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Let L be a given family of so called prohibited graphs . Let ex (n, L) denote the maximum
number of edges a simple graph of order n can have without containing subgraphs from L .
A typical extremal graph problem is to determine ex (n, L), or at least, find good bounds on it .
Results asserting that for a given L there exists a much smaller L* 9L for which

ex (n, L) -- ex (n, L*)

will be called compactness results . The main purpose of this paper is to prove some compactness
results for the case when L consists of cycles . One of our main tools will be finding lower bounds
on the number of paths P1+ I in a graph of n vertices and E edges ., witch is, in fact, a "super-
saturated" version of a wellknown theorem of Erdős and Gallai .

Notations

Below we shall consider only graphs without loops and multiple edges . For
a graph G, let e (G), v (G), and X (G) denote the number of edges, vertices and the
chromatic number, respectively . The first upper index always denotes the number of
vertices, e.g ., T",11, G", S" are graphs of order n . C, P, and Kt denote the cycle,
path and complete graph of t vertices . The degree of x in G" is dG (x) .

Given a family of so called prohibited graphs, L, then ex (n, L) denotes the
maximum number of edges a graph G" can have without containing subgraphs from L .
(If L consists of the sole graph L, we shall use the simpler notation ex (n, L) .)

Introduction

The well known theorem of P . Turán [16] asserts that among the graphs G"
not containing Kp+I there exists one having more edges than all the others and this
graph T" , P can be defined as follows .

We partition n vertices into p classes Cl , . . ., Cp as equally as possible :

Q _ [-! ] or n1. Two vertices of T"," are joined iff they belong to different classes .
P
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Generally one can replace KP+I by an arbitrary finite or infinite class L
and ask

What is the maximum number of edges, ex (n, L), a graph G" can have without
containing subgraphs from L? It is somewhat surprising, [9], that the maximum de-
pends very loosely on L . If

(1)

	

p = p(L) = min X(L) - 1,

then

(2)

	

ex(n, L) _ (1-I +o(1))(2) .
This shows that there is a sharp difference between the cases when L contains

bipartite graphs (and therefore p=1, ex (n, L)=o(n 2)), and the other cases. The
case, when p=1, will be called degenerate . Another interesting corollary of (2) is,
that if L*EL is of the minimum chromatic number (=p+l), then
(3)

	

ex (n, L) = ex (n, L*)+o(n 2 ) .

If the extremal problem is non-degenerate, then (3) implies that

(4)

	

ex
(n, L*) _ 1 as n -- ~ .

ex (n, L)

Unfortunately, (3) does not imply (4) for degenerate extremal graph problems. We
shall call results asserting that for some L there is a "much smaller" L* L for
which

ex (n, L*)

	

1 as n -~ex (n, L)
compactness theorems .

Compactness theorems can be proved not only for graphs but digraphs as
well, [4] . Here we restrict ourselves to ordinary graphs . As we have seen, for
p--2 the compactness problem has a trivial answer . This is why we are interested
primarily in compactness results connected with degenerate problems. The field of
degenerate extremal problems is very wide and interesting with plenty of unsolved
problems. Just to indicate the line of these problems we formulate two conjectures .

Conjecture 1 . For every finite L (containing bipartite graphs as well) there exists
an L* E L for which

(5)
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ex (n, L) = O (ex (n, L*)) .

Conjecture 2. For every finite L containing bipartite graphs there exists a (probably
rational) constant c=cL ~--- 1 for which

(6)

	

ex (n, L) converges to a positive limit as n ~ .
n

Remark. For infinite families the above conjectures do not hold . If e.g ., L consists of
all the cycles, then ex (n, L)=n-1, but by a (random graph) result of Erdős [7], for
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every finite L* C L, ex (n, L*)>c(L*) . n1+`(L*) for some c(L*)~:-0. This disproves
Conjecture 1 for infinite families ; a slightly more complicated example disproves
Conjecture 2 for infinite L, as well .

