ANOTHER PROPERTY OF 239 AND SOME RELATED QUESTIONS

P. Erdös, R. K. Guy and J. L. Selfridge

Introduction.
There are many questions that we can ask about the expression of a factorial as the product of k factors:
(0)

$$
n!=a_{1} a_{2} \ldots a_{k}
$$

We might assume that the factors lie in the interval $[n+1,2 n]$ and that they are either distinct or not:
(1)

$$
n<a_{1}<a_{2}<\ldots<a_{k} \leq 2 n
$$

or

$$
\begin{equation*}
n<a_{1} \leq a_{2} \leq \ldots \leq a_{k} \leq 2 n \tag{2}
\end{equation*}
$$

On the other hand, we might require that the a_{i} be distinct, but remove the upper bound and perhaps relax the lower bound as well:

$$
\begin{equation*}
n<a_{1}<a_{2}<\ldots<a_{k} \tag{3}
\end{equation*}
$$

or
(4)

$$
1<a_{1}<a_{2}<\ldots<a_{k}
$$

or we might only require that the a_{i} be positive integers:

$$
\begin{equation*}
a_{1} \leq a_{2} \leq \ldots \leq a_{k} \tag{5}
\end{equation*}
$$

In a previous note [3] it was proved that (1) has only a finite number of solutions. Here we enumerate all solutions and prove

Theorem 1. There are no solutions of (0) and (1) for $n>239$.

We also outline a proof of

Theorem 2. Solutions for (0) and (2) can be found for all $n>13$. Finally we make assumption (3) and denote the minimum value of a_{k} by $f(n)$, i.e. $f(n)$ is the smallest integer for which $n!$ can be represented as the product of distinct integers greater than n, the largest of which is $f(n)$. We then prove

Theorem 3. There are constants $0<c_{1}<c_{2}$ such that

$$
2 n+\frac{c_{1} n}{\ln n}<f(n)<2 n+\frac{c_{2} n}{\ln n}
$$

for all sufficiently large n.
No doubt there is a constant c such that

$$
f(n)=2 n+\frac{c n}{\ln n}+o\left(\frac{n}{\ln n}\right)
$$

and perhaps this can be shown by a more careful application of our method.

Some other questions. The problem of determining min $\left(\alpha_{k}-\alpha_{1}\right)$ is also of interest. Assume $k>1$ (else $a_{k}=n!$); then it seems likely that $a_{k}-a_{1}>c n$ under condition (4) or (5), i.e. whether we assume the a_{i} to be distinct or not. At present such a theorem seems far beyond our means. The real difficulty occurs when k is small; in particular when $k=2$. It has never been proved that

$$
n!=a_{1}\left(a_{1}+1\right)
$$

has no solutions for $n>3$. In fact

$$
n!=u^{\alpha}(u+1)^{\beta}
$$

seems to have no solution larger than $4!=2^{3} 3$. A long outstanding conjecture is that

$$
n!=(x-1)(x+1)
$$

has no solution for $n>7$.

We determine min $\left(a_{k}-a_{1}\right)$ for small values of n under each of the conditions (4) and (5), i.e. with and without the assumption that the a_{i} are distinct. Perhaps the general answers, under assumptions (4), (2) and (5) are respectively

$$
\begin{array}{lll}
i & \min \left(a_{k}-a_{1}\right)=n+o(n) & ? \\
i & \min \left(a_{k}-a_{1}\right)=\frac{2}{3} n+o(n) & ? \\
i & \min \left(a_{k}-a_{1}\right)=\frac{1}{2} n+o(n) & ?
\end{array}
$$

Under condition (3) with $k>1$ we believe that, for sufficiently large n,

$$
i \quad a_{k}-a_{1}>n \quad ?
$$

If we assume that $a_{1} \leq n$, then it is easy to see that

$$
\begin{equation*}
\min \left(a_{k}-a_{1}\right)>n-c \ln n \tag{6}
\end{equation*}
$$

by looking at the highest power of two which divides n ! If $2^{\alpha} \| n$! then $\alpha>n-(\ln n) /(\ln 2)$. On the other hand if $2 \beta \| a_{k}!/\left(a_{1}-1\right)!$ then $\alpha<\beta<a_{k}-a_{1}+c \ln a_{k}$ and (6) follows immediately. Moreover (6) is not far from being best possible, since if $n=s!-1$, then

