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§ 0 .

Recently I published several papers on finite and infinite combinatorial problems .

I will try to make the overlap with this paper as small as possible ; as a result I have

to omit some of my most interesting problems, but first of all I give some references

to my older papers where these questions have been discussed

P . Erdős, Old and new problems in combinatorial analysis and graph theory, Second

International Conference on Combinatorial Mathematics, New York Academy of Sciences,

Vol . 319 (1979), 177-187 .

P . Erdős, Problems and results on finite and infinite Combinatorial Analysis I

and II, Coll . Math. Soc . J. Bólyai, 10 : Infinite and finite sets, Kenthely, Hungary

(1973), 403-424, II will appear in Enseignement Math . in 1981 .

P . Erdős, Some old and new problems in various branches of Combinatorics, Proc .

Tenth Conference in Combinatorics, Graph Theory and Computing (1979) (Boca-Raton Con-

ference) . This paper contains extensive references to my previous papers .

P . Erdős, Combinatorial problems which I would most like to see solved, will

soon appear in the new Hungarian periodical Combinatorics .

For applications of probabilistic methods to combinatorial analysis see our book,

P . Erdős and J . Spencer : Probabilistic methods in Combinatorics, Acad . Press and Hung .

Acad. Sci . (1974) .

§ 1 .

First I discuss problems connected with Ramsey's theorem and its generalisations,

here I of course can not avoid overlap with previous papers . r(nl, . . .,nk) is the small-

est integer for which if one colors the edges of K(r(nl, . . .,nk)) by k colors (K(t)



is the complete graph of t vertices) then there is always an i, 1 < i < k, so that

there is a K(n i ) all of whose edges are of the i-th color . Very interesting problems

arise if k tends to infinity, but we will not discuss these in great detail . We just

mention that it is not even known how fast r(nl, . . .,nk) tends to infinity if all the

ni are 3 . This problem goes back essentially to I . Schur who proved

It is not yet known if

proof of

rk(C 3 ) = r k (3, . . . . 3) < e.k! .

rk (C3 ) < Ck

r(nl, . . .,nk) < C

10

holds for all k if C is a sufficiently large absolute constant . More generally it

is quite possible that there is an absolute constant C so that

1

lim r(n,n) n = C
n~

n1 + . . .+ nk

It is easy to show by induction that
k
E (n i-2)

r(nl, . . .,nk) < ki=l

The proof or disproof of (1) and (2) seem to be very interesting questions .

Let us now restrict ourselves to k = 2. It is well known that

1 n
n

cI n2.2 2 < r(n,n) < c2 [n]
1ollog°

n n

	

(3)
2

I offered and offer 1000 rupees (or an equivalent in Swiss Francs) for a proof or dis-

(1)

(2)

I offer another 1000 rupees for the value of C . I think that perhaps the proof for

the existence of C will not be difficult (though I can not do it), but 1 do not think

the determination of C will be easy and I have no idea what its value will be .

It is known that

cl .n2

	

n2
< r(3,n) < c

(log n) 2

	

2 log n'

The lower bound is due to me . The upper bound was proved very recently by Ajtai,
2

Komlós and Szemerédi who improved the previous bound c n

	

g
	 log

n of Graver and
log l

(4)

(S)



Yackel .

In fact probably

and

n+-
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Very likely for every k and E > 0, if n +

r(k,n) > nk-1-E

k-1
r(k,n) > cl

	

n

	

c

(log n) 2

m

(6)

(6')

All our attempts to prove (6) and (6') - even for k = 4 - failed completely . It is

not impossible that the difficulties are only technical . Both the upper and lower

bounds of (4) are obtained by probabilistic methods and probably (6) will have to be

attacked similarly .

Almost nothing is known about the local growth properties of r(n,m) . S . Burr

and I conjectured that

r(n+l,n) > (1+c) r(n,n), (7)

but at the moment (7) is intractable . Faudree, Schelp, Rousseau and I needed recently

a lemma stating

lim r(n+l,n) - r(n,n) _ . (8)
n

We could prove (8) without much difficulty, but could not prove that r(n+l,n) - r(n,n)

increases faster than any polynomial of n . We of course expect

1

lim r(n+l,n) = C2
nom r(n,n)

1

where C = lim r(n,n) n .