One version of the extremal graph problems usually considered is, when we
restrict our considerations to bipartite graphs . In other words, if C* denotes the family
of all odd cycles, we wish to determine ex (n, L U C*) instead of ex (n, L) . Clearly,
if p (L) 2, then

ex (n, L U C*) = ex (n, C*) = L 4 ] .

On the other hand, if L contains bipartite graphs, then

(7)

	

2
ex (n, L) ~-- ex (n, L U C*) -- ex (n, L) .

Indeed, the right side of (7) is trivial . The left side follows from the fact that
every G" contains a bipartite H" with maximum number of edges and for this H"

dH (x) 2 dG(x) for every vertex . Hence e (H") _ 2 e (G"), proving (7) .

Conjecture 3. For every finite L there exists a t such that

ex (n, L U C*) 1 as n-- .
(n, L U {C 3, C', . . ., C2t+1})

	

.

This conjecture asserts that the exclusion of sufficiently many odd cycles has
the same effect as excluding them all .

Cycles in graphs

There are many interesting results on the extremal graph problems of cycles .
If L contains no bipartite graphs but it contains an (odd) cycle, than ex (n, L) =IT
for n --n o(L) . This case will not be considered below. The question of the even cycles
is a much more intriquing one . An old number theoretic result of Erdős and E . Klein
[6], asserts in a graph theoretic language that if C* denotes the family of odd cycles,
then

3/2

(8)

	

ex(n, C * U {C4 }) _ (2) + o (n s/2)

Reiman [14] proved that the construction of [6] is sharp for infinitely many values of
n . Later Kővári, T. Sós and Turán [13], Erdős, Rényi and V. T . Sós [8], W. G .
Brown [3] proved that

(9)
3/2

ex (n, C 4) = 2 + o (n312) .

These two results show that the exclusion of the odd cycles diminishes the maximum
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number of edges by a factor of C2. One can conjecture that the exclusion of any odd
cycle does the same :

Conjecture 4 . For any k and tz2

(10)

	

ex (n, {C2k, CV-11

	

(n)'+w+

	

1+k ) .) _
2

o (n

Further,
Conjecture 5.

The background of the above conjectures is the following . Many people inves-
tigated the so called cage problem : for given r and g find the minimum number n (r, g)
of vertices for which there exists an r-regular G" with this girth g and order n=n(r, g) .
Singleton [15] and Benson [1] constructed infinite families of r-regular graphs G"

k
of girth 2k+2 for r

	

2 for k=2, 3, 5 . These are bipartite graphs with n
2

vertices in each colour-class and for any vertex x the number of vertices y of distance
n s/k

s from x is (2) (s=1, 2, . . ., k) . Conjecture 4 asserts on the one hand that if we drop
k

the condition of regularity, the average degree remains still 2 , and even more, if
we exclude only the longest even cycle (= C 2k) and any odd cycle, we still get the
same upper bound . Further, Conjecture 4 asserts that this bound is sharp for every k.
We cannot prove but the much weaker results stated below .
Theorem 1 . Let k be a natural number. Then

ex (n, {C 3 , . . ., C", C2k+1}) _.,,z
(2 )1+k +2k . (I. k .

Theorem 2 .
3/2

ex (n, {C4, C'}) _ ( n 2
)3/2 + O (n) .

Conjecture 5 asserts that if we exclude only C 2k (and probably the same holds
if we exclude all the shorter even cycles as well), then G" may have significantly
more edges : the number of vertices of distance s from x can increase as nslk

s/k
instead of (2 ) . This is known for k =2, [3], [8], but we cannot prove it even for k = 3 .

1
Theorem 3 . If ex (n, C'") 'cn1+ k , then there is a t such that

1}1

	

1
ex (n, C2k) =

n 2 + o (n k) .

ex(n, {C2k , C 3 , C', C', . . .})
lim ex (n {C2k C3

	

Cet-1}) = 1 .



There is a wider known class of graphs to which Theorem 3 generalizes. To
formulate a more general theorem we need a definition .