$$
n!=\frac{(n+1)!}{s!}=\prod_{i=1}^{n-s+1}(s+i)
$$

so that

$$
a_{k}-a_{1}<n-\frac{\ln n}{\ln \ln n}
$$

Is it true, under condition (4) with $k>1$, that

$$
\begin{equation*}
\min \left(a_{k}-a_{1}\right)=n-2 \tag{7}
\end{equation*}
$$

for infinitely many values of n ? It would be nice to decide this
elementary question. For $4<n<16, \min \left(a_{k}-a_{1}\right)<n-2$, while for $n=16$ the equality (7) holds. In fact it semms certain that when $n=2^{v}$ is a large enough power of two, then (7) holds for the following reason. Unless one of the a_{i} is a multiple of 2^{v+1} we must have $a_{k}-a_{1} \geq n-2$. if one of the a_{i} is a multiple of 2^{v+1} we must have $a_{1}>n$. Now if $a_{1}<n^{1+\varepsilon}$ we can prove that $a_{k}-a_{1}>n+c n / \ln n$ and although we cannot yet handle the case $a_{1}>n^{1+\varepsilon}$ it is very likely that it gives smaller values of $a_{k}-a_{1}$.

Suppose that the a_{i} are distinct, that $k>1$ and that $a_{1} a_{2} \ldots a_{k} / n$! is an integer with no prime factors greater than n. Is it true that

$$
i \quad \min \left(a_{k}-a_{1}\right)<n-2 \quad ?
$$

Perhaps this can be proved, since an old and simple result says that $(2 n)!/ n!(n+3)!$ is an integer for almost all n.

If we only assume (5) then clearly every prime $p \leq n$ must have a multiple $p q$ such that $a_{1} \leq p q \leq a_{k}$. This condition is not sufficient, but we can prove that it does suffice provided $a_{k}<C n$ and n is sufficiently large, $n>n_{0}(C)$. Because the condition $a_{k}<C n$ can no doubt be very much weakened (we don't know by how much) we do not give the lengthy proof.

We examined a problem which we find quite interesting. Let $p_{1}<p_{2}<\ldots<p_{2}$ be a set of Z primes. Denote by $A\left(p_{1}, \ldots, p_{2}\right)$ the smallest integer such that every interval of length A contains τ distinct integers $a_{i} \equiv 0\left(\bmod p_{i}\right), 1 \leq i \leq \eta$. It seemed to us that for every C there is a set of $Z=Z(C)$ primes with $A\left(p_{1}, \ldots, p_{q}\right)>C p_{Z}$. This problem can be specialized in the following ways.

Let $h_{1}(m, n)$ be the smallest integer for which every prime $p \leq n$ has a multiple among the numbers $m+i, 1 \leq i \leq h_{1}$, i.e. h_{1} is the least integer for which

$$
\left.\Gamma\right|_{p \leq n} p \text { divides } \prod_{i=1}^{h_{1}}(m+i)
$$

And let $h_{2}(m, n)$ be the smallest integer for which every prime power $p^{\alpha} \leq n$ has a multiple among the $m+i, 1 \leq i \leq \hbar_{2}$. Finally, let $h_{3}(m, n)$ be the smallest integer such that $n!$ divides $\prod_{i=1}^{h_{3}}(m+i)$

Then it is easy to see that $h_{1}(m, n) \leq h_{2}(m, n) \leq h_{3}(m, n)$. Put

$$
H_{j}(m, n)=\min _{1 \leq u \leq m} h_{j}(u, n), \quad j=1,2,3 .
$$

For fixed n, as m increases, each of the $H_{j}(m, n)$ decreases (from near n) to 1 . We will investigate these functions in a later paper, if we live. Here is a typical problem.

Let t_{n} be the shortest interval $<n(1+\varepsilon)$ which contains a multiple of each prime $\leq n$. (This definition is deliberately vague to allow for possible irregularities in the distribution of primes). Determine or estimate the smallest m for which $H_{j}(m, n)<t_{n}$. We can show that tnis m is greater than n^{1+c} and that if one assumes conjectures about the distribution of primes that are probably true but hopeless to prove, then $m>n^{2} /(\ln n)^{c}$.

