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ANOTHER PROPERTY OF 239 AND SOME RE LiTED QUESTIONS

P . Erdős, R . K. Guy and J . L. Selfridge

There are many questions that we can ask about the expression

of a factorial as the product of k factors :

(0)

	

r! = a 1a 2- ak

We might assume that the factors lie in the interval [n+1,2n] and

that they are either distinct or not :

(1)

	

n < a l < a2 < . . .< ak ~ 2n

or

(2)

	

n < a~

	

~. . .~ ak - 2n

On the other hand, we might require that the ai be distinct, but

remove the upper bound and perhaps relax the lower bound as well :

(3)

	

n < a l < a2 < . . .< ak

or

(4)

	

1 < a l < a 2 < . . .< ak

or we might only require that the ai be positive integers :

. < ak

In a previous note [3) it was proved that (1) leas only a finite

number of solutions . Here we enumerate all solutions and prove

Theorem 1 . There are no solutions of (0) and (1) for n_ > 239 .
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We also outline a proof of

Theorem 2 . Solutions for (0) and (2) can be found for all n > 13 .

Finally we make assumption (3) and denote the minimum value of a k

by f(rt), i .e . f(n) is the smallest integer for which n! can be rep-

resented as the product of distinct integers greater than n, the

largest of which is f(n) . We then prove

Th ore3. There are constants 0 < c l < ez such that

c ln

	

c 2n
2n +-< f(n) < 2n +-

lnn

	

Inn

for all sufficiently large n .

No doubt there is a constant e such that

and perhaps this can be shown by a more careful application of our

method .

S e othe

	

ue lions . The problem of determining min (a k -a i ) is

also of interest . Assume k > 1 (else ak = n!) ; then it seems likely

that ak - a,> en under condition (4) or (5), i .e . whether we assume

the ai to be distinct or not . At present such a theorem seems far

beyond our means . The real difficulty occurs when k is small ; in

particular when k = 2 . It has never been proved that

has no solutions forr n > 3 . In fact

n! = vCL (u+1) s

seems to have no solution larger than 4! = 2 3 3 . A long outstanding

conjecture is that

f(n) = 2n + lnnr + o(ln n)

n! = a 1 (a 1+1)

n! _ (x-1)(w+l)
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has no solution for n > 7 .

We determine min (a k-a l ) for small values of n under each of the

conditions (4) and (5), i .e . with and without the assumption that

the a . are distinct . Perhaps the general answers, under assumptions

(4), (2) and (5) are respectively

i.

	

min(a k--a

	

_ ?n + o(n)

	

o

s

	

min(ak-a l ) = In + o(n)

Under condition (3) with k > 1 we believe that, for sufficiently large

n,

so that

min(ak-a l ) = n + o(n)

	

v

If .we assume that a l f- n, then it is easy to see that

(6)

	

min(ak-a l ) > n - C In n

by looking at the highest power of two which divides n! If 2o lln!

then a > n - (In n)/(In 2) . On the other hand if 2si1a k !/(a l -1)a

	

then

a < 6 < ak- a l + c In ak and (6) follows immediately . Moreover (6)

is not far from being best possible, since if n = s! - 1, then

n+1)!

	

n-s+1

	 l
ak - a 1

	

' t

	

In ln n

Is it true, under condition (4) with k > 1, that

(7)

	

min(ak-a I ) = n - 2

for infinitely many values of n? It would be nice to decide this

245



elementary question . For 4 < n < 16, min(ak-a l ) < n - 2, while for

n = 16 the equality (7) holds . In fact it semms certain that when

n = 2v is a large enough power of two, then (7) holds for the following

reason . Unless one of the aí is a multiple of
2V+1

we must have

ak - a l ? n - 2 . if one of the aí is a multiple of 2v+1 we must have

n 1+E
we can prove that ak - a l > n + en/Inna l > n . Now if a l <

and although we cannot yet handle the case a l > 7 ,1+` it is very

likely that it gives smaller values of ay - a l .

