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Let f k (n) denote the maximum of k-subsets of an n-set satisfying the condition in
the title . It is proven that f"(n) < f"(n + 1) < with equalities holding
iff there exists a Steiner-system Y(t, 2t- 1, n) . The bounds are approximately best
possible for k < 6 and of correct order of magnitude for k > 7, as well, even if the
corresponding Steiner-systems do not exist .

Exponential lower and upper bounds are obtained for the case if we do not put
size restrictions on the members of the family (i .e., the nonuniform case).

1 . INTRODUCTION AND THE STATEMENT OF THE RESULTS

1 .1 . Notations

Let X be an n-element set . For an integer t, 0 < t < n we denote by (, ) the
collection of all the t-subsets of X, while 2x denotes the set having all the
different subsets of X as its elements . A family of subsets of X is just a
subset of 2X . We shall call it t-uniform if it is a subset of (X ) . By a Steiner-
system Y = Y(t, k, n) we shall mean an Y c (k) such that for every
A E (t) there is exactly one B E 5° with A c B. Obviously, we have
,Z(t, k, n)l (f )/(k ) . By [a]([b]) we shall denote the smallest (greatest)
integer (not) exceeding a (b), respectively. We will use the Stirling formula,
i .e .,

1 .2. The Results

THEOREM 1 . Suppose .~k c (k ) and there are no three distinct sets
A, B, C E . k such that A c B U C. Let f k(n) denote the maximum of ,~r-k

~,

subject to these constraints . Then we have
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f2t-,(n) < ( n )1(2t - 1)

f2t(n)

	

(n

	

1 )/( 2t

	

1)

Moreover equality holds in (1) iff 2t- ' = S°(t, 2t - 1, n), and in (2) ifffor
some x E X and a Steiner-system Y = S°(t, 2t- 1, n - 1) on X - {x} we
have .~2` _ { {x} U S: S E

The bounds given by this theorem are best possible only if the
corresponding Steiner-systems exist . As it is well known (cf . [5]) ~(2, 3, n)
exists iff n > 7 and n - 1 or 3 (mod 6) . Thus in these cases f' (n) _
f '(n + 1) = n(n - 1)/6. The Steiner-systems S°(3, q + 1, q" + 1), called
Moebius geometries (see Hanani [3 ]) yield for the special case q = 4 some
S°(3, 5, 4" + 1). Thus for n = 4° + 1 we have f '(n) =f6 (n + 1) _ ( 3 )/(3 ).
Erdős and Hanani [ 1 ] proved the existence of . c ( q+ l ) with IF n F' I < 2
for F, F' E

	

and _97- 1 _ (3 )/(Q 3' ) - o(n') . Let us put these observations
together .

COROLLARY 1 .

f'(n) = n,

	

f'(n) = n - 1,

f3 (n) = n 2/6 + O(n) =f4(n)

f' (n) = n 3/60 + o(n 3) =f6(n).

(1)

(2)

As for t > 4 almost nothing is known about the existence of
Y(t, 2t - 1, n), we do not have any asymptotically correct estimations of
f '(n) . We could only obtain :

PROPOSITION 1 . fk(n) > ( k/z )/1[kk21) 2 .

Remark . The problems considered in this theorem belong to the so-called
Turán-type problems i .e ., what is the maximum number of k-subsets of an n-
set if it contains no subsystem isomorphic to one member of a set of k-
graphs {oI,o , . . . I "9} . This maximum is usually denoted by
ext (n, { ,. . ., } ) . Let us define W _ { {A, B, C } : JAI _ JB I _ JC J =k,
AcBUC} ands= J{x	xk}, {xk+i, . . .,XZk}, {xl, . . .,xk-l'xk+l}} . In this
terminology we proved (Theorem 1 and Proposition 1) that ext(n, 2l) _
O(n[k/ 21 ) . The exclusion of only one member of 2l, however, leads to
different results, e .g ., (see [2]) ext(n,

	

) _ ( k=, ) (n > n o(k)) .
Until now we considered the uniform case, i .e., - c ( k ), but what

happens if we assume only (-- 2X . Let f(n) denote max -57- 1 for J7_ c- 2'
and A, B, C E -T implies A B U C.
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THEOREM 2 . 1.134" < f(n) < 1 .25 " .

Here the upper bound follows from Theorem 1, using the Stirling formula
and the obvious estimation f(n) < Y-k<n f k(n) . Proposition 1 would give an
exponential lower bound but a weaker one . We obtain the actual bound by
random construction .