Let $1=u_{1}<u_{2}<\ldots$ bc the sequence of integers all of whose prime factors are $\leq n$, let u_{r} be the smallest u_{i} greater than m and let Z be the smallest integer for which every prime $=n$ divides $\prod_{i=0}^{z} u_{r+i}$. We conjecture that the equation

$$
\begin{equation*}
n!=\prod_{j=0}^{2}{\underset{i t}{j+i}}_{\alpha_{j}}^{i_{2}}, \alpha_{j} \geq 0 \tag{8}
\end{equation*}
$$

is usually solvable, but if we insist that each α_{j} is or 1 , then (8) is not usually solvable. Note that for small values of m, $h_{1}(m, n)=u_{r^{+}+2}-n$, i.e. for each prime $p \leq n$ there is an $i \leq h(m, n)$ with $n+i \equiv 0(\bmod n)$. Determine the least $m=m(n)$ for which $n_{1}(m, n)<u_{r+2}-m$. E.g, if $n=10$, to see that $m(10)=30$ we note that $h_{1}(30,10)=5$ (every prime less than ten divides one of $31,32,33$, 34,35) but $u_{r+2}=36$ (not 35) since 33 has a prime factor 11 and so is not a u_{i} and it is easy to check that $h_{1}(m, 10)=u_{r+l}-m$ for $m<30$. It should be possible to prove that $m(n)$ is of order about n^{2}.

For most values of m, the values of $h_{j}(m, n)$ are not much smaller than n since usually there is a prime very close to n which has a multiple which is very little smaller than m. In fact, as $x \rightarrow \infty$,

$$
\frac{1}{x} \tilde{\sum}_{m=1}^{\infty} h_{j}(m, n) \rightarrow \alpha_{j}(n), j=1,2,3
$$

and it is not hard to prove that $\alpha_{j}(n) / n \rightarrow 1$ as $n \rightarrow \infty$. Can $\alpha_{j}(n)$ be determined explicitly?

To conclude this collection of problems we formulate a few related questions and conjectures. Write

$$
B(n, k)=\left.\Gamma\right|_{i=1} ^{k}(n+i)
$$

It seems certain that for $k>1, \tau>1, m \geq n+k$, the equation $B(n, k)=B(m, l)$ has only a finite number of solutions (in fact very few). Unfortunately, even special cases of this conjecture are usually quite intractable.

A well known theorem $[2,8]$ of Pillai-Szekeres-Brauer states that if $1 \leqslant \ell \leqslant 16$ then ℓ consecutive integers always include one which is relatively prime to the others and this is false for every
$\eta>16$. For $Z=17$ the integers $2184,2185, \ldots, 2200$ form the simplest counterexample. In a previous paper [5] we found an example of an interval $[a, b]$ where a and b are relatively prime and every $a+i$ $0 \leq i \leq b-a$, has a common factor with the product $a b$. We do not know for which values of $b-a$ this is possible. We also asked the following question which is probably very difficult. Is it true that for every r there are k_{r}, consecutive integers $n+1, n+2, \ldots, n+k_{r}$ so that to each $i, 1 \leq i \leq k_{r}$, there corresponds a $j \neq i, 1 \leq j \leq k_{r}$ for which the g.c.d. $(n+i, n+j)$ has at least r distinct prime factors.

Finally an old problem of P. Erdös. Take $k=n$ in (0) and (5) and determine or estimate max a_{1}. It was conjectured that

$$
i \quad \max a_{1}>\frac{n}{e}(1-\varepsilon) \quad ?
$$

for every $\varepsilon>0$ and $n>n_{0}(\varepsilon)$. Selfridge and Straus believe that they can prove that max $a_{1}>n / 3$ for $n>n_{0}$. It is easy to see that

$$
\max a_{1}<\frac{n}{e}-\frac{c n}{\ln n}
$$

Erdõs, Selfridge and Straus recently proved that

$$
\max a_{1}=\frac{n}{e}+o(n)
$$

Rroef of Theorem 1. We consider the identity

$$
\begin{equation*}
\binom{2 n}{n} n!=(n+1)(n+2) \ldots(2 n) \tag{9}
\end{equation*}
$$