Suppose that the aí are distinct, that k > 1 and that a 1a2 . . . ak /na

is an integer with no prime factors greater than n . Is it true that

min(ak-a 1 ) < n - 2

Perhaps this can be proved, since an old and simple result says that

(2n)!/n!(n+3)!is an integer for almost all n .

If we only assume (S) then clearly every prime p -1 n must have a

multiple pq such that al -- pq I ak . This condition is not sufficient,

but we can prove that it does suffice provided ak < Cn and n is

sufficiently large, n > n o (C) . Because the condition ak < Cn
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can no

doubt be very much weakened (we don't know by how much) we do not

give the lengthy proof .

We examined a problem which we find quite interesting . Let

p 1 < p2 < , ., < pZ be a set of Z primes . Denote by A(pl, . . .,PZ)

the smallest integer such that every interval of length A contains

Z distinct integers a í s 0 (mod pí ), 1 f i -n Z . It seemed to us

that for every C there is a set of Z = Z(C) primes with A(pi, . . .,p,)

This problem can be specialized in the following ways .

> Cp l .



Let h l (r,,n) be the smallest integer for which every prime p - rn

has a multiple among the numbers m + i,l i

	

h l , i .e . h l is the

least integer for which

i 1

	

p divides n h7 (r+ti)
p-7'

	

y = 1

And let h 2 (m,n) be the smallest integer for which every prime power

pa < n has a multiple among the m + i, 1

	

i

	

Y . Finally, let

h 3 (m,n) be the smallest integer such that

nn

	

divides

	

I I

	

(M +i )
2=1

Then it is easy to see that h l (m,n) -- h 2 (m,n) n h 3 (m,n) . Put

H
,7
.(m,n) =

Lu-m
min h

j
(u,n),

	

1,2,3 .

For fixed n, as m increases, each of the HJ (m,n) decreases (from

near n) to 1 . We wí11 investigate these functions in a later paper,

if we live . Here is a typical problem .

Let t be the shortest interval < n(l+e) which contains a multiplen

of each prime <_ n . (This definition is deliberately vague to allow for

possible irregularities in the distribution of primes) . Determine or

estimate the smallest m for which H.(m,n) < tri . We can show that tnís

m is greater than

	

and that if one assumes conjectures about the

distribution of primes that are probably true but hopeless to prove,

then m > n 2 /(lnn)c .

Let 1 = u l < ua < . . . be the sequence of integers all of whose

prime factors are < n, let ur be the smallest u i greater than m and

let Z be the smallest integer for which every prime _`_ n divides

ri i=pur+t .
We conjecture that the equation
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CL

(8)

	

.! = r-1
Z

	

It J .

	

, u

	

- 0

is usually solvable, but if we insist that each a . is 0 or 1, then
J

(8) is not usually solvable . Note that for small values of m,

h
1
(m,n) = ur+Z - r

	

i .e . for each prime p - n there is an i < h (m,n)

with n + i

	

0(raodD) . Determine the least m = m(n) for which

h1(m,n) < ur+? -
m . E .g, if r. = 10, to see that m(10) = 30 we note

that h 1 (30,10) = 5 (every prime less than ten divides one of 31,32,33,

34,35) but ur+Z = 36 (not 35) since 33 has a prime factor 11 and so

is not a ui and it is easy to check that h l (m,10) = ur+Z - , for m < 30 .

It should be possible to prove that m(n) is of order about n 2 .

For most values of m, the values of hj (m,n) are not much smaller

than n since usually there is a prime very close to n which has a

multiple which is very little smaller than m . In fact, as x -> -,

1 S-

	

h j (m,n) -> aj (n) , j = 1,2,3
X m=1

and it is not hard to prove that a
J

. (n) /n --, 1as n - - . Can a
J
. (n)

be determined explicitly?

To conclude this collection of problems we formulate a few

related questions and conjectures . Write

B(n,k) = rli1 (n+i) .