If we fix r = n - k only then by taking complements the problem can be
stated in the following way . What is the maximum cardinality g(r) of an r-
uniform family if it does not contain 3 sets A, B, C with A n B c C .
Applying Theorem 2 one can easily prove g(r) > 1 .18', and trivially
g(r) < 2' . Kleitman et al. [6] have shown that g(r) < (1 .87 + 0(1))', i .e ., g(r)
is exponentially smaller than 2' .

2 . THE PROOFS

2.1 . Some Preparations

Observe that if we adjoin a fixed element outside of the ground set to all
the members of . zt- ' we get an ~2 ' on n + 1 points. Thus f 2 ' - ' ( n)
f 2'(n + 1) . Hence it is sufficient to prove (2), along with the uniqueness . Let
us denote . 2' by just . and for T c X . (T) _ {F E Jw- : T c F~

(i) If T U T' = F E , then either I . ( T) = 1 or ~ . (T')J = 1 .

Indeed, otherwise we can take Fo , Fó different from F with
T c F,, T' c F 0 , and consequently, F c F o U Fó .

If . (T)l = l, T c F E J7-, we say T is a private subset of F. For
F, F' C - obviously F - F' is always a private subset of F. Now a 2t-
element set can be partitioned into 2 t-sets in z(2') different ways. Thus we
have :

(ü) If F C -97-, then it has at least 1(2t ) private t-subsets.

(Let us remark that (ü) already gives

	

< ( r )/( 2 ' t ') which is only slightly
weaker than (2) .)

Suppose T c F E . , T J = t . If for some x C F- T we have
~ (TU {x~)J > 1, then in view of (i) F- T- {x} is a private subset of F
and consequently for y F the t-set (F- T - {x)) U { y } is not contained in
any member of ~. We say that these sets are free sets associated with
the pair (F, T) . The collection of all such free sets will be denoted by
-Q/(F, T), i.e ., T) _ {A (-- X : IA I = t, A n T= 0, A n F~ = t -1,
.W-(F-A)l > 1}. Of course, we have :

(iii) I .V(F,T)J =IX-F1~{x:xEF-T, . (TU {x})J > 1}

Next we shall prove :
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(iv) If 1 .T(T)1 > (n - t)/t, then

	

I -~/(F, T)1 > (n - 2t) x
(t 1.á(T)1- (n - t)) .

In fact in view of (iii)

(F, T)1 = (n - 2t)

	

1 {x: x E F - T, --5~'-(TU {x } )I > l }I

Fe. 1- (T)

	

FE-~9"- ( T)

_ (n - 2t)

	

1 {F: T U {x} c F}1
XEX-T

3r(TV(x» I > 1

(n - 2t) (

	

1 . (TU {x})I - (n - t))
xEX-T

_ (n - 2t)(t J~7-(T)1 - (n - t)).

(v) ForACX,IAI=twehave l{(F,T):AE-v'(F,T)}l<(t+1)t.

Indeed for A E -V (F, T) there exists a y E A such that A - { y } is a private
subset of F, thus the number of possibilities for F is at most t. On the other
hand T c F - A, I T = t, thus for T there are only (` ~' ) = t + 1 possibilities .
From now on assume :

(vi) There are no F,, F z E . with F, U Fz = X.

In fact, otherwise

	

_ IF,, Fz }, and (2) follows, also in the case
n < 2t + 1 . For n = 2t + r < 3t we can improve (v) .

Let A belong to -,./(F, T). Then 1 .á(F -A)1 > 1, thus we can find
F F' E F, F - A c F' . Now (vi) yields I F - F' I < r - 1 . Suppose
y E A - (F - F') . Then A - { y } cannot be contained in a member F" * F
of Jw- , since F c F' U F" would follow. Thus the number of sets Fo E F such
that A E -V(F,, To ) is at most 1 + I F - F' I < 1 + r - 1 = r. We infer, taking
into account (v) :

(vii) 1{(F,T) :AE-V(F,T)} <(t+1)mint,n-2t) .

In fact, we have proved that for fixed A

I {F' : A E -Qo (F', T)} < min(t, n - 2t)

holds. Moreover, for fixed A and T;

(viii) I {F' : A E -,,I(F', T)}I < min{t, n - 2t, I,,7- (T)1 } trivially follows .

2 .2. The Proof of (2)

For every pair (F, T), T c F E -)F-, I T j = t we define a nonnegative weight
function on the t-subsets of X (i .e ., w (F , T) : ( ) > R). For convenience we set
t o = min(t, n - 2t) .

(a) If 1 .á(T)1 = 1, then w (F,T)(A) = 1 for A = T and 0, otherwise .
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(b) If 1 < . (T)j < (n - t)/t, then W(F,T)(A) = t/(n - t) for A = T and
0, otherwise .