and notice that the problem of expressing $n!$ as the product of distinct factors in the interval $[n+1,2 n]$ is exactly complementary to that of expressing $\binom{2 n}{n}$ in a similar way. Now $\binom{2 n}{n}$ contains all the primes in this interval, so we will concern ourselves only with those which are less than n (and hence less than $2 n / 3$). For example

$$
\binom{28}{14}=(23 \times 19 \times 17) \times 5^{2} \times 3^{3} \times 2^{3}
$$

and the product $5^{2} \times 3^{3} \times 2^{3}$ can be arranged as $15 \times 18 \times 20$, the product of three numbers in the interval. So

$$
14!=16 \times 21 \times 22 \times 24 \times 25 \times 26 \times 27 \times 28
$$

There are two common circumstances in which the method shows that we are doomed to failure. For example, if $n=20$,

$$
\left[\begin{array}{l}
40 \\
20
\end{array}\right]=(37 \times 31 \times 29 \times 23) \times 13 \times 11 \times 7 \times 5 \times 3^{2} \times 2^{2}
$$

The primes between $2 n / 3$ and $n / 2$ (here 13 and 11) have to be paired with 2 or 3. If we form the smallest possible products, $13 \times 2,11 \times 2$ and then 7×3, we are left with 5×3 which is too small. So if there is a solution, this part of the calculation contains less than four factors. But if we form the Zargest possible products, $13 \times 3,11 \times 3$ and 7×5, we are still left with 2^{2}, so all attempts produce a number of factors strictly between 3 and 4 . We denote this situation by the symbol $3+$.

On the other hand, look at the case $n=81$.

$$
\binom{162}{81}=(157.151 \ldots 83) 53.47 .43 \cdot 41.31 \cdot 29 \cdot 23 \cdot 17.11 \cdot 7^{2} \cdot 5.2^{3}
$$

Here we have to pair the primes $53,47,43$ and 41 with a 2 or a 3 and there are only three such factors available. We denote this situation by writing $4>3$. Nore generally, even where there are sufficient factors 2 and 3 , we may run out of the next batch of small factors. If $n=121$ we have

$$
\binom{242}{121}=(241.239 \ldots 127) 79.73 \cdot 71.67 \cdot 61 \cdot 47 \cdot 43 \cdot 41 \cdot 31 \cdot 13 \cdot 5^{2} \cdot 2^{5}
$$

Here the five primes $79, \ldots, 61$ need a multiplier 2 or 3 , while $47,43,41$ need a multiplier 3,4 or 5 and 31 needs a multiplier $4,5,6$ or 7 . There are enough twos for the first five, but only two factors 5 with which
to accomodate the next three and 31. We write this $9>7$ (i.e.
$5+3+1>5+2)$.

Table 1 shows the values of $n, 1 \leq n \leq 242$, for which there are no solutions, together with one of these two reasons. For $n \geq 243$ there is always a shortage of small factors.