Definition. (cf [12]) . If Tis a connected bipartite graph, coloured by "blue" and "red",
then Lk =Lk(T, c) denotes the graph obtained from T by joining a vertex x outside
of Tby disjoint paths of length k-1 to each blue vertex of T, where
(a)

	

c is the fixed colouring,
(b)

	

"disjoint" means that any two of these paths have only x in common, and only
their other endvertices belong to T. Some illustrations are given on figure 1 .

6

T

L3(T, C)

star

EXTREMAL GRAPH THEORY

	

279

tree

<O) <íko
Fig . 1

cube graph

In [12] Faudree and Simonovits proved that if T is a tree and L=Lk (T, c),
i

then ex (n, L) = O (n k) . Obviously, this generalizes the corresponding theorem
on C2k

i
1+-

Theorem 3* . If ex (n, L) ~--- cn k for some tree T and colouring c and L :=Lk (T, c),
then there is a t for which

lim	ex (n, {L, C3, C5 , . . .})

	

= 1 .
n--ex(n, {L, C3 , C5, . . ., C2t -l})

Walks in graphs

In many degenerate (and nondegenerate) extremal graph problems we prove
that G° contains some prohibited LE L by choosing another family P and proving
that G" contains very many PEP under the conditions considered . Assume we have
a family P of prohibited graphs and e(G")=ex (n, P)+k for some k>0. Clearly, in
such cases G" will have prohibited subgraphs PER What is somewhat surprising,
G" will have extremely many prohibited subgraphs . Theorems of this type will be
called supersaturated extremal graph problems and we shall devote a whole paper to
their study, [10] . Many such result have already been proved by various authors, for



280

	

P. ERDŐS, M. SIMONOVITS

P={Kp} . Here we are interested in the number of paths Pk in a graph G", since lower
bounds on it will be the basic tools in some of our proofs .

Let us consider a regular graph G" of degree d. If we call a sequence of vertices
(x o , x 1i . . ., xk) a walk of length k assumed that x i _ 1 and xi are joined by an edge,
and denote such a walk by Wk + ', then it is much easier to count the number of
walks Wk + 1 , since we do not have to care with the repetitions .

Notation. wk (G") denotes the number of Wk+'`s in G", divided by n, where
(xo , x1, . . ., xk) and (xk , xk _ 1 , . . ., x1 , xo) are generally counted different .

Obviously, in a d-regular graph G"

(12)

	

wk (G") = dk .

Remark. The word "generally" above means that e .g. the triangle (x0, x1 , x2, xo)
yields two walks, however, the (XO , x1 i x2, x1, xo) is only one walk .

The following conjecture asserts that in some sense the regular graphs are the
minimal .

n

Conjecture 6 . Ifd is the average degree in G", i.e., d=	
2e G

thenn
(13)

	

wk (G") ' dk,

further, if k ~_- t, and both t and k are odd, then
(14)

	

wk (G") t ? w=(G")k .
Observe that for t=1 (14) reduces to (13), w,=d.

Theorem 4. If k is even, then (14) holds .'

Remarks. In the conjecture and theorem above the case "t-k, t is even, k is odd"
is left out. In this case (14) does not necessarily hold : a trivial counterexample is
K2(a, b) if a+b=n and a is much smaller than b . If A denotes the adjacency
matrix of G", then wk(G") obviously equals the sum of entries of A' . Thus the
above results and conjuctures have purely matrix-theoretical formulations as well .
We have recently discovered that (13) was proved for every k~--- 1 in [11], [17]
and [18] .

There is another case when (13) is proved, [11] :

Faudree-McKay theorem . If k=3p, then wk(G")~---dk . /

We shall also prove the following generalization of (13) :

Theorem 4* . Let f (x)=Xk +al xk-l +a2Xk-2+ . . .+ak , k be even and
F(G") = wk (G")+alwk-1(G")+ . . .+akwp(G") .

If f is a convex increasing function for x~--x* and m denotes its minimum,
in

	

then for d=d(G")--x*
F(G") f (d(G")) + m f (x*) .

1 The proof given here is due to C . D . Godsil. (Cf. "Added in proof" .)
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One important case of this theorem is, when f has k real roots and x* is the
maximum of them . Then f (x*)=0, of course. In the applications of this theorem the
coefficients off depend on n .

