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Sufficient conditions are given in terms of S(G) and A(T), for a graph G with n
vertices to contain a tree T with n vertices . One of these sufficient conditions is
used to calculate some of the Ramsey numbers for the pair tree-star . Also necessary
conditions are given, in terms of d(G), for a graph G with n vertices to contain all
trees with n vertices .

1 . INTRODUCTION

A graph G is panarboreal if G contains all trees T with I V(T)R _ I V(G)j
(i .e., G has a subgraph isomorphic to T) . In [5], conditions in terms of S(G)
and d(G) were given to ensure that G is panarboreal . The following result
was proved .

THEOREM 1 [5 ] . If k > 3 and n > 3k 2 - 9k + 8, then every graph G of
order n satisfying d (G) = n - I and 8(G) > n - k is panarboreal .

If A(G) n - 1 then of course G is not panarboreal . In the third sction of
this paper the condition A(G) = n - 1 is dropped to see which trees are
contained in G whenever only conditions on 8(G) are specified . The
following two theorems are proved . The first of these theorems is essentially
contained in the proof of Theorem 1 [5 ] . However, it is of value to state and
prove the result so as to give it independent status .
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THEOREM 2 . If G is a graph of order n and minimum degree

o(G)~
((n-1)d+1

({

	

d+1

then G contains every tree of order n and maximum degree d .

THEOREM 3 . If k > 2 and n > 2(3k - 2)(2k - 3)(k - 2) + 1, then every
graph G of order n and minimum degree 8(G) > n - k contains every tree T
of order n and maximum degree d (T) < n - 2k + 2 .

Theorem 1 will be shown to be a corollary of Theorem 3 for appropriately
large n .

In the fourth section, necessary conditions, in terms of 8(G), for G to
contain certain trees are given . Examples verifying the following two
theorems are constructed .

THEOREM 4 . There exists a positive constant c and an integer N in terms
of which the following statement can be made . For every n > N there exists a
graph G of order n and minimum degree 8(G) > [n/2 + c log n] which does
not contain tree T of order n and maximum degree d(T) = 3 .

THEOREM 5 . Let k be a positive integer . If n > 2(k + 1) 2 (2k + 3), then
there is a graph G with I V(G) = n, 6(G) > [(n + k - 1)/2], and
d (G) = n - 1 which is not panarboreal.

In the last section of this paper the Ramsey number r(T, S) will be
calculated for some trees T and stars S.

2 . TERMINOLOGY AND NOTATION

Terminology and notation will generally conform to that used in [2, 7] .
All graphs considered in this paper will be finite, undirected, and without
loops or multiple edges . The vertex set and edge set of a graph G will be
denoted by V(G) and E(G), respectively . Vertices u and v are said to be
adjacent if the edge uv E E(G) . The neighborhood of v in the graph G will be
denoted by NG (v) and the degree by dG(v). A path in G with vertices
{v, , v z , .- v„ } will be written (v, , v z , . . ., v„) . If in addition dG(v i ) = 2 for
2 < i < n - 1, the path will be called a suspended path. The statement "G
contains H" will mean that there is an isomorphic embedding of H into G.
That is, there exists a one-to-one map c : V(H) V(G) such that
a(u) a(v) E E(G) whenever uv E E(H).

A vertex of degree 1 is called an end-vertex and an edge uv is called a
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pendant edge if either u or v is an end-vertex . A set of mutually non-adjacent
pendant edges will be called a set of hairs . If a graph G contains a vertex
which is adjacent to k end-vertices, then we will say that G has a talon of
degree k.

For graphs G and H, the Ramsey number r(G, H) is the smallest positive
integer n, such that for any graph F with I V(G)J = n, either F contains G or
its complement F contains H.

3. SUFFICIENT CONDITIONS

Before giving the proof of Theorem 2, we state without proof a well-
known lemma . A proof can be found in [5] .

LEMMA 6 . Let T be a tree with n vertices, and let T' be any of its
subtrees. Let G be a graph which satisfies 8(G) > n - I and suppose that
r : V(T')-4 V(G) is an embedding or T' into G. Then r extends to
a : V(T) -* V(G), where a is an embedding of T into G.