Let us estimate the sum of the weights in the case (c), for brevity we set
Jw~-(T)j = d, min(to, d) = do, and use (viii) and (iv) .

1

	

1
Y ) W(F,T)(A) = d + (t + 1)to {A : A E F

	

T
U -,4(F', T)

A -(Y-

I +	
1	-

	

'(F', T)l
d

	

(t+ 1)t0 do Ve3(T)
I + (n - 2t)(dt - (n - t)) > I + dt - (n - t)
d

	

to(t+ 1)do

	

d

	

(t+ 1)da

_ t

	

(dt (n t))(d(n t) do(t + 1))

	

t
n-t+

	

(t+ 1)dod(n-t)

	

> n-t

Using (ü) we infer for any fixed F E .~W-

)

	

(
W(F,T)(A)> 1 2

	

t (2t1+ I 2

	

t 2t ) tn-tTcF AE/X)lt

(2t - 1

	

n
t

	

n-t

2t- 1

	

n

	

w(F,T)(A))I\ t

	

n- t

	

FE.5í` T cF

	

X
ITI=t

	

ae(t)

~ ~

		

n
W(F,T)(A)) < t

X 1E1 T 1 FA E( t)

	

I T I= t

(3)

On the other hand for any fixed A E (f ) we prove

w(F,T)(A) < 1 .

	

(4)
(F, T)

Indeed, if ~. (A)j > I, then w(F,T) (A) is positive only for T=A and even
then it is at most

	

if ~JV(A)l = 0, then it follows from (vii) .
Now using the inequalities (3) and (4) we infer

(c) If ~ .F(T)l > (n - t)/t, then

W(F,T)(A) = 111, (T)I, for A = T,
= 1/(t + 1)t" if A E .V (F', T) for some F',
= 0, otherwise .



11-14~-I <
(n

t
I

)I

(2t t

I )

	

Q.E.D.

2.3. The Case of Equality

If I,

	

_ ("'' )l( 2t~ ') then we must have equality for every F E

	

in (3),
thus F has excactly z( tt ) private t-subsets and another z(~t ) for which
1 < ~J07- (T))j < (n - t)lt.

We must have equality in (4) as well yielding that there are no free t-sets
A, i .e ., with ~.~(A)j = 0; more exactly ~JV(A)l is either I or (n - t)lt (in
particular (n - t)lt is an integer, i .e., t I n). Let us set

e = ~A E (X ) : 1, (A)

We have

Also we have

ic i =
o-i<t+i

	

B,FE,5~-

t+1

	

i
y 2ci
i=O

	

BcFE~
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=1

	

z=~AE(X)
:I~(A)= n-t ~

Then EI =I ( 2t )I

	

=("~`) and ~z =(i)-~E~=(i-1
Now we show :

(ix) For F, P E . we have I F n P < t .
Indeed, otherwise IF - P < t - I and F - P is a private subset of F if

we choose A such that I A I= t, F- P c-A F, then A is a free t-subset, a
contradiction. Thus for T E r the sets F - T for F E (T) partition X - T.
Let us take some fixed B E (,X,) and set

D = {xEX-B :(BU{x})Ez },

	

~DI =d,

c,- {FE . :F :::)B, FnD]=i}I,

	

0<i<t+1 .

FnD

	

BU x

	

n-t
~ -- ~ ~~ (

	

{ })j= d		(5)
xED

	

t

c i(t+1-i)=

	

IFn(X-B-D)~
OGi_<t+l

	

BcFE.~

1-,W~-(BU {x})j=n-t+ 1-d.

	

(6)
xEX-B-D

As for every x, y E D, we have 1(B U {x, y})l = 1, we deduce

(F2D
)_

	

(BU{x,y})~=(2) (7 )
x,yED
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If we subtract the double of (7) from (5) multiplied by t we obtain

If d * 0 and d -t n - t + 1, then, using c ; = 0 for i > d, a comparison of (6)
and (8) yields dc i (t + 1 - i) = ic i (t + 1 - i) for 0 < i < t + 1, consequently
cd(t+1-d)=n-t+1-d and c d >1, co=c,= . . .=cd_,=0 . Now if
d > 2 from (7) we deduce c d = 1 which leads to the contradiction
n - t + 1 - d = t + 1 -d, i .e ., n = 2t . Thus we have proved :

(x) j r(B) = 0 or 1 or n - t + l .
Now we shall need the following special instance of the Kruskal-Katona

theorem (see [4, 7]).
(xi) Suppose for some integers m, g, m > g > 1 we have a family ~' of

g-sets with _ (g ) . Then I {H c G E I HI = g - 1 with equality
holding iff USE, GI = m .