Our next proposition shows that (13) is valid apart from the exact value of the
multiplicative constant, even if k is odd .

Proposition 1. For every k, wk (Gn) z4- k • d(G")k .

Paths in graphs

The next two assertions show that in some sense the difference of the number
of walks and paths is negligable .

Proposition 2 . Let q< 1 +	
k

	 11 and assume that the maximum degree cd(Gn) s
=d(G")Q. If W* (G") denotes the number of walks Wk + 1 in G" which are not paths, then

(15)

	

wk(~) = o (n ' wk (G")), f d(G")

6*

Observe that the total number of walks is n - wk(G") : Proposition 2 asserts
that almost all walks are paths if the maximum degree is not too large . An easy
example shows that without having bounds on the maximum degree we cannot
guarantee (15)

Let e .g. G" be the graph obtained from an r-regular graph H" by partitioning
the vertices into the classes Al , . . ., A,,,, choosing an aj from each A; and joining
this a i to all other vertices of this A= . If e .g . r ti log n and JA j J tin/log n, then we get
the desired counterexample .

Theorem 5 . Iff (n, d) is the minimum number of walks Wk + 1 a graph G" can have with
average degree d, then every graph of order n and average degree d contains at least
(1/2) •f(n, d)-o(f (n, d)) paths P 1+ 1 , as d- -.

Here the factor 1/2 compensates that each path yields two walks .

Proofs

Proof of Theorem 4 . It is known, [5], that if A is the adjacent' matrix of the graph
G" and 2, . . ., ~" are the eigenvalues, where a ). of multiplicity It is listed It times,
then

(16)

	

w", (G") _

	

ci r jm

for some constants c i i0 depending only on Gn. Putting m=0 we get, by
wo =1, that

(17)

	

~c;=1 .
t
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Since w,=d is just the average degree, we get that

(18 )

	

wk(G") _ Z cikk ~-! (2 ci2i)k = w, (G") k = dk ,i

	

i
by Jensen's inequality, since k is even. More generally, if t-k and k is even, put
r:=k/t . By the convexity of x',

wk (Gn) _

	

ciki =

	

ci lkj1'*

	

ci lkil)r '= w, (G")' • I

Proof of Theorem 4*. Clearly, by (16), putting a, = 1, we have

F(G") _

	

aj ci . k, -J =

	

ci f (ki)j

	

i

	

i
Let
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= ff(x) if x x*
g(X)

	

f(x*) if x < x*.

Then g is convex in (--, -) and

.f (x) = g(x + (f (x)- g (x)) g(x + m f(x*) .
(Here m is mostly (?) negative.) Thus, by (17),

F(G") _ Z cif(Ai) ~-- cig(A1)+ (m-f(x*)) • Z ci z-g(Z c i A i)+m-f (x *) .
<

	

<

	

i

	

i
Since

	

ciki= d, we are home .
i

Proof of Proposition 1 . We use induction on n . For n=1, 2, 3 there is nothing to
prove. Assume that we know the assertion for n -1 and have a graph G" with E
edges . If G" has a vertex y of degree <E/2n, let G"-1:=G"-y . Clearly, e(G"

E-E/2n=E • (n -2)ln. Thus G" -1 contains at least

E'( n-(1/2)~
k

Jn
2k(n-1)k -1

Ek n--1 .~n-(1/2»k
- 2k nk-1 n t n-1

Ek (n-(1/2)12 n-1

	

Ek

	

n2 -n-á(1/4)
2knk -1 n-1

	

n - 2k nk-1

	

n2-n
walks Wk+l, proving the assertion .