| 1 | | 34 | $3+$ | 75 | $7+$ | 108 | $9>6$ | 137 | $7>6$ | 162 | $6>4$ | 184 | $9>7$ | 211 | $11>9$ |
| :--- |
| 2 | | 36 | $3>2$ | 79 | $7+$ | 109 | $10>8$ | 138 | $10+$ | 163 | $6>5$ | 185 | $14+$ | 212 | $11>10$ |
| 4 | $0+$ | 37 | $3+$ | 80 | $7+$ | 110 | $8>7$ | 139 | $10+$ | 164 | $7>5$ | 186 | $9>8$ | 213 | $16+$ |
| 5 | $1+$ | 38 | $3+$ | 81 | $4>3$ | 111 | $10>8$ | 140 | $10>9$ | 165 | $7>5$ | 190 | $13+$ | 214 | $16+$ |
| 7 | $1+$ | 41 | $4+$ | 82 | $7+$ | 112 | $5>3$ | 14 | $10+$ | 166 | $6>5$ | 192 | $7>3$ | 216 | $9>8$ |
| 9 | $1+$ | 42 | $3+$ | 83 | $8+$ | 113 | $10>9$ | 142 | $9+$ | 167 | $12>10$ | 193 | $7>4$ | 217 | $12>10$ |
| 10 | $0+$ | 45 | $4+$ | 84 | $7+$ | 114 | $10>8$ | 143 | $9+$ | 168 | $6>5$ | 195 | $9>8$ | 220 | $14+$ |
| 12 | $1+$ | 46 | $4+$ | 85 | $7+$ | 115 | $9>8$ | 144 | $9>8$ | 169 | $9>8$ | 196 | $6>5$ | 225 | $9>7$ |
| 13 | $2+$ | 49 | $5+$ | 87 | $7+$ | 118 | $10+$ | 147 | $8>7$ | 170 | $10>8$ | 197 | $10>9$ | 226 | $8>7$ |
| 16 | $1+$ | 50 | $5+$ | 88 | $7+$ | 119 | $10+$ | 148 | $8>7$ | 171 | $7>6$ | 198 | $7>5$ | 227 | $12>11$ |
| 17 | $2+$ | 53 | $5+$ | 91 | $7+$ | 120 | $5>4$ | 150 | $11+$ | 172 | $7>5$ | 199 | $7>6$ | 228 | $9>8$ |
| 19 | $3+$ | 54 | $4+$ | 92 | $7+$ | 121 | $9>7$ | 151 | $12+$ | 173 | $10>9$ | 200 | $7>5$ | 231 | $15+$ |
| 20 | $3+$ | 57 | $3+$ | 93 | $7+$ | 128 | $7>6$ | 152 | $10>9$ | 174 | $7>6$ | 201 | $7>5$ | 232 | $12>11$ |
| 23 | $3+$ | 58 | $3+$ | 96 | $7+$ | 129 | $9+$ | 153 | $11>9$ | 175 | $10>7$ | 202 | $6>5$ | 234 | $14>13$ |
| 24 | $2+$ | 62 | $6+$ | 97 | $7+$ | 130 | $6>5$ | 154 | $11>8$ | 176 | $10>7$ | 204 | $12>11$ | 235 | $15+$ |
| 26 | $3+$ | 65 | $6+$ | 100 | $6+$ | 132 | $9>8$ | 155 | $11>9$ | 177 | $9>7$ | 205 | $15+$ | 236 | $15+$ |
| 27 | $2+$ | 66 | $5+$ | 101 | $7+$ | 133 | $10>9$ | 156 | $9>7$ | 178 | $9>8$ | 206 | $15+$ | 237 | $15+$ |
| 30 | $3+$ | 70 | $5+$ | 102 | $7+$ | 134 | $10+$ | 157 | $9>8$ | 180 | $9>6$ | 208 | $10>8$ | 240 | $15>14$ |
| 31 | $3+$ | 71 | $6+$ | 105 | $9+$ | 135 | $7>6$ | 160 | $7>6$ | 181 | $9>7$ | 209 | $11>10$ | 241 | $17+$ |
| 33 | $4+$ | 72 | $6+$ | 106 | $8+$ | 136 | $5>4$ | 161 | $10>8$ | 182 | $9>8$ | 210 | $11>8$ | 242 | $17+$ |

Table 1. Values of n for which there are no solutions, and why.

Table 2 gives the complementary set of values of n for which there are solutions, together with the numbers of solutions. There are no solutions if $n>329$. For $n=239$ there is a record number of 92967 solutions, accounting for more than threc-quarters of the total of 119126 solutions.

3	1	25	2	47	11	63	7	78	1	104	36	127	10	187	$1!$	219	648
6	1	28	1	48	10	64	2	86	18	107	6	131	165	188	1983	221	6
8	1	29	2	51	4	67	1	89	64	116	10	145	12	189	6	222	313
11	1	32	2	52	4	68	35	90	4	117	2	146	42	191	6	223	13855
14	1	35	1	55	1	69	5	94	11	122	237	149	302	194	20	224	360
15	1	39	2	56	3	73	12	95	103	123	28	158	32	203	3255	229	54
18	3	40	1	59	2	74	2	98	6	124	1	159	338	207	9	230	288
21	1	43	3	60	8	76	6	99	16	125	97	179	120	215	696	233	1419
22	1	44	17	61	1	77	108	103	8	126	30	183	3	218	882	238	392

Table 2. Values of n for which there are solutions, and numbers of solutions.

