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SOME APPLICATIONS OF GRAPH THEORY AND COMBINATORIAL
METHODS TO NUMBER THEORY AND GEOMETRY

P . ERDOS

I have written several papers and notes on these subjects . To avoid
repetitions and to keep this paper short, I will not try to give a systematic
account of this subject but will only discuss a few recent results obtained
by my collaborators and myself. First of all, I give a partial list of some
of my older papers on this subject .

1 . P. Erdős, On some problems in elementary and combinatorial
geometry, Annali di Mat. Pura et Applicata, 53 (1975), 99-108 . This is
a survey paper with any references .

II . Some applications of graph theory to number theory, The many
facets of graph theory, edited by G . Chartrand and S .F. Kapoor, Lecture
notes in math 110, Springer-Verlag, 77-82 .

III. On some applications of graph theory to number theory, Publ .
Ramanujan Institute I .

IV. On the applications of combinatorial analysis to number theory
geometry and analysis, Actes Congrés Int. des Math., Nice, 3 (1970),
201-210.
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In August 1977 the following question occurred to me . Let x 1 . . . .
, x n be n points in the plane, no three on a line . Determine the

smallest n = nk such that there should always exist k of the x's which
determine a convex k-gon which has no x's in its interior . It is easy to see
that n4 = 5, but it is not at all obvious that such an n exists for k > 4 .

Ehrenfeucht in fact gave a simple and intuitive proof that ns exists,
Harborth and independently Morris proved that ns = 10. At present it is
not known if n6 exists .

I arrived at the problem about nk by adding a new condition to the
well-known problem of E . Klein (Mrs. Szekeres) . Determine or estimate the
smallest integer f(k) for which if x 1 , . . . , xf(k) are any f(k) points, no
three on a line, then one can always select k of them which form the
vertices of a convex k-gon .

(1)

Szekeres conjectured f(k) = 2k- 2 + l . Szekeres and I proved

2k-2 + 1 5 f(k) < (k - 2 ) .

(Some inaccuracies in our proof were corrected by Kalbfleisch) . Makai and
Turán proved f(5) = 9, f(6) = 17 has not yet been decided . For the
literature on this problem see I .

In IV I stated without proof that to every e > 0 there is an f,(k)
so that if x 1 , . . . , xf (k) are fE (k) points in the plane, no three on a line,

E

then one can always find k of them which form a convex polygon all
but two angles of which are greater than 7r - e. I outline the proof which
uses Ramsey's theorem . Let t E be the smallest integer so that among any
tE points there is always a triangle with an angle > 7r - e. It is well known
and easy to see that tE always exists and we will discuss the exact
determination of t later .

E

Denote by rk (u, v) = m the smallest integer so that if we divide the
k-tuples of a set S, I S I = m, into two classes, then either there is a set
S1 , I S 1 I = u, all whose k-tuples are in class I, or a set S21 I S2 I = v, all
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whose k-tuples are in class Il . Ramsey's theorem implies that r(u, v)
always exists .

From Ramsey's theorem we easily deduce

(2)

	

fE(k) < r3 (t e , r4 (5, k)) = m(e, k) .

To prove (2), we split the triangles into two classes. A triangle is in
the first class if its greatest angle is not greater than 7r - e and in the
second class otherwise . By the definition of tE every set of tE points
contains a triangle of the second class. Thus by (2) there is a set of r4 (5, k)
points each triangle of which is in the second class. By E. Klein's old theo-
rem every 5-tuple of these r4 (5, k) points contains a convex quadrilateral .
Hence there is a set of k points each quadrilateral of which is convex and
hence it is a convex k-gon each triangle of which has an angle > 7r - F .

But then all but two angles of this convex k-gon are greater than 7r - e,
which completes the proof of (2) .

There seems to be no doubt that fE (k) is much smaller than the value
given by (2) . It might be worthwhile to try to decide if f,(k) < CE holds .

Let me tell now a few words about the more exact determination of
tE . Szekeres and I proved that every set of 2' points in the plane deter-

mine an angle > 7r (1 - 1 ) . This is one of the few best possible results in

this field, since an earlier theorem of Szekeres asserts that for every e > 0
there is a set of 2' points in the plane all whose the angles are

< 7r (1 - 1 ) + e. Thus our result seems definitive, but this is not quite the

case. Our results certainly imply

t 1 < 2n and t,

	

> 2 n for every n> 0
n

	

n + n

but t 1 could be less than 2n , we only obtain
n

(3)

	

t l > 2n - 1 + 1
n

and indeed there could be equality in (3) for n > n o (but this is certainly
highly doubtful) . All we proved is that 2n - 1 points in the plane always
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determine an angle > A (1 - n ) .
The following question is perhaps of some interest . Let Ix, , . . . , x n }

be n points in the plane, no three on a line . Determine or estimate
min C(x l	xn ) where C(x l , . . . . xn ) denotes the number of convex
subsets of x l	xn . The exact determination of min C(x l , . . . , xn )
is probably hopeless, and even an asymptotic formula seems difficult .
We now show

(1+o(1))logn
(4)

	

n c
1
logn < min C(x, , . . . ' Xn ) < n

	

log 2

The upper bound in (4) follows immediately from (1) .

