DISJOINT CLIQUES AND DISJOINT MAXIMAL INDEPENDENT SETS OF VERTICES IN GRAPHS

Paul ERDÖS
Hungarian Academy of Sciences, Budapest, Hungary
Arthur M. HOBBS
Dept. of Mathematics, Texas A\&M University, College Station, TX 77843, USA

C. PAYAN

IRMA, BP 5338041 Grenoble Cedex, France

Received 23 February 1981
Revised 18 November 1981

Abstract

In this paper, we find lower bounds for the maximum and minimum numbers of cliques in maximal sets of pairwise disjoint cliques in a graph. By complementation, these yield lower bounds for the maximum and minimum numbers of independent sets in maximal sets of pairwise disjoint maximal independent sets of vertices in a graph. In the latter context, we show by examples that one of our bounds is best possible.

We use notation and terminology of [1]. Throughout this paper, G is a simple finite graph, and n refers to the number of vertices of G. $|S|$ is the number of elements in the set S. A set S with property P is maximal (with respect to P) if no set S^{\prime} exists with S properly contained in S^{\prime} such that S^{\prime} has property P. A set S with property P is maximum (with respect to P) if no set S^{\prime} exists with $|S|<\left|S^{\prime}\right|$ such that S^{\prime} has property P. If S is a vertex or a set of vertices, $N(S)$ is the set of neighbors of S in G.
C. Berge (unpublished; see [1, 2]) and independently C. Payan [3] conjectured that any regular graph has two disjoint maximal independent sets of vertices. While this conjecture has now been shown to be false [4, 6], for graphs which are regular of degree $n-k$, Cockayne and Hedetniemi [2] did verify the conjecture for $1 \leqslant k \leqslant 7$ and C. Payan [5] for $k \leqslant 10$. In this paper we show it is true for $k<-2+2 \sqrt{2 n}$.

Let $B(G)$ be the maximum cardinality of a set of pairwise disjoint maximal independent sets of vertices in G. Cockayne and Hedetniemi first introduced a notation for $B(G)$ in [2]. Let $B^{c}(G)$ be the maximum cardinality of a set of pairwise disjoint maximal cliques in G. Let $b(G)$ be the smallest cardinality of a maximal set of pairwise disjoint maximal independent sets of vertices in G, and let $b^{c}(G)$ be the smallest cardinality of a maximal set of pairwise disjoint maximal
cliques in G. Clearly $B(G) \geqslant b(G), b(G)=b^{c}\left(G^{c}\right)$, and $B(G)=B^{c}\left(G^{c}\right)$. Although, in the tradition of Cockayne and Hedetniemi [2], we are primarily interested in $b(G)$ and $B(G)$, our proofs are more easily described for $b^{c}(G)$ and $B^{c}(G)$.

On three occassions in the following proof, we will use the inequality ($c_{i}-$ $\left.\frac{1}{2}(k+g)\right)^{2} \geqslant 0$, for integers g and c_{i}, in the form

$$
\begin{equation*}
c_{i}\left(k+g-c_{i}\right) \leqslant \frac{1}{4}(k+g)^{2} . \tag{A}
\end{equation*}
$$

Theorem 1. If G is a graph with n vertices and maximum degree k, then

$$
b^{c}(G) \geqslant 4 n /(k+2)^{2} .
$$

Further, if G is regular of degree k, then

$$
b^{c}(G) \geqslant 8 n /(k+3)^{2} .
$$

Proof. Set $b^{c}(G)=b$. Let $C=\left\{C_{1}, C_{2}, \ldots, C_{b}\right\}$ be a smallest maximal set of pairwise disjoint maximal cliques in G. Set $c_{i}=\left|C_{i}\right|$ for each $i, Z=\bigcup_{i=1}^{b} C_{i}$, and $Y=V(G)-Z$. If any vertex y of Y were joined to no members of Z, then any clique containing y would be disjoint from Z, which is impossible. Also, since each vertex of C_{i} is adjacent to at most $k-c_{i}+1$ vertices of Y,

$$
\sum_{i=1}^{b} c_{i}\left(k-c_{i}+1\right) \geqslant|Y|=n-\sum_{i=1}^{b} c_{1} .
$$

Thus $\sum_{i=1}^{b} c_{i}\left(k+2-c_{i}\right) \geqslant n$, or by (A)

$$
\frac{1}{4} b(k+2)^{2} \geqslant n
$$

whence

$$
b^{c}(G) \geqslant 4 n /(k+2)^{2} .
$$

Now suppose $y \in Y$ has exactly one neighbor in Z. Let that neighbor be x and suppose $x \in C_{i}$. If $v \in N(y) \cap Y$, then a maximal clique in G containing the edge $v y$ must meet Z, and the only possible such meeting is in the vertex x, so $x v$ is in $E(G)$. Since x has a neighbor in G not in $Z, c_{i} \geqslant 2$. Hence

$$
d_{G}(x) \geqslant d_{G}(y)+c_{i}-1>d_{G}(y) .
$$

Therefore, if G is regular, every vertex of Y is adjacent to at least two vertices of Z. Proceeding as before,

$$
\sum_{i=1}^{b} c_{i}\left(k+1-c_{i}\right) \geqslant 2|Y|=2\left(n-\sum_{i=1}^{b} c_{i}\right)
$$

whence

$$
\frac{1}{4} b(k+3)^{2} \geqslant 2 n, \quad \text { or } \quad b^{c}(G) \geqslant 8 n /(k+3)^{2},
$$

