +O\left(x L \log x \cdot \exp \left(-C_{4}(\log x \cdot \log \log x)^{1 / 2}\right)\right)
\end{align*}
$$

Noting that trivially $S \geq x+O(1)$ and choosing

$$
\begin{equation*}
L=\exp \left(C_{5}(\log x \cdot \log \log x)^{1 / 2}\right), \quad C_{5}=C_{4} / 2 \tag{23}
\end{equation*}
$$

we obtain (2) from (22),
To prove Theorem 3 we employ an analytical method. Let $0 \leq t \leq 1$ and observe that $t^{B(n)-B(n)}$ is a multiplicative function of n satisfying $t^{B\left(p^{*}\right)-B\left(\varphi^{*}\right)}=$ $t^{p(k-1)}$ for $k=1,2, \ldots$ and every prime p. Therefore for Re $s>1$

$$
\begin{align*}
\sum_{n=1}^{\infty} t^{B(n)-a(n)} n^{-s} & =\prod_{p}\left(1+p^{-s}+t^{p} p^{-2 s}+t^{2 p} p^{-3 s}+\cdots\right) \tag{25}\\
& =\zeta(s) \prod_{p}\left(1+\left(t^{p}-1\right) p^{-2 s}+\left(t^{2 p}-t^{p}\right) p^{-3 n}+\cdots\right)=\zeta(s) G(s, t)
\end{align*}
$$

where $\zeta(s)$ is the Riemann zeta-function and for Res $>\frac{1}{2}$

$$
\begin{equation*}
G(s, t)=\sum_{n=1}^{\infty} g(n, t) n^{-s} \tag{26}
\end{equation*}
$$

and $g(n, t)$ is a multiplicative function of n for which $g(p, t)=0$ and $\left|g\left(p^{k}, t\right)\right| \leq$ 1 for $k \geq 2$. Therefore uniformly for $0 \leq t \leq 1$ we have

$$
\begin{equation*}
\sum_{n=x}|g(n, t)| \ll x^{1 / 2} \tag{27}
\end{equation*}
$$

and by partial summation we subsequently obtain

$$
\begin{align*}
\sum_{n=x} t^{B(n)-\Delta(n)} & =\sum_{n=x} g(n, t)[x / n]=x \sum_{n=x} g(n, t) / n+O\left(\sum_{n \leq x}|g(n, t)|\right) \tag{28}\\
& =x G(1, t)+O\left(x^{1 / 2}\right)
\end{align*}
$$

where

$$
G(1, t)=\prod_{p}\left(1+\sum_{k=2}^{\infty}\left(t^{p(k-1)}-t^{p(k-2)}\right) p^{-k}\right)=F(t),
$$

and therefore

$$
F(0)=\prod_{p}\left(1-p^{-2}\right)=6 / \pi^{2}
$$

Note that $B(n)=\beta(n)$ if and only if n is squarefree. Therefore we have uniformly in t

$$
\begin{align*}
\sum_{n=x}^{\prime} t^{B(n)-a(n)-1} & =\sum_{n=x, B(n)+B(n)} t^{B(n)-B(n)-1} \\
& =x t^{-1} F(t)+O\left(x^{1 / 2} t^{-1}\right)-\sum_{n \leq x} \mu^{2}(n) t^{-1} \tag{29}\\
& =x\left(F(t)-6 / \pi^{2}\right) t^{-1}+O\left(x^{1 / 2} t^{-1}\right) .
\end{align*}
$$

Since $F(0)=6 / \pi^{2}$ the function $\left(F(t)-6 / \pi^{2}\right) t^{-1}$ is continuous for $0 \leq t \leq 1$, and we obtain the conclusion of the theorem integrating (29) over t from $\varepsilon(x)=x^{-2 / 3}$ to 1 , since

$$
\begin{gather*}
\int_{\varepsilon(x)}^{1} \sum_{n=x}^{\prime} t^{\beta(n)-\beta(n)-1} d t=\sum_{n=x}^{\prime} 1 /(B(n)-\beta(n))+O\left(x^{1 / 3}\right) \tag{30}\\
x \int_{0}^{\alpha(x)}\left(F(t)-6 / \pi^{2}\right) t^{-1} d t \ll x \varepsilon(x)=x^{1 / 3} \tag{31}\\
\int_{e(x)}^{1} O\left(x^{1 / 2} t^{-1}\right) d t \ll x^{1 / 2} \log 1 / \varepsilon(x) \ll x^{1 / 2} \log x \tag{32}
\end{gather*}
$$

3. Some remarks

It seems probable that the inequalities (1) may be replaced by asymptotic formulae, viz.

$$
\begin{equation*}
\log \sum_{2=n=x} 1 / B(n) \sim \log x-C(\log x \cdot \log \log x)^{1 / 2}, \quad x \rightarrow \infty, \quad C>0 \tag{33}
\end{equation*}
$$

(and a similar formula with $\beta(n)$ instead of $B(n)$), but we are unable to prove (33). Our results concerning $B(n)$ and $\beta(n)$ may be compared with corresponding results for "small" additive functions $\Omega(n)$ and $\omega(n)$. Utilizing essentially the method of proof of Theorem 3 it was shown in [3] that

$$
\begin{align*}
\sum_{2 \leqslant n=x} 1 / \Omega(n)= & x / \log \log x+a_{2} x /(\log \log x)^{2}+\cdots+a_{N-1} x /(\log \log x)^{N-1} \tag{34}\\
& +O\left(x /(\log \log x)^{N}\right) \\
\sum_{2=n=x} 1 / \omega(n)= & x / \log \log x+b_{2} x /(\log \log x)^{2}+\cdots+b_{N-1} x /(\log \log x)^{N-1} \tag{35}\\
& +O\left(x /(\log \log x)^{N}\right)
\end{align*}
$$

where the $a_{i}^{\prime} s$ and b 's are computable constants and N is arbitrary, but fixed.
Similarly [4] contains a proof that

$$
\begin{align*}
\sum_{2=n=x} \Omega(n) / \omega(n)= & x+c_{1} x / \log \log x+\cdots+c_{N-1} x /(\log \log x)^{N-1} \tag{36}\\
& +O\left(x /(\log \log x)^{N}\right)
\end{align*}
$$

and the formulae (34)-(36) are further sharpened in [5].