To prove the lower bound observe that (1) implies that every set of
t points contains a convex subset of size [c log t] = 1 . Thus any set of
n points contains at least

(5)

(n
	t) __ n(n-1) . . .(n-1+ 1)

rn-I) t(t-1) . . .(t-1+ 1)
lt-1

convex 1-tuples. To see (5) observe that a convex 1-tuple occurs in
n - I) t-tuples. Choose t = [ V-n ] . Then from (5) we have by a simplet-I

computation
clogn

C(xl, . . .,xn)> (t ) 1 >n 2

which completes the proof of (4) .

Very probably

log min C(x 1 , . . . , xn ) c log 2 n

holds with some constant c .

On the other hand, I could be wrong . Here is an example where I
misjudged the situation. Let x 1 , . . . ,x n be n points in the plane no
three on a line . Denote by fk (n) the minimum number of convex k-
tuples such a set must contain . I easily showed in 1934 that
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fk(n)
lim	(	= ck ,

	

0 < ck < 1
n-~ k

exists and that f4 (n) equals the rectilinear crossing number of the com-
plete graph K(n) . I did not realize the difference between crossing
number, and without further thought I assumed that they probably will
be the same . I also assumed that it will be hard or impossible to compute
the ck , thus I abandoned the whole question. I was both pleased and
dismayed (at having overlooked the possibilities of the problem) when
Guy told me (in Singapore in 1960) the conjecture that the crossing num-
ber of K(n) equals

4[2(n-1)]~2(n-2)][2(n-3)] .

The crossing numbers have now a large literature though Guy's conjecture
is still open .

Hadwiger and Nelson define the chromatic number a k of the k-
dimensional space as follows . Join two points in k-dimensional space if
their distance is 1 . The chromatic number ak of this graph is the
chromatic number of k-dimensional space. It has been conjectured that
a2 = 4, but now it is generally believed that a 2 > 4. It is known that
4 < a2 < 7. Larman and Rogers proved that a k < 3 k and P. Frankl
proved ak > V for every c if k > ko (c) . It is almost certain that
ak > ( 1 + e)k for some e > 0 (independent of k) .

Added in proof. P. Frankl proved this conjecture .

Let 1 S1 = n . Denote by & n) the largest integer for which there is
a family Ai C S, 1 < i < f(j, n) of subsets of S so that for every
1 < i 1 < i 2 < f(j, n) 1 Aj, n Ale 1 j. Trivially f(n, 0) = 2 n-1 .

P. Frankl proved that the value of f(n, 1) is given by the family
F~, consisting of the sets having at least n 2 1 elements for n odd,

and of the sets having at least 2 elements in S 1 {s) for n even, where
s is a particular element of S .



For j > 1 the value of f(n, j) is not known. I conjecture that for
every -? > 0 there is an e > 0 so that if

(6)

	

rln < j < ( 2 - r?) n then f(n, .i) < (2 - e)n .

(6), if true, easily implies ak > (1 + a) k for a certain fixed a > 0 .
i

It would be, of course, of interest to determine lim ak
k--• -

A well-known theorem of de Bruijn and myself states that if G is an
infinite graph of finite chromatic number n then G has a finite subgraph
G' of chromatic number n . Thus the determination of ak is a finite
problem and in particular if a 2 > 4 there is a finite set S in the plane
so that if we join every two points of S whose distance is 1, then the
resulting graph G, (S) has a chromatic number > 4. It would be certainly
interesting to find such a set if it exists .

Let now S be a set in the plane which contains no equilateral triangle
of side 1 . I thought it quite likely that then G, (S) has chromatic number
< 4. 1 hoped that if this is not true then the following weaker conjecture
holds: There is a k so that if G, (S) has girth > k (i.e ., the least circuit
of G, (S) has k sides) then G, (S) has chromatic number < 4 . Wormald
in a recent paper (which is not yet published) disproved my original
conjecture - he found an S for which G, (S) has girth 5 and chromatic
number 4. Wormald's construction uses elaborate computations and is
fairly complicated .