V .T . Sós and I recently needed the following results .

r(n+1,3) - r(n,3) i

	

(9)

r([n(1+c1)],3) > (l+c 2 ) r(n,3) .

	

(9')

Both (9) and (9') must certainly be true but we could certainly not prove them. Probably
1

(r(n+1,3) - r(n,3))/n Z a 0. (10)

All these results would easily follow if one could get a good asymptotic formula with

a good error term for r(n,3), but needless to say this is nowhere in sight .
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One of the reasons for our inability to prove such simple results may be that

we lack constructive methods for giving good lower bounds for r(m,n) . I offer 1000

rupees for a constructive proof of r(n,n) > (1+c) n . The currently known sharpest

constructive proof is due to P . Frankl who proved that

lim r(nk
n) = m

rt+m

	

n
'

for every k .

Denote by r(C2n+1'k) the largest integer t for which the edges of K(t) can

be colored by k colors so that there should be no monochromatic C2n+1' Graham and

I coni •,ctured that

lim r(C2n+l'k)/r(C3,k) = 0

	

(11)
n-

(11) is open even for n = 2 . Perhaps the proof of r(C 5'k) < Ck will not be too hard,

Another problem of Graham and myself states : It is well known and easy to see that the

edges of K(2r ) can be colored by r colors so that each color graph is bipartite and

that such a decomposition does not exist for K(2r+1) . Let now f(r) be the smallest

integer so that every coloring of the edges of K(2 r+1) by r colors contains a

C2f(r)+1' Estimate f(r) as well as possible .

Now I discuss the so called generalised Ramsey numbers . The systematic formula-

tion of the problems was due to Harary and Cockayne . Let G,, . . .,Gk be k graphs,

then r(Gl, . . .,Gk) is the smallest integer n for which if we color the edges of K(n)

by k colors, then there is an i so that the edges of the i-th color contain Gi

as a subgraph . Chvátal and Harary proved using the method of the proof of (3) that if

G is t-chromatic, then

r(G,G) > (1+c) t .

	

(12)

After learning of (12) I conjectured that

min r(G,G) = r(t,t) .

	

(13)
G

In other words, if G runs through the family of t-chromatic graphs, then the minimum

of r(G,G) is assumed for the complete graph K(t) and further I conjecture that the

minimum is assumed only for this graph . This is trivial for t = 3, but t = 4 alread

seems to present considerable difficulties . Let, in particular, G be the pentagonal
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wheel . The conjecture for t = 4 would follow if we could prove

r(G,G) > r(4,4) = 18 .

	

(14)

Perhaps (14) could be proved in cooperation with a computer, the best results so far

are due to Chvátal and Schwenk and they proved that 17 < r(G,G) < 21 .

Burr recently published two excellent survey papers on the generalised Ramsey

numbers, also Burr, Faudree, Rousseau, Schelp and I published several papers on this

subject and several more of our papers will be published soon - here I give a short

summary of some of our results and open problems .

Following some preliminary results of Bondy and myself, V . Rosta and independent-

ly Faudree and Schelp determined r(Cn ,Cm ) for every n and m . Bondy and I conjectur-

ed

r(Cn,Cn ,Cn ) < 4n - 3,

	

. . . (15)

which is still open. For odd n, (15), if true, is best possible .

Denote by G(n) a graph of n vertices . G(n) is said to have edge density .< C

if for every subgraph G(m) of G(n), we have e(G(m)) < C .m, where e(G) denotes the

number of edges of G . Burr and I conjectured that if G(n) has edge density < C, then

r(G(n),G(n)) < f(C) .n .

	

. . .

	

(16)

The proof of this very attractive conjecture is nowhere in sight . Denote by Gc (n)

the graph determined by the edges of the n-dimentional cube ; Gc(n) has 2 n vertices

and n 2n-1 edges . We could not decide whether for some absolute constant cI

r(Gc(n),Gc(n)) < c l .2n

	

. .

	

(16')

is true . (16) and (16') seem to me to be two very attractive problems . Burr and I

expected (16) to be true and (16') to be false .