It seems certain that for k > 1, Z > 1, m ? n + k, the equation

B(n.,k) = B(m,Z) has only a finite number of solutions (in fact very

few) . Unfortunately, even special cases of this conjecture are usually

quite intractable .

A well known theorem (2,a] of Yillai-Szekeres-Brauer states

that if 1 = Z 16 then. Z consecutive integers always include one

which is relatively prime to the others and this is false for every
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Z > lb . For Z = 17 the integers 2184,2185, .,2200 fore; the simplest

counterexample . In a previous paper [5] we found an example of an

interval [a,b] where a and b are relatively prime and every a + i

0 -- i fE b - a, has a common factor with the product ab . We do not

know for which values of b - a this is possible . We also asked the

following question which is probably very difficult . Is it true that

for every r there are kI consecutive integers n+ 1,n + 2, . . ., n + kr

so that to each í, 1 -- i -- kr , there corresponds a j # i, 1 n j

	

kr

for which the g .c .d . (n+i,n+j) has at least r distinct prime factors .

Finally an old problem of P . Erdős . Take k = n in (0) and

and determine or estimate max a l . It was conjectured that

z

	

max a, > é(1-E)

for every E > 0 and n > n 0 (E) . Selfridge and Straus believe that they

can prove that max a, >n/3 for n > n o . It is easy to see that

Erdős, Selfridge and Straus recently proved that

P o f of Theorem 1 . We consider the identity

(9)

n

	

enmax a 1 ` e lnnn

n
max a, = e + o(n) .

(nn)n! _ (n+l) (n+2) . . . (2n)

and notice that the problem of expressing rz! as the product of distinct

factors in the interval fn+1,2n] is exactly

expressing ( 2nn ) in a similar way . Now 2n( n )

this interval, so we will concern ourselves

less than n (and hence less than 2r./3) . For example

20

(5)

complementary to that of

contains all the primes in

only with those which are



~28

14)
_ (23x19x17) x

250

x 33 x 23

and the product 5` x 3 3 x 2 3 can be arranged as 15 x lax 20, the product

of three numbers in the interval . So

14? = 16 x 21 x 22 x 24 x 25 x 26 x 27 x 28 .

There are two common circumstances in which the method shows that

we are doomed to failure . For example, if n = 20,

401
20J - (3 7x31x29x23) x 13 x I I x 7 x 5 x 3 2 x 22

The primes between 2n/3 and n/2 (here 13 and 11) have to be paired with

2 or 3 . If we form the smallest possible products, 13x 2, 71x 2 and

then 7x 3, we are left with 5- 3 which is too small . So if there is a

solution, this part of the calculation contains less than four factors .

But if we form the Oraest possible products, 13 x 3, 11 x 3 and 7 x 5,

we are still left with 2 2 , so all attempts produce a number of factors

strictly between 3 and 4 . We denote this situation by the symbol V .

On the other hand, look at the case n = 81 .

( 81 1
l

	

= (157 .151 . . .83)53 .47 .43 .41 .31 .29 .23 .17 .11. .7 ? .5 .2 3

Here we have to pair the primes 53,47,43 and 41 With a 2 or a 3 and

there are only three such factors available . We denote this situation

by writing 4> 3 . More generally, even where there are sufficient factors

2 and 3, we may run out of the next batch of small factors . If

n = 121 we have

242
121

	

= (241 .239 . . .127)79 .73 .71 .67 .61 .47 .43 .41 .31 .13 .5 - .2'

Here the five primes 79, . . .,61 need a multiplier 2 or 3, while 47,43,41

need a multiplier 3,4 or 5 and 31 needs

	

multiplier 4

	

or 7 . There

are enough twos for the first five, but only Wo factors 5 with which



to accommodate the next three and 31 . We write this 9>7 (i .e .

5+3+ 1 > 5+2) .

Table 1 . Values of n for which there are no solution,, and why .