Proof of Theorem 2 . Suppose that the stated result is false . Then there
exists a tree T of order <n such that G contains T' = T - x but not T, where
x is an end-vertex of T. Let c : V(T) -4 V(G) be an embedding of T' into G .
Let z denote the vertex to which x is adjacent in T and define

U= {u E V(T') I a(u) 6(z) E E(G) } .

Since, by assumption, there is no embedding of T into G, a(z) must not be
adjacent in G to any vertex outside of a[T'] . It follows that I U >6(G) .
Select a vertex v E V(G) -a[T' ] . Extend a by setting 6(x) = v and define

W= ]w E V(T') a(w) a(x) E(G) } .

Define a bipartite graph B with "disjoint" parts U and W (actually disjoint
copies of U and W) by making u E U and w E W adjacent in B iff they are
adjacent in T' . We claim that in B no vertex u E U is isolated . Suppose, to
the contrary, that u E U is isolated in B. Then for every vertex w which is
adjacent to u in T', a(w) is adjacent to a(x) in G . It follows that if we define
r(x) = a(u), r(u) = a(x), and r = a otherwise, r yields an embedding of T into
G. Since this is contrary to the assumption that no such embedding exists,
the claim is justified and so we conclude that the number of edges in B is at
least I U1 and so at least 8(G). On the other hand, the number of edges of B is
at most I W 1 d and so at most (n - 1 - 8(G)) d . We thus conclude that
8(G) < (n - I - 8(G)) d and so (d + 1) 8(G) < (n - I) A . As this is contrary
to the hypothesis of the theorem, namely, (d + 1) 8(G) > (n - 1) d + 1, the
desired contradiction has been reached and the theorem is proved .
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The specific relationship between Theorems 1 and 2 is worth noting . In
the proof of Theorem 1, it is first proved that every graph G satisfying the
conditions of the theorem contains every tree T of order n with
A(G)>3k-6. For trees satisfying A(T)<3k-7, we, in effect, apply
Theorem 2 . The needed condition, (d + 1) 6(G) > (n - 1)d + 1, now tran-
slates to (3k - 6)(n - k) > (n - 1)(3k - 7) + 1 or n > 3k 2 - 9k + 8 .
Theorem 3 is a direct consequence of the following theorem which we will

now prove, and a lemma which we will state later .

THEOREM 7 . Let G be a graph of order n which satisfies 8(G) > n - k .
Let T be a tree of order n . Then G contains T under any one of the following
circumstances :

(i) T has a suspended path with 3k - 1 vertices,
(ü) T has a set of 2(k- 1) hairs,

(iii) n > (2k + 1)(k - 1), k > 2, d(T) < n - 2k + 2 and T has a talon
of degree k - 1 .

Remarks . Part (ü) is proved in Lemma 3 of [5] but we include it here
for completeness. In the same lemma a result is proved which is similar to
(iii), though the result in the lemma is much more easily proved . There the
condition on T, namely, d (T) < n - 2k + 2, is replaced by the strong
condition on G, d(G) = n - 1 .

Proof of Theorem 7 . (i) Let T" be the tree obtained from T by
shortening the suspended path by k - 1 vertices . Thus I V(T")l = n - k + l,
and T" is contained in G by Lemma 6 . Let T' be the tree contained in G in
which this suspended path has been lengthened as much as possible . Let
6: V(T') -> V(G) be an embedding of T' . Assume T' # T, and let P be the
suspended path in T' .

By assumption, there is a vertex v E V(G - Q(T' )). The maximality of T'
implies that v is not adjacent in G to two consecutive vertices of C(P) . Since
P has at least 2k vertices v is not adjacent to at least k vertices in G. This
implies dG(v) < n - k - 1, a contradiction .

(ü) Delete the 2k - 2 end-vertices of these hairs, to obtain a tree T'
with n - 2k + 2 vertices . By Lemma 6, there is an embedding a of T' into G .
Let R be the set of 2k - 2 vertices of T' adjacent to the end-vertices of T
deleted, and let S = V(G - 6(T')). Thus I R I _ I S I = 2k - 2 .

If there is a matching in G between c(R) and S which saturates R, then G
contains the tree T. Assume not. Then by Hall's theorem [6], there is a non-
empty subset R' -- Q(R ), such that S' = NG (R') n S satisfies I S' < I R 1 .