Now I state some of the problems and results of our work with Faudree, Rousseau

and Schelp . We are fairly certain that r(K(n),C4 ) < n2-E holds for a certain E

and all n > n o(E), but all we could prove is that for r > 5, r(K(n),Cr ) < n2-E

Our most striking and original problem states the following : Denote by ?~ ;GI ,G 2 )

the smallest integer m for which there is a graph G of m edges so that if we
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color the edges of G by two colors, then either color I contains G 1 or color II

contains G 2 . We called P(G,,G2 ) the size Ramsey number of G 1 and G2 . Let Pn

be the path of length n . Is it true that

ibid, 215-240 .

r(Pn' Pn )

n
2 0 but

r(P P
	 n' n )

n

	

+

Of course one really would like to determine HPn ,P n ) exactly or at least to get an

asymptotic formula for it ; but in fact we could not make any progress with (17) .

Harary recently asked the following question : Let Gn be a graph of n edges .

What is the smallest possible value of r(G
n Gn ) ? We are far from being able to give

a complete solution but could prove that there is a G n for which

r(Gn,Gn ) < c .n2/3

	

(18)

Perhaps 2/3 is the best exponent, we only know that 2/3 can not be replaced by an

exponent less than 3/5 . We further conjectured that

r(G n ,3) < 2n + 1,

	

. . .

	

(19)

but could prove it only with 3-c instead of 2n + 1 . (19), if true, is best possible .

P . Erdős and J . Spencer, Probabilistic methods in Combinatorics ; Acad . Press and

Hung. Acad. Sci . (1974) .

S .A . Burr, Generalised Ramsey theory for graphs, in Graphs and Combinatorics,

R . Bari and F . Harary (eds .), Springer Verlag, Berlin 52-75 .

P . Frankl, A constructive lower bound for some Ramsey numbers, Ars Combinatoria

3(1977), 297-302 .

P. Erdős and R .L. Graham, On partition theorems for finite graphs, Coll . Math .

Soc. J . Bólyai 10 : Infinite and finite sets, Keszthely, Hungary (1973), 515-527 .

S. Burr and P . Erdős, On the magnitude of generalised Ramsey numbers for graphs,

V . Rosta, On a Ramsey type problem of J .A. Bondy and P . Erdős, Journal of Comb .

Theory Ser . B, 15(1973), 94-120 .



P . Erdős, R .J . Faudree, C .C . Rousseau and R .H . Schelp, The size Ramsey number,

Periodica Math ., Vol .9 .

S .A . Burr and us, Ramsey minimal graphs for multiple copies, Indagationes Math .,

40(1978), 187-195 .

§ 2 .

Now I discuss some recent problems on number theory and geometry . Let 1 < a l <

< a k < x . Assume a i + a
J
. X aia J. . Put f(x) = max k . I first assumed that it

will be easy to show that f(x) _ (2 + o(1))x . The odd numbers show that f(x) > z .

I am no longer sure that my conjecture is correct . Odlyzko found with the aid of a

computer that f(1000) > 717 and now I am no longer sure what happens. A related

question states : Let 1 < bI < . . . < b R < x, (bi + bj) X 2b ib j . Put g(x) = max R .

Is it true that g(x) = o(x) ? Clearly if ai + aj X aia j then 3x and 6x can not

be both a's . I am sure that there is a sequence u I < u 2 < . . . . E u < - so that the
i

set of integers not divisible by any of the u's satisfies (a l+aj ) X aiaj and that

this sequence will give lim f(x)/x . The details are not quite clear .

Silverman and I some time ago asked the following questions . Define a graph

whose vertices are the integers, as follows : Join i to j if i + j is a square .

Is it true that this graph has infinite chromatic number? We also asked : Let

1 < u I

	

< . . . < ut < x and assume that u i + uJ is never a square . Put max t = h(x) .

h(x) > x/3 is trivial - take the ui = I(mod 3) . Is it true that h(x) _ (3o(1))x ?

A weaker conjecture states : Let vl , . . . I VZ be residue classes (mod d) . Assume that

x2

	

(vi+vj ) (mod d) for 1 < i < j < Z . Is it true that R < 3

	

If not - how large

can Z be? None of these questions has been investigated very carefully and I have to ask

the indulgence of the reader if the answer turns out to be trivial .

One of my oldest questions in number theory states : Is it true that the density

of integers n which have two divisors dI < d 2 < 2d I is one, i .e ., almost all inte-

gers have two divisors which are close together? I proved long ago that the density

of these integers exists but could never prove that it is 1 .