The other case is, when all the vertices of G" have degree ~E/2n . Then it is
trivial, that for any fixed y the number of walks Wk+I starting from y is at least
(E/2n) k . I
Proof of Proposition 2. We know from Proposition 1 that wk (G")!:4-k •dk. Let
us count the number of walks W 1+I in G" which are not paths . For each of them we
may fix a j such that if (xo , . . ., xk) is the walk considered, then x;=x, for some
t--j. For given xo and j the walks (xo , . . ., xj) can be chosen in at most jXJ -1 > ways .
Thus the walks (xo , . . . , x k ) can be chosen in at most j . d(j-1) , d(k-j)=j , d(k_1) ways .
By the assumption d<d4 , ( 15) immediately follows . I
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Proof of Theorem 5. Consider a graph U° with average degree d(U")=d and maxi-
mum degree d (U") : d+ l . Clearly, the number of walks Wk 11 ~=- U" is at most
n • (d+ 1)k. Hence
(19)

	

f (n, d) -- n • (d+ 1)k .

Now, let G" be an arbitrary graph with d(G")=d. We wish to prove Theorem 5
by reducing it to the case when there are no high degrees . Fix two functions a (d) and
b(d) tending very slowly to - as d--- and satisfiyng b(d)<<a(d) . E.g . a (d)=fog d
and b(d)=loglogd will do .

Now we delete all vertices of low and high degrees as follows . A l , . . ., Ak
are sets of vertices defined recursively . Al is the set of vertices of G" of degree =d/b (d) .
A; is the set of vertices of G"-Al-A2- . . .-Aj _1=G; having degree --d/b (d) in
G;, (j=2, 3, . . ., k) . Let Q be the set of vertices of degree zd • a (d) in G"- UA;=H.
If Q = (x 1 , . . ., x,") and dH(x;) = d; , then we have at least 2 2 (2l) walks of form

(ux;v and each can be continued in at least

	

d
lb(d)

	 -k
)k-2

ways into a path
(u, x;, v, v1, . . ., vk _2) : indeed, by definition, each viEG"-A,-A2- . . . -Ak_i is
joined to at least d/b(d) vertices of G"-A,- . . . -Ak_i_ 1 and less than k of them are
excluded because they have already been chosen in (u, x,, v, . . ., v), (see Fig . 2) . If
D=(Zd;)/m, then, using Jensen's inequality, we get at least

r d

	

k-2 m

	

d

	

k-2

~b(d) -k) ,~ (d;-d;) '
lb(d) -k)

(20)

Q

Fig . 2

paths Pk+ 1 in G". (If k=2, then every term in (20) should be divided by 2, but that
will cause no problems .) There are two possibilities : either (20) yields more paths
than f(n, d) (estimated from above by (19)), and we are home, or else by m ~--n/a(d)

(21)

	

Zd; ck . E . b(d)k_2a(d) = o(E) .

)m(D2 -D)
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Delete all edges incident to U Ai U Q . Thus we get a new graph G* with E* =
E-o(E) edges. Here we used (21) and that e(G;_1)-e(G;): JAjJ • d/b(d) . Apply-
ing Proposition 2 to this G* we get that for some d*=d-o(d)

(22)

	

Pk(G") Pk(G*) =f(n, d*)-o(f(n, d*)) •
This is slightly weaker than what we stated .

To get the desired result we shall try to put back the edges so that in the result-
ing H" s
(a)

	

each vertex is incident to at most O(dlVa(d)) new edges .
(b)

	

the number of new Pk+1's is o(f (n, d)) .
If we succeed, then, applying Proposition 2 to H" we get that it contains at least
(1/2)f (n, d)-o(f (n, d)) Pk+i's . Hence, by (b), G* (and therefore G" as well) contains
at least (112)f (n, d)-o(f (n, d)) Pk+1's . This will complete the proof.

Let S be the set of vertices v of G* such that, for every p :k, v is the endpoint
of at most dP • b(d)k+i paths PP+1 in G* . (S includes UA ; and Q .) We shall distin-
guish whether

(i) ISI < n- b(n~ or

(ü) ISI i n- b(d) .

In case (ü) we put back the edges so that each new edge joins vertices of S .
One can easily achieve that (a) also be satisfied . Indeed, by Proposition 2, d(G")=
O(n1-`) can be assumed ; then we use a greedy algorithm to put back the edges .

Now, a new path Pk+1 consists of old paths and new edges, and choosing a new
8

edge at a given vertex v we have at most O(dl} a(d)) possibilities, choosing an old
path PP+1 we have at most dPb(d)k+i possibilities . Therefore the number of new4
paths Pk+1 is at most O(ndk/a(d))=o(f(n, d)), by Proposition 1 .