Each vertex of a(R) is adjacent to at least k - 1 vertices of S, since
8(G) > n - k . Thus I R' J > k . But any vertex of S - S' is not adjacent to any

582b/32/2-5
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vertex of R', and hence has degree at most n - k - 1 . This gives a con-
tradiction .

(iii) Let v be the vertex which is the center of the talon, and let T' be
the tree obtained from T by deleting k - 1 vertices of degree 1 adjacent to v .
Since A (T) < n - 2k + 2, there are at least 2k - 3 vertices of T' not in
N,,(v) . Let 0,, be the vertices of T' which are an odd distance of at least 3
from v, and let ET , be the vertices an even positive distance from v . Thus
either

IO
T , I > k - 1 or JET , >_ k - 1 .

Select a subtree T" of T' containing v, which has a minimal number of
vertices, subject to the condition that either I OT„ I > k - 1 or I ET„ > k - 1 .
The minimality of the number of vertices of T" implies that either
IOT„ I = k - 1 or JET" I = k - 1, OT" I + JET" < 2k - 3, and NT„(v)l < k - 1 .
Thus I V(T")l < 3(k - 1) .

Let w be a fixed vertex of G. We will show that there is an embedding r or
T" into G, such that r(v) = w and V(r(T")) Nu(w). To prove this, we need
to consider two subcases .

Subcase (a) : JET" 1= k - 1 . The tree T" is a bipartite graph with parts
of order SET „I + 1 and OT „I +ANT „(v)l . Thus T" is a subgraph of the
complete bipartite graph K,,zk-3 • Select a set A - V(G) with IA =k and
A - NU(w) U { w } . This can be done since 8(G) > n - k. Let

B={xE V(G-A)IxaEE(G) for all aEA} .

Thus B I > n - (k - 1)(k - 2) >- 2k - 3, and G contains a complete bipartite
graph with parts A and B . Hence, there is an embedding r : V(T") -> V(G)
with r(v) = w and z [ET „ U {v} ] =A .

Subcase (b) : OT" I = k - 1 . The graph T" - v is a bipartite graph
with parts of order ET" J and J 0,_J + INT „(v)I . Select a set A, -- V(G - w),
such that IA, = k - 1 and A, - Nj(w) . Next select a set A z of

I NT„ (v)1

vertices of G disjoint from A, U ]w}, and let A =A, UA 2 . Thus
I A I < 2k - 2 . Just as in the previous subcase let

B = {x E V(G - (A U {w})) J xa E E(G) for all a E A } .

Then, I B I > n - 1 - k(2k - 2) > k - 2 . The graph G contains the complete
bipartite graph with parts A and B. Hence there is a copy of T" - v in G
with O T „ corresponding to A, and NT„ (v) corresponding to A, Therefore
there is an embedding r : V(T") V(G) with r(v) = W 1 T[OT"I =A,, and
r[NT(v)] =A z .

In both subcases we have an embedding r of T" into G with r(v) = w and
NU(w) -- ,r[ V(T")] . Since I V(T')l = n - k + 1 and 6(G) > n - k, Lemma 6
implies r can be extended to an embedding a of T' into G. The vertices of G
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not in a [ h(T') ] are all adjacent to w, and thus a can be extended to an
embedding of T into G. This completes the proof of the final case .

Before giving the proof of Theorem 3, it should be mentioned that this
result is the best possible in the following sense . Any graph G which satisfies
the conditions of Theorem 3 does not necessarily contain all trees T with
d(T) < n - 2k + 3 . Consider the case when n is divisible by k, and T
contains a star S with n - 2k + 3 edges, such that T - S has independence
number k - 2 . (Attaching a path onto an end-vertex of the star S would give
such a graph .) The tree T is not contained in the graph G, which is the
complete (n/k)-partite graph with each part containing k vertices . This is
true since G - S', where S' is a star with n - 2k + 3 edges, has indepen-
dence number at least k - 1 .

The following lemma, which we state without proof, will be used in the
proof of Theorem 3 . A proof of a slightly stronger version of this lemma can
be found in [3 ] .

LEMMA 8 . Let T be a tree with n vertices . If T does not contain any
suspended path with more than s vertices, then T has at least nl(2s) end-
vertices .