Table 2 gives the complementary set of values of n for which there

are solutions, together with the numbers of solutions . There are no

solutions if n> 329 . For n = 239 there is a record number of 92967 solutions,

accounting for more than three-quarters of the total of 119126 solutions .
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'fable 1 shows the values of r., 1 - n < 242, for wh ; ch there are no

solutions, together with one of these two reasons . For n l 243 there

is always a shortage of small factors .

1 34 3+ 75 7+ 108 9>6 137 7>6 162 6>4 184 9>7 211 11>9

2 36 3>2 79 7+ 109 10>8 138 10+ 163 6>5 IS5 14+ 212 11>10

4 0+ 37 3+ 80 7+ 110 8>7 139 10+ 164 7>5 186 9>8 213 16+

5 1+ 38 3+ 81 4>3 111 10>8 140 10>9 165 7>5 190 13+ 214 16+

7 1+ 41 4+ 82 7+ 112 5>3 141 10+ 166 6>5 192 7>3 216 9>8

9 1+ 42 3+ 83 S+ 113 10>9 142 9+ 167 12>10 193 7>4 217 12>10

10 0+ 45 4+ 84 7+ 114 10>8 1143 9+ 168 6>5 195 9>8 220 14+

12 1+ 46 4+ 85 7+ 115 9>8 144 9>8 169 9>8 196 6>5 225 9>7

13 2+ 49 5+ 87 7+ 118 10+ 147 8>7 170 10>8 197 10>9 226 8>7

16 1+ 50 5+ 88 7+ 119 10+ 148 8>7 171 7>6 198 7>5 227 12>11

17 2+ 53 5+ 91 7+ 120 5>4 150 11+ 172 7>5 199 7>6 228 9>8

19 3+ 54 4+ 92 7+ 121 9>7 151 12+ 173 10>9 200 7>5 231 15+

20 3+ 57 3+ 93 7+ 128 7>6 152 10>9 174 7>6 201 7>5 232 12>11

23 3+ 58 3+ 96 7+ 129 9+ 153 11>9 175 10>7 202 6>5 234 14>13

24 2+ 62 6+ 97 7+ 130 6>5 154 11>8 176 10>7 204 12>11 235 15+

26 3+ 65 6+ 100 6+ 132 9>8 155 11>9 177 9>7 205 15+ 236 15+

27 2-1 66 5+ 101 7+ 133 10>9 156 9>7 178 9>8 206 15+ 237 15+

30 34 70 5+ 102 7+ 134 10+ 157 9>8 180 9>6 208 10>8 240 15>14

31 3+ 71 6+ 105 9+ 135 7>6 160 7>6 181 9>7 209 11>10 241 17+

33 4+ 72 6+ 106 8+ 136 5>4 161 10>8 182 9>8 210 11>8 242 17+



Table 2 . Values of n for which there are solutions, and numbers of solutions .

off f Theme 2 . We start from the same identity (9) and multiply

each odd primepower factor of ~r,I by the appropriate power of two to

bring it into the interval [n.+1,2n] . These products will all be distinct

and we may cancel them with the corresponding members of (n+l) (n+2) . . .(2n) .

It remains to deal with the extra power of two, say 2m= 2kq+r where
n+1- 2k - 2n and IrI k/2 . This may be regarded as q factors 2k which can

serve as a, of the a (since condition (2) no longer requires them to be

distinct) and 2r remaining to be disposed of . For large enough n it is

always possible to dispose of r twos by multiplying some of the [n+1,2n]

by suitable factors . For example, if n = 20,

1 401 x (20) ! = 21 x 22 x 23 x . . . x 39 x 40k20

(37 .31 .21) .23 .13 .11 .7 .5 .32 .22)(20)! = 21 .22 .23	39 .40

( 3 7 .31 .29 .23 .26 .22 .28 .40 .36 )(20)! _ (21 .22 .23	39 .40)2

(20)! = 21 .24 .25 .27 .30 .32 .33 .34 .35 .38 .39 .2

Write 27 as 32x 22 and absorb the 22 by multiplying 21 by 4/3, 24 by 3/2,

25 by 8/5 and 32 by 5/4 giving

(20)! = 2 8 .36 .40 .27 .30 .40 .33 .34 .35 .38 .39 .32

Of course, there is at least one repetition, 40, since we know there is no

252

3 1 25 2 47 11 63 7 78 1 104 36 127 10 187 1! 219 648
6 1 28 1 48 10 64 2 86 18 107 6 131 165 188 1983 221 6
8 1 29 2 51 4 67 1 89 64 116 10 145 12 189 6 222 313