The degree of sharpness of the above formulae is not attained in our theorems concerning $\beta(n)$ and $B(n)$, which is to be expected since $\beta(n)$ and $B(n)$ are much larger functions than $\omega(n)$ and $\Omega(n)$, possessing notably wider fluctuations in size.

It is clear that the method of proof of Theorem 2 would yield (2) and (3) with $B(n)$ and $\beta(n)$ replaced by $B^{m}(n)$ and $\beta^{m}(n)$ respectively, where m is a fixed positive integer. Our methods also work in the general case of other large additive functions defined by

$$
f(n)=\sum_{p \mid n} h(p), \quad F(n)=\sum_{p^{*} \| n} \alpha h(p),
$$

where for some fixed $K, \gamma>0$ and a fixed real δ we have

$$
h(x)=\exp \left(K \log ^{\gamma} x \cdot(\log \log x)^{5}\right)
$$

For other results and problems concerning $B(n)$ and $\beta(n)$ the reader is referred to [1].

Closely related to $B(n)$ and $\beta(n)$ is the function $B_{1}(n)=\sum_{p^{n} \| n} p^{\alpha}$. From $B_{1}(n) \geq \beta(n)$ and the fact that $B_{1}(n)=B(n)=\beta(n)$ if $n \in A_{k}$ (the set defined at the beginning of $\S 2$) we conclude that the bounds of Theorem 1 hold also for

$$
\sum_{2 \leqslant n=\pi} 1 / B_{1}(n)
$$

It seems likely that

$$
\begin{equation*}
\sum_{2 \approx n=x x} B_{1}(n) / \beta(n)=\left(c_{1}+o(1)\right) x \log \log x \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{2 \leqslant n \leqslant x} B_{1}(n) / B(n)=(C+o(1)) x, \quad C>0 . \tag{38}
\end{equation*}
$$

We can rigorously prove at present only

$$
\begin{equation*}
\sum_{2 \leq n=x} B_{1}(n) / \beta(n) \geq \frac{1}{2} x \log \log x+o(x \log \log x) \tag{39}
\end{equation*}
$$

To see this let $p_{1}<\cdots<p_{k}$ be the primes not exceeding x. Suppose $p_{i}^{k} \leq x<$ $p_{i}^{i_{1}+1}(i \leq k)$ and define $t_{i} \geq 1$ by

$$
\begin{equation*}
\left.t_{i} p_{i} \leq \leq x<\left(t_{1}+1\right) p\right\} \tag{40}
\end{equation*}
$$

so that $t_{i}<p_{i}$. Then we have

$$
\begin{equation*}
S=\sum_{2 \leq n \leq x} B_{1}(n) / \beta(n)>\sum_{i \leq k} \sum_{s=k} B_{1}\left(s p_{i}^{t}\right) / \beta\left(s p_{i}^{t}\right), \tag{41}
\end{equation*}
$$

Now $\beta\left(s p_{i}^{l}\right) \leq \beta(s)+\beta\left(p_{i}^{t}\right) \leq s+p_{i} \leq t_{i}+p_{i}<2 p_{i}$ and $B_{1}\left(s p_{i}^{l}\right) \geq p_{i}^{t}$, which gives

$$
\begin{aligned}
& S>\sum_{i \leq k} \sum_{s=i_{t}} p_{i}^{k} /\left(2 p_{i}\right) \geq \sum_{i \leq k} t_{i} p_{i}^{k} /\left(2 p_{i}\right) \geq \frac{1}{2} \sum_{i \leq k}\left(x p_{i}^{-k}-1\right) p_{i}^{l_{i}^{-1}} \\
& \geq \frac{x}{2} \sum_{i \leq k} 1 / p_{i}+O\left(\sum_{i=k} p_{i}^{i-1}\right) \geq \frac{x}{2} \log \log x+o(x \log \log x)
\end{aligned}
$$

since

$$
\sum_{p \leqslant x} 1 / p=\log \log x+O(1) \text { and } \sum_{i \leq k} p_{i}^{t-1}=o(x \log \log x) .
$$

References

1. K. Alladi and P. Erdös, On an additive arithmetic function, Pacific J. Math. 71 (1977), 275-294.
2. N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $>y$, Indag. Math. 13 (1951), 50-60.
3. J.-M. De Koninck, On a class of arithmetical functions, Duke Math. J. 39 (1972), 807-818.
4. J.-M. De Koninck, Sums of quotients of additive functions, Proc. Amer. Math. Soc. 44 (1974), 35-38.
5. J.-M. De Koninck and A. Ivić, Sums of reciprocals of certain additive functions, Manuscripta Math. 30 (1980), 329-341.

Jean-Marie De Koninck
Département de Mathematioues
Universtié Laval, Québec
GIK 7P4, Canada.

Pail Erdós
Hungarian Academy of Sciences
Budapest, Hungary

Aleksandar Ivé
RUDARSKO-GEOLOSKI FAKULTET
Universtteta u Beogradu
Drusina 7, 11000 Beograd
Yugoslavia

[^0]: Received by the editors October 9, 1979 and in revised form January 29, 1980 and March 4, 1980