Proof of Theorem 3 . Assume none of the conditions of Theorem 7 are
satisfied . Since (i) is not satisfied, Lemma 8 implies that there are at least
nl(2(3k - 2)) vertices of degree I . On the other hand (ü) and (iii) not true
imply that T has at most (2k - 3)(k - 2) vertices of degree 1 . Therefore
n < 2(3k - 2)(2k - 3)(k - 2), a contradiction which completes the proof .

For n > 2(3k - 2)(2k - 3)(k - 2), Theorem 1 is a corollary of
Theorem 3 . This can be seen as follows . If d(T) < n - 2k + 2, then
Theorem 3 implies directly that G contains T. If A (T) > n - 2k + 2, let v be
the vertex of T of degree d (T) and let w be a vertex of G of degree n - 1 .
Then let T' = T - v and G' = G - w . Again Theorem 3 implies there is an
embedding of T' into G' . Clearly this can be extended to an embedding of T
into G by mapping v onto w .

4. NECESSARY CONDITIONS

By a well-known theorem of Dirac [4], any graph G, with n vertices and
8(G) > (n - 1)/2, has a Hamiltonian path. However, by Theorem 4 this
degree condition is not sufficient to ensure that G contains all trees on n
vertices ; in fact, it will not even ensure all trees of bounded degree are
contained in G .
Theorem 4 is essentially a restatement of a result of Bollobás et al . [2],

which we now state .
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THEOREM 9 [1 ] . There is a constant c > 0, such that if n is sugici ently
large, then there is a ternary tree T on n vertices such that a,a T for
a = [(n - clog n)/2 J .

The proof of Theorem 4 which follows uses Theorem 9 and was
communicated to the authors by F . Chung .

Proof of Theorem 4 . Let r = [c log n I and s = (n - r)/2 . Consider the
graph

G = r + ( [s , U tsj ) .

Clearly G contains [sl,[5l . Therefore Theorem 9 implies that G does not
contain some ternary tree T on n vertices. Also S(G) _ [c log n I +
[(n - [c log n])/2] - 1 >, [(n + c' log n)/2] for an appropriate c'. If we let
d = c'/2, the theorem follows .

For a graph G to be panarboreal it is clear that d (G) = n - 1 . The
minimal value of 8(G) which ensures that G is panarboreal is not known .
However, Theorem 5 gives a necessary lower bound .

Proof of Theorem 5 . We will first define a graph G which satisfies the
conditions of the theorem, and then we will describe a tree on n vertices
which is not contained in G .

The graph G is defined as follows . The vertices V(G) of G are partitioned
into two sets A and B, with A = { (n - k)/2 } and I B I _ [ ( n + k)/2 ] . Each
vertex in A is adjacent in G to each vertex in B, and no two vertices of A are
adjacent . There is a fixed vertex b o in B, which is adjacent to every vertex of
B . The remaining vertices of B form a disjoint union of complete graphs with
either k or k - 1 vertices. Thus A(G) = n - 1, 8(G) >, min([(n + k)/2],
{(n-k)/2}+k-1)= [(n+k-1)/2] .

The tree T is defined as follows. There is a vertex x (which is the center
of the tree) adjacent to precisely 2k + 1 vertices x„ x21 . . .1 x2k+, (which
we will call the subcenters of the tree). Also (n - 2k - 2) -
[(n - 2k - 2)/(2k + 1)](2k + 1) of the subcenters will have degree
{(n - 2k - 2)/(2k + 1)} + 1 and the remaining subcenters will have degree
[ (n - 2k - 2)/(2k + 1)] + 1 . Therefore the tree T has n - 2k - 2 vertices of
degree 1 .

We need to verify that T is not contained in G . We will assume that there
is an embedding a of T into G, and show that this leads to a contradiction .
Three cases will be considered .

Case 1 : 6(x) E A . In this case, all of the subcenters {6(x 1 ), 6(x 2), . . .,

6(x2k+1)} c--B. Each vertex in B, with the exception of b o , is adjacent to at
most k other vertices of B . This implies that at least each of 2k subcenters of
6(T) are adjacent to at least [(n - 2k - 2)/(2k + 1)] - k vertices of 6(T) in
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A . Therefore, {(n -k)/2} _ IA I > 2k([(n - 2k- 2)/(2k + 1) ] - k) . Direct
calculation verifies that this implies (2k - 1) n < 4k(k + 1)(2k + 3), a con-
tradiction .