11 1 32 2 52 4 68 35 90 4 117 2 146 42 191 6 223 13855
14 1 35 1 55 1 69 5 94 11 1'~2 237 149 302 194 20 224 360
15 1 39 2 56 3 73 12 95 103 123 28 158 32 203 3255 229 54
18 3 40 1 59 2 74 2 98 6 124 1 159 338 207 9 230 288
21 1 43 3 60 8 76 6 99 16 125 97 179 120 215 696 233 1419
22 1 44 17 61 1 77 l03 103 8 126 30 183 3 218 882 238 392

239 92967



solution for n = 20 under condition (1) .

To be sure of finding solutions for large enough n we will restrict

ourselves to multipliers 3/2 and 4/3 if twos need to be inserted, or to

2/3 and 3/4 if r is negative and twos need to be deleted . We illustrate

with the example n = 110 :

(10) (110)= (211 .197 . . . 113) 73 .71 .67 .61 .59 .43 .41 .37 .31 .29 .23 .19 .13 .11 .7 .5 . 3 .2 510

so we cancel the primes between 110 and 220 from both sides of the equation

(11)

	

122010 110! = 111 .112 . . .220

and multiply the remaining odd prime(power)s, 73,71, . . .,3, in (10) by the

appropriate powers of two to bring them into the interval [111,220) :

(12)

	

146,142,134,122,118,172,164,148,124,116,184,152,208,176,112,160,192 .

Then we delete these numbers from the right of equation (11) . This uses

1+1+1+1+1+2+2+2+2+2+3+3+4+4+4+5+6 = 44 twos and these, apart iron the five

twos in (10), must be replaced . Write 244-5 as (2 7 ) 5 2 4 or (27) 6 2-3 .

In the first case we include five factors 128 and insert the other four

twos by multiplying 111,117,123 and 129 by 4/3 (i .e . replacing them by

148,156,164 and 172) and 114,120,126 and 132 by 3/2 (replacing them by

171,180,189 and 198) . In the second case we include six factors 1.28 and

delete the excess of three twos by multiplying 207,201 and 195 by 2/3

(becoming 138,134 and 130) and 204,180 and168 by 3/4 (becoming 153,135

and 126) . Note that 192 occurs in the list (12) which has been deleted, and

is not available for multiplication by 3/4 .

The first case multiplies odd multiples of three by 4/3 and

six by 3/2 . These must be chosen from the interval [n+1,4n/31 and In/18J

of each type of number is available with the possible exception of just

one multiple of six which may have been deleted . The second case multiplies

odd multiples of three by 2/3 and multiples of twelve by 3/4 . These must
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multiples of



be chosen from the interval [4(n+1)/3,2nj and n/18_1 multiples of twelve

are available, again with a possible exception (192 in the example)

which may have been deleted when disposing of the power of three from

r2n
n )l

	

Notice that we can alternatively absorb the multiplier 3/4 in

a number which is four times a prime in the interval [2n/5,n/21 because

such primes do not occur in (n . In the example, 188 and 212 could

have served in place of two of 204, 180 and 168 .

In any case, rn will certainly be large enough if In/181-1? Irl

where we chose Ir1 0 P/2I and k = Llb(2n)I where "lb" is the binary

(base 2) logarithm . There are enough numbers to absorb the multipliers

if n i 72 and smaller values of n can easily be checked . We need

consider only those entries which occur in Table 1 .