In case (i) for at least one p :k we have at least n/p • b(d) vertices in G* ema-
nating at least dPb(d)k+i PP+1's . Repeating the argument above we may extend these
paths into at least (1/2)n • dP • b(d)k+1, (dlb(d)-k)k-Prod' • b(d)14 paths Pk+I . '

Proof of Theorem 1 . Let us call a walk Wk+2 "good" if it is not contained in any
path Pk. Observe that if x„ and yo are joined by two good walks in G, then G contains
a cycle of length -2 (k+1) . Assume that c=2k and

1

	

1
(23)

	

e(G")' 1211}k--c(2~1 k

The number of good walks Wk+2 c G" is, neglecting -m in Theorem 4*, at least

(24) n(wk+1(G")-cwk_1(G")) ? n(dk+1-cdk-1) > n, 2e( G") (dk-cdk-2)
1-2/k

> 2e(G"){2+c(k-1)(2)

	

I'
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since the number of walks Wk+2 c P k and having the same first vertex x o is at most
2k, and for x-1 and k~--- 2

(x+C)k-C(x+
c k-2

xk +c(k-1)xk -2 .
X

	

X)

By (23) and (24) there is an edge (x,, y,) contained in at least n+2c(k-1) (n/2)1- ti k
good walks (xo , yo , . . ., u) or (y o , xo , . . ., u) . Thus there must be at least two such
walks with the same other endvertex u=uk . Denote them by Wand W.

There are two subcases :
Case (a) . W=(xo, yo, u3, . . ., uk ) and YV=(xa, yo, v2, . . ., uk) or
Case (b) . W= (x,, yo , u 3 , . . ., uk ) and W=(yo, x o , v 3 , . . ., uk) . In the first case G"
contains two good Wk+1joining yo to uk . Thus G" Cl for some j~-- 2k. In the second
case the union of W and Wcontains a C2;+1 G" for some j-k.

Proof of Theorem 2. We use the argument above, however, since C 3 C G" is allowed,
we have to be more careful in Case (b) . Now we have two walks (x,, yo , a, uJ and
(yo, xo, b, u4) •
Case (b,) . If a b, then (xo , y o , a, U4, b, xo) = C'(-- G" .
Case (b 2) . The case a=b yields a C 3 which is not excluded . However, if there are
two such a's, then (xoalyo a2xo) = C4 S G" and we are home again . Thus we may
assume that for each edge there is at most one a such that, for some u, (xo , yo , a, u)
and (yo , xo , a, u) are in G".

First we assume not only (23) (with k=2), but also

(25)

	

d (G") 'S 3

	

.
2

Then we find (xo , y o) as in the proof of Theorem 1 and observe that it is contained
in at least n+4Vn/2 "good" walks.* Cases (a) and (b l) are already settled, in case
(b t) a is uniquely determined, therefore u can be chosen in at most 3 n/2 ways. Forget
these walks, we have still a pair of walks with the same endvertex u*, for which we have
Case (bl) : C'S; G"

Hence our only problem is to ensure (25) and then the proof is complete .
First we show that (25) can be replaced by

(26)

	

d(G") 3~~+1 .

Indeed, assume (26) . Let x be an arbitrary vertex and N(x) =(yl , . . ., yJ
be the set of its neighbours . Let Gx be the graph spanned by N(x) . Since C4 G",
d(G.)=1. Thus each y i has at least d(y i)-2 neighbours in V(G11) -N(x)-x. Thus
(fig 4)

	

(d

	

2) ) -
which means that d (x) • (d (G") -1) = n -1 . This and (26) yield (25) .

* Theorem 3* is not applicable, since k is odd . However, the estimate on wy(G")-cw,(G")
= w3(G)- ce(G") is trivial by 1111 .
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Fig . 3

(28)
This fact will be needed below .

Let

ISki

	

ck ak n.