Pxeef ef Theorem 2. We start from the same identity (9) and multiply each odd primepower factor of $\binom{2 n}{n}$ by the appropriate power of two to bring it into the interval $[n+1,2 n]$. These products will all be distinct and we may cancel them with the corresponding members of $(n+1)(n+2) \ldots(2 n)$. It remains to deal with the extra power of two, say $2^{m}=2^{k q+r}$ where $n+1 \leq 2^{k} \leq 2 n$ and $|r| \leq k / 2$. This may be regarded as q factors 2^{k} which can serve as q of the a_{i} (since condition (2) no longer requires them to be distinct) and 2^{r} remaining to be disposed of. For large enough n it is always possible to dispose of r twos by multiplying some of the $[n+1,2 n]$ by suitable factors. For example, if $n=20$,

$$
\begin{gathered}
\binom{40}{(20} \times(20)!=21 \times 22 \times 23 \times \ldots \times 39 \times 40 \\
\left(37.31 .29 .23 .13 \cdot 11 \cdot 7 \cdot 5 \cdot 3^{2} \cdot 2^{2}\right)(20)!=21 \cdot 22 \cdot 23 \ldots \ldots 39.40 \\
(37.31 \cdot 29.23 \cdot 26 \cdot 22 \cdot 28 \cdot 40 \cdot 36)(20)!=(21 \cdot 22 \cdot 23 \ldots 39 \cdot 40) 2^{7} \\
(20)!=21.24 \cdot 25 \cdot 27 \cdot 30 \cdot 32 \cdot 33 \cdot 34 \cdot 35 \cdot 38 \cdot 39.2^{7}
\end{gathered}
$$

Write 2^{7} as 32×2^{2} and absorb the 2^{2} by multiplying 21 by $4 / 3,24$ by $3 / 2$, 25 by $8 / 5$ and 32 by $5 / 4$ giving

$$
(20)!=28 \cdot 36.40 \cdot 27 \cdot 30 \cdot 40 \cdot 33 \cdot 34 \cdot 35 \cdot 38 \cdot 39 \cdot 32
$$

Of course, there is at least one repetition, 40 , since we know there is no
solution for $n=20$ under condition (1).
To be sure of finding solutions for large enough n we will restrict ourselves to multipliers $3 / 2$ and $4 / 3$ if twos need to be inserted, or to $2 / 3$ and $3 / 4$ if r is negative and twos need to be deleted. We illustrate with the example $n=110$:
(10) $\binom{220}{110}=(211.197 \ldots 113) 73.71 \cdot 67 \cdot 61.59 \cdot 43 \cdot 41 \cdot 37 \cdot 31 \cdot 29 \cdot 23 \cdot 19 \cdot 13 \cdot 11 \cdot 7 \cdot 5 \cdot 3 \cdot 2^{5}$ so we cancel the primes between 110 and 220 from both sides of the equation

$$
\begin{equation*}
\binom{220}{110} 110!=111.112 \ldots 220 \tag{11}
\end{equation*}
$$

and multiply the remaining odd prime(power)s, $73,71, \ldots, 3$, in (10) by the appropriate powers of two to bring them into the interval [111, 220]:
(12) $146,142,134,122,118,172,164,148,124,116,184,152,208,176,112,160,192$.

Then we delete these numbers from the right of equation (11). This uses $1+1+1+1+1+2+2+2+2+2+3+3+4+4+4+5+6=44$ twos and these, apart fron the five twos in (10), must be replaced. Write 2^{44-5} as $\left(2^{7}\right)^{5} 2^{4}$ or $\left(2^{7}\right)^{6} 2^{-3}$. In the first case we include five factors 128 and insert the other four twos by multiplying $111,117,123$ and 129 by $4 / 3$ (i.e. replacing them by $148,156,164$ and 172) and $114,120,126$ and 132 by $3 / 2$ (replacing them by $171,180,189$ and 198). In the second case we include six factors 128 and delete the excess of three twos by multiplying 207,201 and 195 by $2 / 3$ (becoming 138,134 and 130) and 204,180 and 168 by $3 / 4$ (becoming 153,135 and 126). Note that 192 occurs in the list (12) which has been deleted, and is not available for multiplication by $3 / 4$.