4! 1+ (2 factors ' 5 2 are too big, 1 factor A 8 is too small)

5! 2+ (6 3 too big, 10 2 too small)

7! 3+ (10 .14 must occur, then 82 is too big, 14 is too small)

9! = 10 .122 .14 .18, or, more compactly, 12 3 . 14 .15

10! 5+ (14 must occur, then 122 152 16 too big, 182 202 too small)

12! = 14 .152 .16 .18 .22 .24 = 14 .15 .16 .182 .20 .22 = 152 .16 2 .18 .21 .22

13! 7+ (22 .26 must occur, then 14 .15 2 .16 .18x is too big if x > 12,

while 21 .242 25y is too small if y < 36)

For n = 1 ,2 ,4 ,5 ,7 ,10 and 13 there are no solutions . There are solutions

for the entries not in Table 1 : 3! = 6, 6! = 8 .9 .10, 8! = 12 .14 .15 .16,

11! = 12 .18 .202 .21 .22 = 14 .18 2 .20 .22 = 15 .16 .18 .20 .21 .22 ; for n = 9 and

12 given above, and it is easy to construct solutions for n > 13 up to

where the method described earlier takes over .
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P o of The em 3 . Recall that f(n) = min a7, subject to (0) and (3) .

We first establish the lower bound

(13)

	

272
cln

+ lnn ` f(n)

Let the standard form for n! be J~pap

	

where the product is over all

primes not exceeding rt . For the primes between n/2

ap = 1, because 2p> n, so 2p and 3p cannot both be among the a i .

Suppose that S2 multiples of 2 and 6 3 multiples of 3 do not occur as a i ,

i .e . these are missing from the product

f(n) -n
(14)

	

r i=1

	

(n+'i)

Then, by the prime number theorem,

(15) B2 + S3 = n(l+o(1))/ólnn

the number of primes p, n/2< p < 272/3 . Let y 2 ,y 3 be the exponents of 2 and

3 occurring in the product (14) so that

(16)

	

Y2 - B2

	

a2

	

and

	

Y3 - S3 ` a 3,

the exponents of 2 and 3 in n! It is well known that

(17)
a 2 = n + 0(lnn) ,

	

a3 =kn + 0(lnn)

Y2 = f(n) - n + 0(1n n), y 3= (f(n)-n) + 0(ln n)

and (15), (16) and (17) yield (13) with e l arbitrarily close to 1/9 .

To obtain the upper bound

c272
(18)

	

272 + Inn > f(n)

we return to the identity (9) and note that Inn = IIp a , where the

product is taken over some of the primepowers less than 272 . The primepowers

between n and 272 may be cancelled from (9) and the primepowers less than n

can be multiplied by appropriate powers of two, as in the proof of

Theorem 2, and also cancelled from (9) leaving an identity
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and 272/3 the exponent



n! = 2m l-i (rt+i)

where the product runs over most of the values of i from 1 to n .

The power of 2 is absorbed by doubling the first r- values of n + i, so

that f(n) < 2n+ Zm(1+•~ {1)) and it remains to estimate m .

Write z = r.(1+o(1))/ln n, so that the prime number theorem asserts

that z is the number of primes less than n . There are no primes

p, 2n/3 <p< 2n, which divide lnn) . The number of prime divisors of inn )
between 7:í2 and 2n/3 is z/6 . There are none between 2n/5 and n/2, and

generally none between 2n/ (2w+1) and n/w, while the number between n/ (W-+1)

and 2r./(2~.1+1) is z/(w+1) (2w+1) . The power of 2

	

needed to bring such

primes into the interval (?í+1,2n) is 2 Y where w+ 1 1- 2 U < 2w+ 1, or

u = I lb(2m+1)i and the total number of twos required is at most

l Ilb(2w+1)lz/(w+1)(2w+1) .

That is

m

	

( 2 1 3 ) + (32 5 + 4?7) + (539 + 6311 + 7313 + 8315 ) + (9417 + . . .~z

and (18) follows for sufficiently large n with ez = 1 .7, since the

series in the bracket has sum less than 0 .85 .
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