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To my old friend Emil Groswald, in friendship and admiration .

In this note I discuss some problems of a somewhat unconventional nature

which recently occupied me and my collaborators . I will deal with divisors and

prime factors of integers, some additive problems of a combinatorial nature and

on differences of consecutive primes, squarefree numbers and more general

sequences defined by divisibility properties .

I . Let 1 = d l < d2 <

	

. < d T (n ) = n be the sequence of consecutive divisors of n .

Put

T n)-1 d .
(1 .1)

	

ha(n)

Is it true that for every a > 1 there is a constant Ca and infinitely many

integers n for which ha (n) < Ca ? This question occurred to me a few weeks ago

but I was unable to make any progress . In fact I could not prove the existence of

Ca for any a . n! or the least common multiple of the integers not exceeding n

seem to be good candidates for integers with (1 .1) bounded above .

I came to (1 .1) by considering the sum Tjn)-1 d i+, /d I*i=1

It is easy to see that

i=1

	

di+l/di
> i(n) + log n

and I asked myself the question whether it is true that

(1 .2)

	

lim inf (~ di+l/di -T(n)-log n) < ~ .
n->-

(1 .2) would follow if (1 .1) is bounded for an infinite set of n .

Srinivasan calls a number n practical if every m < n is the sum of distinct

divisors of n . It is well known and easy to see that the density of practical



(1 .4)

	

di+l < 2d 1
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numbers is 0. Let S(n) be the smallest integer so that every 1 < m < n is the

sum of S(n) or fewer distinct divisors of n(S(n) = 0 if n is not practical) . In

connection with problems on representation of the form

b= X

	

X, 1< a< b, k minimal,
1

	

k

I needed integers n for which S(n) is small . I easily observed

S(n!) < n or S(m) < log m
log log m

for infinitely many m . I conjectured that for infinitely many n

(1 .3)

	

S(n) < (log log n) C

but I could make no progress with (1 .3), which is unsolved for more than 30 years .

I offer 250 dollars for a proof or disproof of (1 .3) . In itself (1 .3) is perhaps

somewhat artificial and isolated but a proof or disproof of (1 .3) might throw

some light on more important problems .

I just notice that the investigation of max S(n) might lead to nontrivial
n < x

questions . At first I thought that S(n) < clog n holds for all n but this is

easily seen to be false . Let mk be the product of the first k primes and let

be the greatest prime less than a(m k ), It is easy to see that nk = gkmk is

c/log log n k
practical but qk-1 needs for its representation n k

	

divisors of nk .

x
Perhaps one could try to obtain an asymptotic formula for E S(n) .

n=1

My most interesting unsolved problem on divisors states that almost all

integers have two consecutive divisors

or in a sharper form: For almost all n, (and every e > 0)

(1 .5)

	

min d i+1 /d i < 1+c-log log n(log 3-1-e)

i

R.R . Hall and I proved that the exponent in (1 .5) if true is best possible .

qk
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Denote by T+(n) the number of integers k for which n has a divisor in

(2k,2 k+l )

	

I conjectured that for almost all n T+ ( n)/T(n) -* 0, which of course

would have implied (1 .4) . Tenenbaum and I recently disproved this, and we also

proved a recent conjecture of Montgomery which stated that if T (d) (n) denotes

the number of indices i for which d i ldi+l then T(d)(n)/T(n) > c holds for a

sequence of positive density . Very likely T(d)(n)/T(n) has a distribution

function, but this question we have not yet settled .

Denote by Tr (n) the number of indices i for which (di d i+1 ) = 1 . R .R. Hall

and I studied T r(n) and we obtained various asymptotic inequalities for it, but

we are very far from settling all the interesting questions which can be posed

here . One of our questions stated : Let n be squarefree and v(n) = k (v(n)

denotes the number of distinct prime factors of n) . How large is max T r (n)T

v(n)=k

Simonovits and I proved

(1 .6)

	

(21/2+o(1))k < v(n)xk Tr (n) < (2-c) k .

We proved (1 .6) by the following lemma : Let 0 < x I < . . . < x k, assume that

k
the 2 k sums I e ix i , c i = 0 or 1, are all distinct and order the sums

i=l

k

i=1

k

i~l

c ix i by size. Denote by g(k) the maximum number of consecutive sums

k
e ix i ,

	

clx i , e l ei = 0, for every 1 < i < k . Clearly g(k) = max

	

Tr(n) .

i=1

	

v(n)=k

Simonovits and I proved that g(k) satisfies (1 .6) .Perhaps g(k) can be determined

explicitly .

Let pi n) < . ., < p (n) be the sequence of consecutive prime factors of n .