Corollary. If G has minimum degree $n-k$ and n vertices, then

$$
b(G) \geqslant 4 n /(k+1)^{2} .
$$

Further, if G is regular of degree $n-k$, then

$$
b(G) \geqslant 8 n /(k+2)^{2} .
$$

We shall now prove the first inequality in both the theorem and its corollary are best possible. This will be done by showing that for every b and for every even positive integer k, there exist graphs G of n vertices and maximum degree k, with a maximal set of cardinality $b^{c}(G)$ of pairwise disjoint maximal cliques such that

$$
b^{c}(G)=4 n /(k+2)^{2} .
$$

Letting $t=\frac{1}{2}(k+2)$, we form a graph G^{\prime} from one copy of K_{t} and t disjoint copies of K_{t-1} by assigning to each vertex of K_{t} one of the copies of K_{t-1} and then joining each vertex of K_{t} to all of the vertices of its assigned copy of K_{t-1}. The resulting graph has maximum degree k. Now the disjoint union of b copies of G^{\prime} is the desired graph G.

The corollary to Theorem 1 has the following consequence relative to the work reported in the third paragraph of this paper.

Corollary. Let G be a graph with n vertices and minimum degree $n-k$. If $k<-1+2 \sqrt{n}$, then G includes two disjoint maximal independent sets of vertices. Further, if G is regular of degree $n-k$ and if $k<-2+2 \sqrt{2 n}$, then G includes two disjoint maximal independent sets of vertices.

Theorem 2. Let G be a graph with n vertices and maximum degree k. Then $B^{c}(G) \geqslant 6 n /(k+3)^{2}$.

Proof. Let H be a graph with $V(H)=V(G), E(H)$ as small as possible with $E(H) \subseteq E(G)$ and $B^{\mathrm{c}}(H)=B^{\mathrm{c}}(G)=b$. Let $\left\{C_{1}, C_{2}, \ldots, C_{b}\right\}$ be a maximum set of disjoint maximal cliques in H and let $c_{i}=\left|C_{i}\right|$ for each i. Further, choose the set $\left\{C_{1}, \ldots, C_{b}\right\}$ such that $\sum_{i=1}^{b} c_{i}$ is as small as possible. Let $Z=\bigcup_{i=1}^{b} C_{i}$ and let $Y=V(H)-Z$. Let $Y^{\prime}=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ be the set of vertices in Y such that $\left|N_{H}\left(u_{i}\right) \cap Z\right|=1$.

First we show Y^{\prime} is independent in H. For each $i \in\{1,2, \ldots, s\}$, let x_{i} be the member of $N_{H}\left(u_{i}\right) \cap Z$. Suppose $u \in Y \cap N_{H}\left(u_{i}\right)$ and suppose $x_{i} \notin N_{H}(u)$. Then a maximal clique containing $u u_{i}$ is disjoint from Z, a contradiction. Thus x_{i} is adjacent in H to every member of $N_{H}\left(u_{i}\right) \cap Y$. If $u_{1} u_{2} \in E(H)$, then $x_{1}=x_{2}=x$ and x is adjacent to every member of $N_{H}\left(u_{i}\right) \cup N_{H}\left(u_{2}\right)$. Let $H^{\prime}=H-u_{1} u_{2}$. Since $E(H)$ is as small as possible under the given conditions, $B^{c}\left(H^{\prime}\right) \neq B^{c}(H)$. Now C_{1}, \ldots, C_{b} are maximal cliques in H^{\prime} as well as in H, so $B^{c}\left(H^{\prime}\right)>B^{c}(H)$. Let $D_{1}, D_{2}, \ldots, D_{b}, D_{b+1}$ be $b+1$ pairwise disjoint maximal cliques in H^{\prime}. Since H does not have $b+1$ pairwise disjoint maximal cliques, there exist D_{i} and D_{j} such that $u_{1} \in D_{i}, u_{2} \in D_{i}$, and u_{1} is adjacent in H to every vertex in D_{j} or u_{2} is adjacent in H to every vertex in D_{i}. Since x is adjacent in H^{\prime} to every member of
$N_{H}\left(u_{1}\right) \cup N_{H}\left(u_{2}\right), x \in D_{i} \cap D_{j}$. But this is a contradiction. Hence Y^{\prime} is independent in H.