Case 2 : c(x)CB - {b,} . Since every vertex of B - {b,} is adjacent to at
most k vertices of B, at least k + 1 of the subcenters of a(T) must be in A .
Each of these subcenters of a(T) in A is adjacent in a(T) to at least
I (n - 2k - 2)/(2k + 1) ] vertices in B . Hence 1(n + k)12] _ JB I >
(k + 1) 1 (n - 2k - 2)/(2k + 1) ] . This leads to a contradiction, just as in
Case 1 .

Case 3 : a(x) = b, In this case, either at least k + 1 of the vertices of
a (T) are in B - fib,}, or at least k + 1 are in A . In the latter case, a
contradiction is reached just as in Case 2 . In the former case, the same
reasoning used in Case 1 implies {(n - k)/2 } _ JA I > (k + 1)(I (n - 2k - 2)/
(2k + 1)] - k . This gives, by direct calculation, that n < 2(k + 1) 2(2k + 3), a
contradiction. This completes the proof of Theorem 5 .

5 . RAMSEY RESULT

Before we can state the theorem of this section, some additional notation
must be given. A star with k edges will be denoted by S k . The independence
number of a graph G will be written as a(G) . If T is a tree, then

a'(T) = min Iu(T- V(S)) S is a star contained in T} .

Thus, a'(T) is a measure of how small the independence number of the non-
neighborhood of a vertex of the tree can be . The parameter a' will play a
role in the following theorem only if T has a vertex of large degree . This is
true since if T has .n o vertices of large degree, then a' (T) will be large .

THEOREM 10 . Let k be an integer >2, and n > 2(3k - 2)(2k - 3)
(k - 2) + 1 . If T is a tree with I V(T)R = n, then max{n, n + k - 1 - a' + fl}
r(T, S k ) G max {n, n + k - 1-a' }, where a' = a' (T), and fi = 0 if
n + k - 2 - a' is divisible by k and /3 = 1 otherwise .

Proof of Theorem 10 . We first verify the lower bounds . The graph „_,
implies r(T, S k ) > n . Let H be the graph on n + k - 2 - a' + /I > n vertices,
whose complement is the disjoint union of complete graphs k if # = 0, and
is the disjoint union of complete graphs k and k _, if /3 - 1. Clearly H
does not contain Sk . Also H does not contain T. To see this, assume a is an
embedding of T into H. If v is a vertex of T, then a(v) must be in some
component of H with at least k - fl vertices. This same component of H
must contain at least k - /3 - 1 - (k - 2 - a' - 6) = a' + 1 other vertices of
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Q(T). Since this is true for any vertex v of T, this implies a'(T) > a' + 1, a
contradiction .
We now consider the upper bounds . Let G be a graph with

t = max in, n + k - 1 - a' } vertices, whose complement does not contain an
S, Thus b(G) > t - k. We will show that G contains T.

If J (T) < n - 2k + 2, then a' (T) > k - 1 and t = n . Since 8(G) > n - k,
Theorem 3 implies that G contains T. Thus we assume that
d(T)>n-2k+3 .

Let v be a vertex of T with dT (V) =,J (T), and let T' be the tree obtained
from T by deleting the end-vertices of T which are adjacent to v . Since v is
not adjacent to at most 2k - 4 vertices of T - {v }, I V(T')J < 2(2k - 4) + 1 .
Also T' has a' independent vertices, which are not adjacent to v . Hence T' is
a subgraph of ., +, + , V CT'II -a'-I • We will show that T' can be embedded
in G by using the graph . . +, + IVlrli-a , - I •

Select a vertex w in G, and let W be a set of a' + 1 vertices, which
contains w and a maximum number of vertices of N~(w) . Thus w is adjacent
in G to at most k - 1 - a' vertices of G not in W. Since 8(G) > t - k, we
can get a copy of a , +I + IV(T,)i-a,-I in G, with W corresponding to the
a' + I independent vertices . This is done by merely deleting the vertices
which are not adjacent to each vertex of W. The only condition that must be
saisfied is that t > k I V(T')I . This is certainly true, since I V(T')l < 4k - 7
and t > n > k(4k - 7) .

Hence, there is an embedding a of T' into G with a[ V(F) I ::) W and
a(V) = w . Since w is not adjacent in G to at most k - 1 - a' vertices of G
not in W, a can be extended to an embedding of T into G. This completes
the proof.
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