Our knowledge of the properties of the prime factors of almost all integers is

much more satisfactory than our knowledge of the divisors of n . Here I state

only one result which can easily be obtained by the methods of probabilistic

number theory : Put



The sequence
	 1		1

log log log n

	

c

	

c r
r

has Gaussian distribution ; cr > 0 does not have a distribution function . Also

roughly speaking for almost all n

r1/2cr = log log prn) -r

is dense in (-C r
1/2

C r 1 /2 ) . Here is a more exact special case . An old

theorem of mine states that the r-th prime factor of n is for almost all n

between exp exp(r(1-c)) and exp exp(r(1+c)) . How close can in fact Pr(n) come

to exp exp r for almost all n? It is easy to see that for almost all n the

number of solutions of

Ilog log pr n) -r) <

	

1 112f(r)r

tends to infinity if and only if I r l r

	

=

	

The proof is an easy consequence
r

of sieve methods and elementary independence arguments .

It seems impossible to obtain similarly sharp estimates for the divisors

of n ; in fact such results are almost certainly not true mainly due to the lack

of independence .
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2 . Let 1 < a l <

	

< ak < n . Assume that the sums a i+aj are all distinct .

Denote g(n) = max k . Turán and I conjectured

(2.1)

	

g(n) - nl/2 + 0(1),

cr =

	

rl/2
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log log prn) -r

r = 1,2, . . .,v(n),
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but we are very far from being able to prove (2 .1) . The sharpest result known

about g(n) states :

	

l
c

(2 .2)

	

n l/2-n-f

	

< g(n) < n 1 ~ 2 + n 1 ~4 + 1 .

Our original proof of the upper bound gives without much difficulty the

following slightly sharper theorem : Let 1 < a l < . . . < ak < n, k = [(l+c)n1/2] .

Then the number of distinct differences of the form a i -a j , a i > a j is less than

(1-c c )(2) . I do not know the best possible value of cc and probably the deter-

urination of the best possible value of cc will not be easy. This problem is

perhaps of some interest but I have not investigated it carefully . A problem of

Graham and Sloane in graph theory led me to conjecture that if k > (1+c)n
l/2 ~

then the number of distinct sums a i+a j is also less than (1-cc)(2) . Unfortunately

I noticed a few days ago that my conjecture is completely wrongheaded . To see

this we define k = [(l+0(1))
~~ n

1/2] a's not exceeding n so that if

ai+a j = ar+a s then a i+aj = n . Let 1 < al < , ., < a R <
7 be a maximal sequence

for which all the sums a i+a j , 1 < i < j < t are distinct . By our result with

Turán we have R = [(1+0(l)) (-) 1/2 ] . Now put a t+i = n-a,_i+1 . Our sequence has

(1+0(1))2 (n ) 1 /2 terms and it is easy to see that all the sums a i +a j are distinct

unless a i+aj = n .

The problem now remains : What is the largest value of c for which there is

a sequence 1 < a l <

	

< ak < n, k = (1+o(1))cnl/2 ,so that the number of

distinct sums a i+aj is (1+0(1))(2)1 Trivially c < 2 and it is not hard to show

that c < 2 . Perhaps c < 2112 but at the moment I do not see how to show this .

For the problem of Graham and Sloane it was more natural to assume that the

number of distinct sums mod n should be (1+0(1))(k) . Here of course trivially

k < (2n) 1/2 and probably k < (1-c)(2n) 112 but I have not yet been able to settle

this problem .
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3 . Let 1 = q, < q 2 < . ., be the sequence of squarefree numbers . Many mathemati-

cians investigated them from various points of view . Denote by Q(x) the number

of squarefree numbers not exceeding x . It is easy to see that Q(x) _ - x+0(x1/2 ) ;

n

the prime number theorem gives Q(x) -

	

x = o(xl/2 ) . It is known that the
n

error term cannot be o(x l/4 ) and it was known for a long time that the Riemann

hypothesis implies that Q(x)-

	

x = o(x2/5 ) and this has been recently improved
n
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to o(x 1 / 3 ) . We will not deal with these problems here .

The difference qk+l -q k has been investigated a great deal . No doubt

qk+1 -qk = o(qk) for every c > 0 if k > k0(e), but we are very far from being

able to prove this . The sharpest results are due to Richert, Rankin and Schmidt .

They proved it for c a little less than ?./9 . I proved that for every a < 2

(3 .1)

	

Y

	

(qk+l-qk ) a = cax + o(x) .
qk <x

Hooley proved that (3.1) holds for every a < 3 . There is no doubt that (3 .1)

holds for every a > 0 but this seems hopeless at present . Put

f(x,c) _

		

exp(c(gk+l -q k ))'
q k <x

I expect that

(3.2)

	

f(x,c)/x

	

m

for every c > 0 but cannot prove it for any c .