Choose $y_{1} \in Y^{\prime}$ and suppose its neighbor in Z is x. Let $Y^{\prime \prime}=N_{H}(x) \cap Y^{\prime}$ and suppose $Y^{\prime \prime}=\left\{y_{1}, \ldots, y_{p}\right\}$. Let $\left\{v_{1}, \ldots, v_{r}\right\}=N_{H}(x) \cap\left(Y-Y^{\prime \prime}\right)$. Let C be a maximal clique in H containing $x y_{1}$. Since $N_{H}\left(y_{1}\right) \cap Z=\{x\}, C \subseteq\left\{x, y_{1}, v_{1}, \ldots, v_{r}\right\}$. Suppose $x \in C_{i}$; then $C \cap C_{j}=\emptyset$ for all $j \in\{1,2, \ldots, b\}-\{i\}$. since $\sum_{i=1}^{b} c_{j}$ is a minimum, $|C| \geqslant\left|C_{i}\right|=c_{i}$. Hence $r \geqslant c_{i}-2$.

Further, $d_{H}(x) \geqslant r+p+c_{i}-1$. since $d_{H}(x) \leqslant \Delta(H) \leqslant k$,

$$
\begin{equation*}
p \leqslant k-r-c_{i}+1 \leqslant k-2 c_{i}+3 . \tag{1}
\end{equation*}
$$

Let $f=\left|Y^{\prime}\right|$. Then, by (1),

$$
\begin{equation*}
f \leqslant \sum_{j=1}^{b} c_{j}\left(k-2 c_{j}+3\right) \tag{2}
\end{equation*}
$$

Let a be the number of edges in H with one end in Z and the other end in Y. Since any vertex in C_{j} is joined to at most $k-\left(c_{j}-1\right)$ elements of Y,

$$
\begin{equation*}
a \leqslant \sum_{j=1}^{b} c_{j}\left(k-c_{j}+1\right) . \tag{3}
\end{equation*}
$$

Since the edges joining vertices in Y^{\prime} to Z are counted by f, and since every vertex of $Y-Y^{\prime}$ is joined to at least two vertices of Z,

$$
\begin{equation*}
a \geqslant 2\left(n-\sum_{j=1}^{b} c_{j}-f\right)+f . \tag{4}
\end{equation*}
$$

Combining (3) and (4) and applying (2),

$$
\sum_{i=1}^{b}\left(2 c_{i} k-3 c_{j}^{2}+6 c_{j}\right) \geqslant 2 n .
$$

Multiplying by 3 and applying (A),

$$
b(k+3)^{2} \geqslant 6 n,
$$

or

$$
B^{c}(G)=B^{c}(H) \geqslant 6 n /(k+3)^{2} .
$$

Corollary. If G is a graph with n vertices and minimum degree $n-k$, then

$$
B(G) \geqslant 6 n /(k+2)^{2} .
$$

Corollary. Every graph with n vertices and minimum degree greater than $n-\sqrt{6 n}+$ 2 has two disjoint maximal independent sets of vertices.

Probably the result in the foregoing corollary is not best possible in the sense of having the correct power of n subtracted from n; the highest minimum degree we have yet found in a graph with no two maximal independent sets disjoint is
approximately $n-(1+\sqrt{2}) n^{2 / 3}$. This example is constructed in the following manner:

Let p be a positive integer and let

$$
n=\binom{p+2}{2}+\frac{1}{2} p^{2}(p+2)
$$

Let S_{1}, \ldots, S_{p+2} be disjoint sets of points of cardinality $\frac{1}{2} p^{2}$ and let $Z=\left\{z_{i j}: i \neq j\right.$ and $i, j \in\{1,2, \ldots, p+2\}\}$. Then $|Z|=\binom{p+2}{2}$. Form graph G such that $V(G)=$ $Z \cup \bigcup_{i=1}^{p+2} S_{i}$ and $x y \in E(G)$ iff either $x \in S_{i}$ and $y \in S_{i}$ with $i \neq j$ or $x=z_{i j}$ and $y \in S_{r}$ with $r \notin\{i, j\}$. The maximal independent sets are Z and sets of the form S, \cup $\left\{z_{i j}: i=r\right.$ or $\left.j=r\right\}$. It is easy to see no two of these have a non-empty intersection. Furthermore, the minimum degree δ is the degree of an element of Z, so $\delta=\frac{1}{2} p^{3}$. Since $n^{2 / 3} \approx(p+1)^{2}\left(2^{-2 / 3}\right)$ and $n-\delta \approx \frac{3}{2}(p+1)^{2} \approx \frac{3}{2}\left(2^{2 / 3}\right) n^{2 / 3}$, so $\delta \approx n-\frac{3}{2}(2 n)^{2 / 3}$.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Publ. Co., New York, 1976).
[2] E.J. Cockayne and S.T. Hedetniemi, Disjoint independent dominating sets in graphs, Discrete Math. 15 (1976) 213-222.
[3] C. Payan, Sur une classe de problemes de couverture, C. R. Acad. Sci. Paris A 278 (1974) 233-235.
[4] C. Payan, A counter-example to the conjecture: "Every nonempty regular simple graph contains two disjoint maximal independent sets", Graph Theory Newsletter 6 (1977) 7-8.
[5] C. Payan, Sur quelques problemes de couverture et de couplage en cominatoire, Thesis, Grenoble, 1977.
[6] C. Payan, Coverings by minimal transversals, Discrete Math. 23 (1978) 273-277.