The first case multiplies odd multiples of three by $4 / 3$ and multiples of six by $3 / 2$. These must be chosen from the interval $[n+1,4 n / 3]$ and $\lfloor n / 18\rfloor$ of each type of number is available with the possible exception of just one multiple of six which may have been deleted. The second case multiplies odd multiples of three by $2 / 3$ and multiples of twelve by $3 / 4$. These must
be chosen from the interval $[4(n+1) / 3,2 n]$ and $[n / 18 \mid$ multiples of twelve are available, again with a possible exception (192 in the example)
which may have been deleted when disposing of the power of three from $\binom{2 n}{n}$. Notice that we can alternatively absorb the multiplier $3 / 4$ in a number which is four times a prime in the interval $[2 n / 5, n / 2]$ because such primes do not occur in $\binom{2 n}{n}$. In the example, 188 and 212 could have served in place of two of 204,180 and 168.

In any case, n will certainly be large enough if $|n / 18|-1 \geq|r|$ where we chose $|r| \leq\lfloor k / 2 \mid$ and $k=\lfloor 1 b(2 n) \mid$ where " 1 b " is the binary (base 2) logarithm. There are enough numbers to absorb the multipliers if $n \geq 72$ and smaller values of n can easily be checked. We need consider only those entries which occur in Table 1.
$4!1+\left(2\right.$ factors $\geq 5^{2}$ are too big, 1 factor $\leqslant 8$ is too small)
5! $2+\left(6^{3}\right.$ too big, 10^{2} too smal1)
7! $3+$ (10.14 must occur, then 8^{2} is too big, 14 is too small)
$9!=10.12^{2} \cdot 14.18$, or, more compactly, $12^{3} \cdot 14.15$
10! 5+ (14 must occur, then $12^{2} 15^{2} 16$ too big, $18^{2} 20^{2}$ too small)
$12!=14 \cdot 15^{2} \cdot 16 \cdot 18 \cdot 22 \cdot 24=14 \cdot 15 \cdot 16 \cdot 18^{2} \cdot 20 \cdot 22=15^{2} \cdot 16^{2} \cdot 18 \cdot 21 \cdot 22$
$13!7+\left(22.26\right.$ must occur, then $14.15^{2} \cdot 16.18 x$ is too big if $x>12$, while $21.24^{2} 25 y$ is too small if $y<36$)

For $n=1,2,4,5,7,10$ and 13 there are no solutions. There are solutions for the entries not in Table $1: 3!=6,6!=8.9 .10,8!=12.14 .15 .16$, $11!=12 \cdot 18 \cdot 20^{2} .21 \cdot 22=14.18^{2} \cdot 20^{2} \cdot 22=15 \cdot 16 \cdot 18 \cdot 20 \cdot 21 \cdot 22 ;$ for $n=9$ and 12 given above, and it is easy to construct solutions for $n>13$ up to where the method described earlier takes over.

Preof of Theorem 3. Recall that $f(n)=\min a_{k}$ subject to (0) and (3). We first establish the lower bound

$$
\begin{equation*}
2 n+\frac{c_{1} n}{l_{n} n}<f(n) . \tag{13}
\end{equation*}
$$

Let the standard form for $n!$ be $\prod_{p}^{a p}$ where the product is over all primes not exceeding n. For the primes between $n / 2$ and $2 n / 3$ the exponent $a_{p}=1$, because $2 p>n$. so $2 p$ and $3 p$ cannot both be among the a_{i}.
Suppose that β_{2} multiples of 2 and β_{3} multiples of 3 do not occur as a_{i}, i.e. these are missing from the product

$$
\begin{equation*}
\prod_{i=1}^{f(n)-n}(n+i) \tag{14}
\end{equation*}
$$

Then, by the prime number theorem,

$$
\begin{equation*}
\beta_{2}+\beta_{3}=n(1+0(1)) / 6 \ln n \tag{15}
\end{equation*}
$$

the number of primes $p, n / 2<p<2 n / 3$. Let γ_{2}, γ_{3} be the exponents of 2 and 3 occurring in the product (14) so that

$$
\begin{equation*}
\gamma_{2}-\beta_{2} \leq \alpha_{2} \quad \text { and } \quad \gamma_{3}-\beta_{3} \leq \alpha_{3}, \tag{16}
\end{equation*}
$$ the exponents of 2 and 3 in $n!$ It is well known that