The reason for the difficulty of proving (3.2) is that I cannot give a uniform

estimation for the density at of the indices k for which q k+l -q k > t . It is not

difficult to show that at/t + 0, i .e . at tends to 0 faster than exponentially,

but I have no uniform estimation for at and as far as I know there is no such

estimation available in the literature ; i .e . I have no good estimation for the



number of indices k for which qk+l -qk > tn , qk < n, when to tends to infinity

together with n .

I observed nearly 30 years ago that for infinitely many k,

2
(3 .3)

	

qk+l -qk > (1+0(1)) T"2' log log k

(3.3) follows easily from the Chinese remainder theorem, the prime number

theorem and the sieve of Eratosthenes . I never was able to improve (3 .3) and

cannot exclude the unlikely possibility that (3 .3) is best possible . More

generally let u 1 < u2 < . . . be a sequence of integers satisfying

(3.4)

	

(u i .u~) = 1,
1

~1 <

and denote by a l < a2 < . ., the set of integers not divisible by any of the u's .

Put

(3 .3')

Analogously to (3 .3) we obtain
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u l .u 2 . . .u
tx

< x < ul . . .ut
x
utx +1 .

maxi (ak+l -ak) > (1+o(1))txn(1- uá)-1
ak

We will show that there are sequences satisfying (3.4) for which (3.3') is

best possible. I stated this result in a previous paper . In fact we shall prove

it in the following slightly stronger form : There is an infinite sequence of

primes p l < p2 <

		

4 1

	

< m, so that for all k > k 0 (e)
i

	

Pi

(3.5)

	

ak+l -a k < (1+s)tx n (1-

	

) -1 .
i

	

i

The proof of (3 .5) is indeed easy . Let p l < p 2 < . ., be an infinite sequence

of primes which tend to infinity sufficiently fast . Let

(3 .6)

	

pk < x < x+L < Pk+l, L = (l+e)t x n (1-

	

) -1

i

	

Pi

To prove (3 .5) we only have to show that there is at least one integer T,



x < T < x+L,which is not a multiple of any of the primes p l , . . .,pk* If the p's

increase sufficiently fast then tx = k-1 or tx = k . Let r be large but small

compared to k. Then the number of integers in (x,x+L) which are not multiples of

any of the p's is by the sieve of Eratosthenes at least

(3.7)

	

L II (1- 1 )- 2r- k

	

- k> 0,
i=1

	

pi

	

i > r pi

by (3 .6) and tx > k-1, which completes the proof of (3 .5) .

The real problem here is : Is there a sequence u l < u 2 < . . .

	

(ui ,uj ) = 1,

~l < m, which satisfies (3 .5) and the u i do not tend to infinity very fast, say

u i < iC for some absolute constant C7 I do not expect that such a sequence

exists . I am fairly sure that there is a sequence satisfying (3 .5) for which

u1/ 1 -+ 1 .
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I proved that every irreducible cubic polynomial represents infinitely

many squarefree integers and Hooley that the set of integers n for which the

cubic polynomial f(n) is squarefree has positive density . It seems hopeless at

present to extend this result to quartic polynomials, ; in fact there is no

quartic polynomial about which we can prove that it represents infinitely many
n

squarefree integers and of course it seems hopeless to prove that 2 n ± 1, 22 3 1

or n! ± 1 represents infinitely many squarefree numbers . The sharpest results

on the representation of power free numbers are due to Nair and to Huxley and

Nair .

The analogue of the prime k tuple conjecture is true and was certainly

known to L . Mirsky for a long time . It states : let a,, . . .,a k be a set of

integers which does not contain a complete set of residues mod p 2 for every p ;
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then the density of integers n,for which the integers n+a i , i = 1, . . .,k, are all

squarefree, is positive . There seems , to be no possibility of extending this

result for infinite sequences A = {a l < a 2 < . . .}, where we assume that A does

not contain a complete set of residues mod p 2 . A is said to have property P if

for every integer n, n+a i is squarefree for only a finite number of indices i .

It is easy to see that there are sequences having property P . The simple proof

is left to the reader . Probably a sequence having property P must increase

fairly fast, but I have no results in this direction .

A is said to have property P (respectively P te ) if there are infinitely many

n for which n+a i is squarefree for all (respectively for all but finitely many)

a i e A . A sequence having property P or PO must no doubt also increase fast .

A is said to have property Q if for infinitely many n, n+a i is squarefree

for all a i < n . It is easy to see that if A increases sufficiently fast then it

has property Q and in fact there is an n, a k < n < n7k+l for which n+a i ,i = 1, . . .,k,

is always squarefree . I have no precise information about the rate of increase

a sequence having property Q must have .

It would of course be interesting to investigate which special sequences

(e .g. 2n ± 1, n! ± 1 etc .)

	

have properties P, P, P~ or Q, but as far as I know

nothing is known here . These problems can of course be stated for other

sequences than p 2 , but we formulate only one such question : Is there an infinite

sequence a l < a2 < . ., so that there are infinitely many n for which for all

a k < n, { n +a k } always is a prime?