Using (xi) we show next :
(xü) There exist an x o E X such that r = {T E (, ) : xo E T} .

Applying (xi) to e we infer

As i s(B)1 +

X
~BE

(t-1) :

X
{B E (t- 1 ) :

Y c i i(t + 1 - i) = d(n - t + 1-d).

	

(8)
o_<tct+i

X
{BE

(t-1) :

T(B)I = n - t + 1, in view of (x) we deduce

T(B)

T(B)

e(B)

<I~

>1~

<

~(n- 1)
t- 1

	

(9 )

(10)

= (t-2)

Using these two inequalities we infer

(n -I )= {(B,T):BcTET,IBI=t-1}I
t-1)=

I T(B)I
BE(lx-1)

(t-1 )1+(t-2)
(n-t+ I)=t (t-1)

Thus we must have equality in (10) and consequently in (9), too. Now (xi)
yields the existence of x o E X such that UBE E

E = X - {x o } which implies



NO SET IS COVERED BY TWO OTHERS

	

165

(xü). Thus xo E F for every F E . Set

	

_ {F- {xo } : F E } . Now
c (X-(xo

J
)

	

_ (
-1)/(21

-') and in view of (ix) for F F' E

	

weo

	

u-i

	

o

	

t-I

	

t-I

	

o

	

0

	

0

have IFo n Fá < t - 1, thus

	

is an (n - 1, 2t - 1, t) Steiner system .
Q.E.D .

2 .4. The Proof of Proposition 1
We will actually describe an algorithm to find a family with so many sets .

We start with = 0, o = (k ) . If are defined, then let F be an
arbitrary member of and set

E
(k

) : IGnF+I --5
7-U {F},-~j+I =

Of course we have J'-j+,

	

1+ _ 0-

< ( [k/2] )
(n [k/2]21)

	

( 11)

We go on with this procedure until we reach an m such that

	

= 0. Then
by (11) we have

I
m=m>(k)I(fk/21)(n[k/2 ] ~ 1 ) - ( fk/21)I(fk/21) z

By the definition of .W„ for F, F' E -) ,, we have IF n F' I < [k/2] thus
F c F' U F" is impossible.

	

Q.E.D.

2 .5 . The Proof of Theorem 2
Let us choose independently and with probability 2m/( k ) each of the k-

subsets of X, the value of m will be fixed later. Let Y denote the obtained
random hypergraph. Obviously, the expectation of the number of edges in
is E(Y 1) = 2m . We will need the expression for the number of ordered pairs
of k-sets B, C such that for a given k-set A the relation A c B U C holds :

o<x<k (x ) (k x ) o<y<x

(x
y ) (x Y)

O

	

k (x
)(

k
n
_X

k) (n x+x)

L
(x

)2 (n-k+x)
<max (x

)2

(n k+x) n .
o<_x<k

Thus for m < 1/2 \12-(k)/Vnmaxx-<k (x) 2(n- k +x) we have R(n,k)4m 2 /
( k)~ < i, yielding that the probability for a given edge A E 5° to be covered

R (n, k) _
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by B U C. B, C E Y is less than Z . Hence the expected number of edges to
remain in _Y after the omission of the covered edges is greater than
2m - Z2m = m, and in that hypergraph the conditions are already satisfied .

So we have shown the existence of a desired hypergraph with at least
1/2 ~(k)lVn max, (z)2(" k +x ) edges. All we need is a lower bound on
this expression . The ratio of the term to be maximized, for consecutive values
of x, is (k - x + 1)2 (n - k + x)/(n - 2k + x)x 2 . This function is monotone
decreasing in x, thus the maximum is taken at the value where this ratio is
about 1. We get a quadratic equation in x ; the solution of which is
(0<x<k)

xmax - i(3k - 2n + á/5k 2 - 8kn + 4n2 ) .

Setting k = 0.26n we obtain x,„ ax = 0.1413 . . . n . Putting this value back into
the expression for m and applying the Stirling formula we see that m can be
as large as (1.1348)" .

	

Q.E.D .

Added in proof. The first and third authors observed that the characteristic vectors of the
members of the set-system .á in Theorem 2 yield a point set .~~ of cardinality at least 1 .13" in
R" such that all angles determined by the triples of ,~~ are less than u/2 . This disproves the
old conjecture ~ .~ < 2n - 1 . Moreover one can give 1 .001" points in R" all the angles of
which are less than 61° (and greater than 58°) . These and other related results can be found in
[8 ] .
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