$$
\begin{align*}
& \alpha_{2}=n+O(\ln n), \quad \alpha_{3}=\frac{1}{2} n+O(\ln n) \tag{17}\\
& \gamma_{2}=f(n)-n+O(\ln n), \quad \gamma_{3}=\frac{1}{2}(f(n)-n)+O(\ln n)
\end{align*}
$$

and (15), (16) and (17) yield (13) with c_{1} arbitrarily close to $1 / 9$.
To obtain the upper bound

$$
\begin{equation*}
2 n+\frac{c_{2} n}{\ln n}>f(n) \tag{18}
\end{equation*}
$$

we return to the identity (9) and note that $\binom{2 n}{n}=\Pi p^{\alpha}$, where the product is taken over some of the primepowers less than $2 n$. The primepowers between n and $2 n$ may be cancelled from (9) and the primepowers less than n can be multiplied by appropriate powers of two, as in the proof of Theorem 2, and also cancelled from (9) leaving an identity

$$
n!=2^{m} \Gamma(n+i)
$$

where the product runs over most of the values of i from 1 to n. The power of 2 is absorbed by doubling the first m values of $n+i$, so that $f(n)<2 n+2 m(1+o(1))$ and it remains to estimate m.

Write $z=r(1+o(1)) / \ln n$, so that the prime number theorem asserts that z is the number of primes less than n. There are no primes $p, 2 n / 3<p<2 n$, which divide $\binom{2 n}{n}$. The number of prime divisors of $\binom{2 n}{n}$ between $n / 2$ and $2 n / 3$ is $z / 6$. There are none between $2 n / 5$ and $n / 2$, and generally none between $2 n /(2 w+1)$ and n / ω, while the number between $n /(\omega+1)$ and $2 n /(2 \omega+1)$ is $z /(\omega+1)(2 w+1)$. The power of 2 needed to bring such primes into the interval $[n+1,2 n]$ is 2^{y} where $w+1 \leq 2^{y}<2 w+1$, or $y=|\underline{1} b(2 w+1)|$ and the total number of twos required is at most

$$
\sum_{w=1}^{\infty}|1 b(2 w+1)| z /(w+1)(2 w+1) .
$$

That is

$$
m \leq\left[\left(\frac{1}{2.3}\right)+\left(\frac{2}{3.5}+\frac{2}{4.7}\right)+\left(\frac{3}{5.9}+\frac{3}{6.11}+\frac{3}{7.13}+\frac{3}{8.15}\right)+\left(\frac{4}{9.17}+\ldots\right] z\right.
$$

and (18) follows for sufficiently large n with $c_{2}=1.7$, since the series in the bracket has sum less than 0.85 .

REFERENCES

1. M. Beeler, R.W. Gosper and R. Schroeppel, HAKMEM 239, M.I.T. Artificial Intelligence Memo 239, 1972:02:29
2. Alfred Brauer, On a property of k consecutive integers, Bull. Amer. Math. Soc. $\underset{\sim}{47}(1941) 328-331$; MR 2,248.
3. P. Erdös, Some problems in number theory, Carleton Coordinates, Math. Dept., Carleton Univ., Ottawa, Canada, April, 1977
4. P. Erdós and R.L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Monographies de l'Enseignement Math. No. 28, Geneva, 1980.
5. P. Erdós and J.L. Selfridge, Some problems on the prime factors of consecutive integers, Illinois J. Math. 11 (1967)428-430.
6. P. Erdös and G. Szekeres, Some number theoretic problems on binomial coefficients, Austral. Math. Soc. Gaz. L(1978)97-99; MR 8Qes10010.
7. Richard K. Guy, Unsolved Problems in Number Theory, Springer, New York, 1981, problem B 28.
8. S.S. Pillai, On m consecutive integers I, Proc. Indian Acad. Sci. Sect. A $\underset{\sim}{11}(1940) 6-12$; MR $\underset{\sim}{1,199 ; ~ I I, ~ i b i d . ~} 11(1940) 73-80$; MR $\underset{\sim}{1}, 291$; III ibid. $13(1941) 530-533$; MR 3,66 ; IV Bull. Calcutta Math. Soc. 36(1944)99-101; MR $\underset{\sim}{6}, 170$.