The prime k-tuple conjecture implies the existence of such a sequence . It

would be of interest to obtain some estimates about the rate of growth of such

a sequence .

It is easy to see that there is an infinite sequence A for which a i+a j ,

1 < i < j, is always squarefree . In fact one can find such a sequence which

grows exponentially . Must such a sequence really increase so fast? I do not

expect that there is such a sequence of polynomial growth .

Is there a sequence of integers 1 < a t < a 2 < . . . so that for every i,
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a i

	

t (mod p2 ) implies 1 < t < p 2/2? If such a sequence exists then clearly

a i +a j is always squarefree, but I am doubtful if such a sequence exists . I

formulated this problem while writing these lines and must ask the indulgence of

the reader if it turns out to be trivial .

Let A(X) be the largest integer for which there is a sequence

1 < a l < . ., < a k < X, k - A(X),which does not form a complete set of residues

mod P2 (for every p) . Trivially A(X) _ (1+0(1))

	

X and Ruzsa pointed it out
n

to me that for infinitely many X

	

A(X) > 0(X) . Probably this holds for all large

X. It would be of some interest to estimate A(X) as accurately as possible .

This problem is of course of interest for other sequences than p 2 . The sensational

results of Hensley and Richards for the sequence of all primes are well known .

One final problem of this type : Let (u i ,uj ) = 1 and a l < a2 < . ., an

infinite sequence with the property R: for every u i and a k > u i there is an

aj < u i for which a k =- a j (mod u i ) . The set of all integers clearly always

has property R, and if the u's are the set of all primes then no other set has

property R. It is easy to see that if the u's are sufficiently thin then there

are nontrivial sequences with property R . I am not sure if property R leads to

interesting and fruitful questions .

Let u l < u 2 < . ., be a sequence of integers

	

I conjectured long ago that

if u n/n + m then I u n/2n is irrational, Recently I proved this if we assume
n

the slightly stronger hypothesis u n+l -u n -* a. I know of no example of a

u
sequence u l < . ., for which lim sup (un+l-un) = m, and I u n/2 n is rational .

n

I am sure that such sequences exist and perhaps I overlook an obvious idea . To

my surprise and disappointment I could not prove that I qn/2qn is irrational
n

where q l < .,, is the sequence of all squarefree numbers . In fact if

q
1
.
1 <

q
1
.
2 <

. ., is any subsequence of the squarefree numbers then surely

qi
I q . /2 m is always irrational . Here again I perhaps overlook a trivial
n 1 m

point .



In trying unsuccessfully to prove these conjectures I found a result which

perhaps is of some interest :

THEOREM . Let c > 0 be a sufficiently small absolute constant . Then for

ever x > xO (c) there are integers y l < Y2 < Y3 < Y4 < x satisfying

(3 .8)

	

y2 -y l = Y 4-y3 = t > c(log x) 2

for which the squarefree numbers in (y l ,y 2 ) and (Y3,y4 ) are congruent

	

transla-

tion b y3
-y l = y4-y2'

Denote by tx the longest such interval . Unfortunately I have no good

upper bound for tx ; surely t x = o(x c ) and perhaps t x < (log x) c . I . Ruzsa pointed

out that it is unlikely that one can get a good result without some really

new idea since we cannot exclude the existence of large gaps between the y's .

The proof of our Theorem will not be difficult . Denote by f(n,t) the

number of integers m,n < m <n+t, for which there is a p > T,1
00

log x, satisfying

m =- 0 (mod p2 ) . Clearly by the prime number theorem and (3 .8)

(3 .9)

	

X
f(n,t) < tx

	

1 <	200 t x	 < 200 cx loq x

n=1

	

to x
p log x log Tog x

	

log log x

p > 100

Thus from (3 .9) there are clearly at least x values of n for which

(3 .10)

	

f(n,t) < 400 c log x = L
log log x

Henceforth we will only consider these (at least) values of n which

satisfy (3 .10) . We now give an upper bound for the number of patterns the

integers m =_ 0 (mod q2 ) can form in (n,n+t) (q runs through all primes) .

The number of these patterns is clearly less than

(3 .11)

	

(1)

	

n

	

p2 < (t ) L cLxl/10 = o(x
l/2 )

To g x
p <-

	

100

for sufficiently small c . To prove (3 .11) observe that the factor ( t ) comes
L
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from the primes p > l
180

x and the factor 1[ P2

	

from the primes <
1igox

tog

	

0
x

p <- 100

Thus by (3 .10) there are two intervals of length t, which by (3 .11) can be

assumed to be disjoint,in which the squarefree numbers are congruent .

It would be easy to get an explicit bound for c, but this is hardly worth

the trouble since at the moment there is no reason to assume that the true order

of magnitude of t x is (log x) 2 .
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