15
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Denote by d(n) the number of divisors of n

gers k for which n has a divisor in (2k ,2k+1 ) .

for almost all integers n, d+ (n) < d(n) . I conjectured that in fact for almost all

integers d+ (n)/d(n) -. 0. Tenenbaum and I last summer at the number theory meeting in

Durham disproved this conjecture and recently Tenenbaum obtained an inequality on the

density of the integers n for which d+ (n) < C .d(n), but I still believe that for

almost all n, d +(n) < d(n) is true .

Denote by d t (n) the number of divisors of n in

As far as I know Hooley was the first to investigate D(n) . He proved

and I proved

x
E D(n) < x(log x),

n=1

1 x
x E D(n) • m .

n=1

Hooley asked : Is it true that for every e > 0

I several times tried to prove (20) but I was unsuccessful so far .

Now I state a few problems in Combinatorial Geometry . I published several survey

papers on this subject and G . Purdy and I hope to write a book on this subject, here I

only state problems which are at least partially new. Let xl , . . .,xn be n distinct

points in k-dimensional space. Join two of the x i if their distance is one and de-

note this graph by G(xl, . . .,xn) . The chromatic number X(E(k) ) is defined as the upper

bound of X(G(xl, . . .,xn)) where n and the {x i } are both variable . Hadwiger and

Nelson first asked for the determination of X(E (2) ) . It is now known that 4 < X(E (2) )

<

	

7 and it seems likely that X(E (2) ) > 4. Probably

X(E (k) ) > (1+c) k ,

	

. . . (21)

but we are very far from being able to prove (21), the sharpest result so far is due to

P. Frankl who proved X(E (k) ) > kz for every fixed R if k > k o(k) ;

previous results of Lerman and Rogers .

and by d+(n) the number of inte-

If my conjecture is correct then

(t,2t) and put D(n) = max d t (n),
t

x
E D(n) = o(x(log x) e ) ?

	

. . . (20)
n=1

he sharpened



Simonovits and I define the essential chromatic number t = X e(M) of a metric

space M as follows : t is the smallest integer so that for every G(xl, . . .,xn) we

can omit o(n2 ) edges from

number < t . Simonovits and I prove

Xe(Ek) > (,+C) k . X e (E 2 ) = Xe(E 3 ) = 1

o(n2 ) .G(xl, . . .,xn) is

soon .

G(xl, . . .,xn) so that the resulting graph has chromatic

Xe(E4 ) = 2, Xe(E k ) > k-2. In fact we conjecture

simply means that the number of edges of

this subject will appear in Ars CombinatoriaOur paper on

17

Recently the following question in elementary geometry occured to me : Is it

true that for every n there are n distinct points in the plane in general position

(i .e., no three on a line and no four on a circle) so that these points determine

exactly n-1 distinct distances where further the i-th distance occurs i times .

The existence of such a set is trivial for n = 3 and n = 4 (an isosceles triangle

with the centre of its circumscribed circle shows this) . I thought that such a set

does not exist for n = 5 but Pomerance gave a simple example for such a system

xl ,x2 ,x 3 are the vertices of an equilateral triangle, x 4 is the centre of its circum-

scribed circle, x 5 is the point of intersection of the perpendicular bisector of

(x3 ,x 4 ) with the circle with centre x I and radius d(xl ,x 2 )

distance of x I to x2 . It is easy to see that these points are in general position

and the i-th distance occurs i times .

Perhaps, if we also require that no circle

I believe no

whose centre

such system exists for n > 6 .

is one of our points should

contain three of our points, then such a system can not exist for n = 5 .

P . Erdős, On some problems of elementary geometry . Annali Math . Pure Apl .,

103(1975), 99-108 .

D .E . Larman and C .A . Rogers, The realisation of distances within sets in Euclidean

space, Mathematics, 19(1972), 1-24 .

P. Erdős, Combinatorial problems in geometry and number theory, Proc . Symp. Pure

Math., Amer . Math. Soc ., 34(1979), 149-162 .

C. Hooley, On a new technique and its applications to the theory of numbers, Proc .

London Math . Soc ., 38(1979), 115-151 (see p . 125-128) .

For further problems and results on sequences of integers see the excellent book

of Hallerstam and Roth, "Sequences", 1966, Oxford .

where d(xl ,x 2 ) is the
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