Fig. 4

To ensure (26) we use a standard "regularization" argument . Clearly, the
theorem is proved for graphs satisfying (26) (beside (23)) . Further, it holds for
n=1, 2, 3, since its condition (23) is never satisfied .

Let now G° be an arbitrary graph satisfying (23) with k=2. We show by induc-
tion on n that G" contains either a C1 or a C5 . If in addition, (26) also holds, then we
are home. Therefore we may assume the existence of a vertex x violating (26)
d (x) < (1/3) nl2+ l . Deleting this x we get a Ge -1 with

3/2

	

3/2

	

, ~
e(G°-I1 _ e(G")_d(x) t2)

+4V2 3 2
-1

' ( 2 )
+4 V n 2 1 .

(This inequality is an easy consequence of the Lagrange mean value theorem for
n ~--- 12 . However, we need it for 4-_n:11 as well. One can check it for each n sepa-
rately .)

Thus, by induction, G"' 1 contains a 0 or a C5 . This completes our proof.
Proof of Theorem 3* . In [12] Faudree and Simonovits proved that ex (n, L)
= OW -1 1 /1) . In their proof the main tool was that if G° is a bipartite graph withl

	

k

(27)

	

og") 2 a

	

and L Sj G",

x is an arbitrary fixed vertex and Sp is the set of vertices at distance p from x, then
k

ISp l -cp(a- ~_n)p for some fixed constant cP-O (p=1, 2, . . ., k) . Hence

a=limsu
ex(n,{L,C3,C$,C', . . .})~~

„

	

p

	

nl+l,k



We shall assume that
k

(29)

	

d(G") a Cand L E- G" .

Let G" C G" be a bipartite graph with the maximum number of edges (in G") . The
maximality trivially implies (27) . Put t=2(k+l)(r(ckak)-1-J +1). First we prove
that if G" L and G"IDC2q +1 for q-t, then (under the additional condition
(29)) G" is bipartite . Assume indirectly, that G" contains an odd cycle C24+1 for some
q ::- t . (For q~t this is excluded .) Let C 29+1 be the shortest odd cycle in G", with the
vertices x o , . . ., x2, . Take the vertices x2j(k+1) for j=0, 1, 2, . . ., F-(ckak) -1 -1

Let Sk(j )=S(j ) be the set of vertices of G" having distance k from x2j(k+1) • By
(28), ISU A zc k akn . Thus there exists a uo belonging to two sets S(j), say uoE S(j) n
S(h) . The path joining uo to x2j(k+1) and x2h(k+1) and the odd arc of our C2q+1
yield a closed odd walk containing an odd cycle C 2r+ 1 with r--q. Since C2q+1 was
the shortest walk, we arrived at a contradiction .
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k

Fig. S

In the general case we have to drop the condition (29) . We shall use here a
variant of the "regularization argument" of the proof of Theorem 2 .

The graphs G"-j are defined recursively : G"- j is obtained from G"- j+i by

deleting a vertex xj of degree -a • ~n-j+ 1, if such a vertex exists . If all the vertices
k	

of G"-i+1 have degree -a . jin-j+1, then we see by the argument above that
G"-j+i is a bipartite graph . Thus

n

	

k

(30)

	

e(G") - ex (n-j+1, {L, C3 , . . ., C2r+1, . . .})+

	

Z a - ~-m .
M="-j+1

We agree to stop the recursion if either G" - j+i is bipartite or if j= [n12] . Then, by (30),

1+e (G") (a+ 8n-) (n -j) k + a • Z }gym



1

e(G°) ~-- (a+o(1»nl+k .

Added in proof. We would like to thank very much C. D. Godsil who was origi-
nally a co-author of the present note for his valuable contribution . Recently he has
discovered that most of his results in this paper are covered by [11], [17], [18], and
he withdrew his name. May his decision be right, we still owe him a great debt of
gratitude for, among others, the proof of Theorem 4 which is due to him . We also
note that at an earlier stage we heavily relied on some results of Faudree and
McKay.
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where e n_; --0 . Since

we obtain that
(

	

1 +
k_m 1+1

n-j)1+7
Z

m ~_- n k
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