Let u l , . . . , u r be any r positive numbers . Join two points of the
plane if their distance is one of the numbers ui , i I- 1, . . . . r. a2 (r) is
the largest integer such that there is such a graph of chromatic number
a2 (r) . Can 02 (r) increase exponentially in r? It seems possible that
a2 (r) increases polynomially in r . I can not disprove a2 (r) < r 1 + F

Simonovits and I in a forthcoming paper which will appear in the Ars
Combinatorica introduce a modified chromatic number of k-dimensional
space ak as follows. Let xl , . . . , x n be again n distinct points in k-
dimensional space ; join two points whose distance is l . ak is the largest
integer so that our graph has chromatic number ak after the omission of
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o(n 2 ) arbitrarily chosen edges . Probably ak > (1 + C) k , but we cannot

prove even that k ~ . We proved that a4 = 2, as > 2 . In fact if k = 4

we show that one can always omit o(n 4 ) edges so that the remaining
graph should have chromatic number 2 .

Here I just state an old problem which is also discussed in detail in I .
Denote by fk (n) the largest integer such that among any n distinct points
in k-dimensional space there are at most fk (n) pairs of points whose dis-
tance is 1 . I conjectured f2 (n) < n 1 + E and offer a hundred dollars for a
proof of disproof. All that is known is that

f2 (n) = o(n 2 ) and f2 (n) > n 1 + log log n

The lower bound is probably close to the truth . G. Purdy and I are
planning to write a book about this and related questions . Not much
progress has been made here in the last few years . Let me state a problem
where significant progress has been made very recently . Denote by D(n)
the minimum number of distinct directions determined by n distinct
points in the plane . Scott proved

1
e n 2 <D(n)< 2[21 .

and conjectured that the upper bound is exact (or is close to being so) .
Burton and Purdy recently proved Scott's conjecture . They also proved
that n non-collinear points determine at least cn triangles of distinct

3
areas. Previously Purdy and I only proved this with n 4 . The paper of
Burton and Purdy is not yet published .

To end this chapter, I state two more problems. Let x 1 , . . . , x n be
n distinct points in the plane. Denote by e 1 , . . . , em the set of all
circles passing through at least three of the x i 's. Let h(n) be the largest
integer such that for suitable choice of the x t there are h(n) distinct
circles of radious 1 among the c, . I could only prove

2 < h(n) < n(n - 1) .
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I would expect that

(7)

	

h(n) _. 0
NO

n 2

	

n

Perhaps I overlook a simple idea but I could make no progress with
this simple and attractive conjecture. I think an exact formula, or even an
asymptotic formula for h(n) might be difficult to get . Harborth and I

tried to prove h(n) -> as follows: Consider the set of lattice points

(x, y), 0 < x, y < n 2 . Denote by hr (n) the number of distinct circles
of radius r which pass through at least three of our lattice points . Is it
true that

(8)

	

lim max
h
r
(n)

- 00nn- - r

(8), if true, clearly implies the second conjecture (7), but we could not
prove (8) .

Finally let me state an old and completely forgotten question of
Corrádi, Hajnal and myself: Is it true that if there are given n points in
the plane, not all on a line, then they determine at least n - 2 different
angles? (0 and 7r are counted as different but angles greater than 7r are
not allowed .)

2 .

On combinatorial methods in number theory I published even more
than on applications to geometry thus I mention only a few recent results,
one of which I learned during the meeting . Let 1 < a 1 < . . . be an in-
finite sequence of integers and denote by f(n) the number of solutions of
n = al + ai . An old conjecture of Turán and myself states : If An) > 0 for
all n > n o then lim sup f(n) _ - . This conjecture seems rather in-
structable and I offer 500 dollars for a proof of disproof .

I observed many years ago that the multiplicative analog to this
problem can be handled without too much difficulty : Let b1 < b2 < . . .
be an infinite sequence of integers . Denote by g(n) the number of
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solutions of n = b r bi . Assume g(n) > 0 for all n > ni . Then
lim sup g(n) _ - . The proof was not very difficult but used extremal
properties of hypergraphs and was not too simple either . During our
meeting Nesetril and Rödl told me their proof which is completely com-
binatorial and with their kind permission I now give their very ingenious
proof. In fact we show the following stronger result : let p1 < p2 < . . . be
an infinite sequence of primes and let u l-< u 2 < . . . be the sequence of
squarefree integers which are composed of exactly m of the p's . Let
a1 < a2 < . . . be a sequence of integers such that every u can be written
in the form ar ai , then there is an integer t of 2m prime factors for which

the number of solutions of t = atai is at least

	

m + 1
( gy m+I

2

We split the m-tuples of integers into 2 m classes as follows . If
Pi l . ., pi" = u (i 1 < . . . < im ) is one of the u's and u = ai i a,2,
a, , = p is . . . p is

	

then the class of {i1,. . . , im } is determined by
1

	

k
{s1 , . . . , s k } . This is a subset of { 1, . . . , m}, so there are 2' classes .
By Ramsey's theorem there is an infinite sequence of integers i 1 < i, < . . .
all whose m-tuples lie in the same class, characterized by a set {s 1 , . . . , s k },
I < s 1 < . . . < sk < m . Put 9i = p Í and ri = qmi . The product of every
k ri 's will be an a, as we can always choose m qi 's so that the s 1 -th, . . .

sk -th of them should be our k ri 's . Regarding the set {1, . . . , m} t
1 {s 1 , . . . , sk } we get that the product of (m - k) r,'s must be also an
a. Assume m - k > k. If t is the product of (2m - 2k) ri 's, then t =
= ar ai has at least (2m - kk) , ( m + I , solutions, which completes

2
the proof.

It is clear from the finite form of Ramsey's theorem that we obtain
the same result if we assume only that every integer having m distinct
prime factors formed from a finite set of primes p, < . . . < PS , s = s(m)
is of the form al ai , them there is an integer t for which the equation
t = al ai has at least

	

m+Il,

	

solutions .
12
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Let al < a2 < . . . < an be n integers. Let f(n) denote the largest
integer such that there are at least f(n) distinct numbers of the form
a i + a, and atai . Several years ago I conjectured that f(n) > n 2-e for
every e > 0 and n > no (e) . Szemerédi and I proved that

(1) nl+`' < fln)< n 2 exp (-c logn,
log log )n

Perhaps the upper bound gives the right order of magnitude for f(n) .

Consider all the integers of the form at.l + . . . + at.k and at. l . . . a t. k .
Denote by fk (n) the minimal number of distinct integers of this form .
We conjecture fk (n) > n k- E . Finally if we consider all the 2 n sums and
2n products formed from the a's and F(n) is the largest integer such that
there are at least F(n) distinct integers of this form, we conjecture that
F(n) > n k for every k and n > n o (k) . It is surprising that we seem to be
unable to attach this very plausible conjecture - perhaps we overlook a
simple idea. We proved

(2)

	

F(n) < exp c(logn)2
log log n

Perhaps (2) gives the right order of magnitude for F(n) .

Graham and Rothschild conjectured that if we split the integers into
two classes, then always there is an infinite sequence a l < a2 < . . . such
that all the sums

(3)

	

'Z ekak , ek = 0 or 1,
k

are in the same class . This conjecture was proved by Hindman .

I asked if it is true that there is an infinite sequence a l < a2 < . . .
such that all the sums and products

(4)

	

Z ek ak ,

	

H akk , ek = 0 or 1,

are in the same class . I also asked: if (4) is false, does it remain true if we
only require the existence of a sequence 1 < a l < . . . < an such that all
the 2' sums and products
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n

	

n
(5)

	

ekak ,

	

11 akk, ek = 0 or

	

1
k=0

	

k=0

are in the same class? Hindman disproved (4), his paper will soon appear
in the J. of Combinatorial Theory . (5) remains open for n > 3 .

Pomerance and I investigated the following problem . Let f(n) be the
smallest integer such that n different integers al , . . . , an can be found,
n < at < nf(n), t I at .

We proved

1

	

1logC1(log ogn
) 2 <f(n)<(2-c 2 )log 2 n .

We cannot decide whether
1

f(n) = o(log 2 n) .

F(n) is the smallest integer such that for every m there are n
distinct integers a l , . . . , an satisfying

at ===0 (mod t), m<a t <m+F(n)
3

for every t, 1 < t < n . We could prove only F(n) < n 2 + F .

One of our principle tools in all these results is the well known
König - Hall theorem .

Define F*(n) as the smallest integer such that, for every m and
every p < n distinct integers apm) , m < apm) < m + F*(n) can be
found satisfying p I ap . We could not disprove F*(n) = O(n) .

A curious result of Selfridge and myself seems to point in the other
direction (but certainly does not decide the issue) . For every e > 0 and
k there is a set of k 2 primes p l < . . .<pk2 and an interval (x, x +
+ (3 - e)pk2 )

	

such that the number of distinct integers m in this
interval which are multiples of any of the p t 's is 2k ; i .e. it is surprisingly
small. We do not know what happens if the upper bound (3 - e)pk2 is
replaced by (3 + e)pk2 .

- 147 -



An older and somewhat related problem of D . Newman is it true that
there is a one-to-one mapping ~p of the integers 1 S t < n onto the
integers m < t < n + n such that (t, cp(t)) = 1 for every t? If m =
= n + 1, this was proved by Baines and Daykin, but as far as I know the
general case is still open . One would expect that Hall's theorem will apply
here but there seem to be unexpected difficulites .

Added in proof. Pomerance and Selfridge recently proved the gen-
eral case .
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