ON A PROBLEM IN COMBINATORIAL GEOMETRY

P. ERDÖS, G. PURDY and E.G. STRAUS*
Dept. of Mathematics, Texas A \& M University, College Station, TX 77843, USA

Received 28 September 1976
Revised 23 April 1981

1. Introduction

Let S be a set of n points in the plane not all on one straight line. Let T be the maximal area and t the minimal area of nondegenerate triangles with all vertices in S. Let $f(S)=T / t$ and $f(n)=\inf _{8} f(S)$.

In this note we prove that

$$
\begin{equation*}
f(n)=\left[\frac{1}{2}(n-1)\right] \tag{1.1}
\end{equation*}
$$

for all sufficiently large n (we conjecture that (1.1) holds for all $n>5$). It is known [1] that $f(5)=\frac{1}{2}(\sqrt{5}+1)$, attained in case 5 is the set of vertices of a regular pentagon.

The fact that $f(n) \leqslant\left[\frac{1}{2}(n-1)\right]$ can be verified by considering the set

$$
S_{0}=\left\{(0,0),(1,0), \ldots,\left(\left[\frac{1}{2}(n-1)\right], 0\right),(0,1),(1,1), \ldots,\left(\left[\frac{1}{2}(n-2)\right], 1\right)\right\}
$$

of equally spaced points on two parallel lines.
We shall use the notation $\mathscr{C}(S)$ for the convex hull of $S, \mathscr{T}(\mathscr{C})$ for a triangle of maximal area contained in the convex set $\mathscr{6}$ and $|X|$ for the area of the convex set X.

In Section 2 we state and prove our main result. In Section 3 we give some related problems and conjectures.

We need the following result about extremal values of $|8| /|9(8)|$.
1.2. Theorem. For all convex regions $\&$ we have

$$
|\mathscr{C}| /|\mathcal{F}(\mathscr{C})| \leqslant \frac{4 \pi}{3 \sqrt{3}}<2,4184
$$

The maximum is attained if and only if \mathscr{C} is elliptic.
Proof. See [2].

Finally we need a result about the triangulation of polygons.
*Work of the third author has been supported in part by NSF Grant MCS 79-03162.
1.3. Theorem. Let S be a set of n points in the plane not all on one straight line. If there are k points of S on the boundary of the convex hull $\wp(S)$ and $n-k$ in the interior of $\mathscr{C}(S)$, then any triangulation of $\mathscr{C}(S)$ whose vertices are all the points of S contains $2 n-k-2$ triangles.

Proof. Obvious by induction on n.

2. Evaluation of $f(n)$

In this section we prove our main result.

2.1. Theorem. If $n>37$, then

$$
f(n)=\left[\frac{1}{2}(n-1)\right] .
$$

If n is even and $n \geqslant 38$, then any set S with $f(S)=f(n)$ is affine equivalent to the set S_{0} of the introduction.

The proof is via a sequence of lemmas.
2.2. Lemma. If $f(S)=f(n)$ and S has k points on the boundary of $\mathscr{C}(S)$, then

$$
k>\left(2-\frac{2 \pi}{3 \sqrt{3}}\right)(n-1)>0.7908(n-1) .
$$

Proof. By Theorem 1.3 we have

$$
\begin{equation*}
|8| \geqslant(2(n-1)-k) t \tag{2.3}
\end{equation*}
$$

and by Theorem 1.2 we have

$$
\begin{equation*}
|\mathscr{C}|<\frac{4 \pi}{3 \sqrt{3}} T \leqslant \frac{4 \pi}{3 \sqrt{3}}\left[\frac{n-1}{2}\right] t \leqslant \frac{2 \pi}{3 \sqrt{3}}(n-1) t . \tag{2.4}
\end{equation*}
$$

The result now follows from (2,3) and (2,4).
2.5. Lemma. If $f(S)=f(n)$ and $n>37$, then every maximal triangle T has one edge on the boundary of $\mathscr{C}(S)$.

Proof. Assume that there exists a \mathscr{T} with no edge on the boundary of \mathscr{C} and triangulate the three portions of \mathscr{C} which are exterior of $\mathscr{\mathscr { V }}$ using the points of S on the boundary of 8 . Assume that the three boundary arcs contain k_{1}, k_{2} and k_{3} points of S respectively. Then $k_{1}+k_{2}+k_{3}=k+3$. By Theorem 1.3 the triangulation of $\mathscr{C} \backslash \mathscr{F}$ yields $k_{1}+k_{2}+k_{3}-6=k-3$ triangles. Thus, by Lemma 2.2,

$$
|\mathscr{C}-\mathscr{T}| \geqslant(k-3) t \geqslant\left(\left(2-\frac{2 \pi}{3 \sqrt{3}}\right)(n-1)-3\right) t .
$$

On the other hand

$$
|\mathscr{C}-\mathscr{T}|<\left(\frac{4 \pi}{3 \sqrt{3}}-1\right) T \leqslant\left(\frac{4 \pi}{3 \sqrt{3}}-1\right)\left[\frac{n-1}{2}\right] t .
$$

Thus

$$
\left(2-\frac{2 \pi}{3 \sqrt{3}}\right)(n-1)-3<\left(\frac{2 \pi}{3 \sqrt{3}}-\frac{1}{2}\right)(n-1)
$$

or

$$
n-1<6 /\left(5-\frac{8 \pi}{3 \sqrt{3}}\right)<36.7644
$$

that is $n \leqslant 37$.
2.6. Lemma. If a convex region \mathscr{C} contains a maximal triangle \mathscr{T} with two sides on the boundary of 6 , then $|6| \leqslant 2|5|$.

Proof. Let $T=\triangle A B C$ with sides $A B$ and $A C$ on the boundary of \mathscr{C}. Then through the vertex B there is a line of support l of \mathscr{C} parallel to $A C$ and through the vertex C there is a line of support l^{\prime} of \mathscr{C} parallel to $A B$. Let D be the point of intersection of l and l^{\prime} then \mathscr{C} is contained in the parallelogram ABDC whose area is $2|T|$.
2.7. Lemma. If $f(S)=f(n)$ and $|\mathscr{C}(S)| \leqslant 2 T$, then $f(n)=\left[\frac{1}{2}(n-1)\right]$.

Proof. By Theorem 1.3 we have

$$
(2(n-1)-k) t \leqslant|\varphi| \leqslant 2 T \leqslant 2\left[\frac{1}{2}(n-1)\right] t
$$

and hence

$$
\left[\frac{1}{2}(n-1)\right] \geqslant T / t \geqslant n-1-\frac{1}{2} k \geqslant \frac{1}{2} n-1 .
$$

This proves the lemma in case n is even.
If n is odd pick a maximal triangle \mathscr{T}. If \mathscr{T} contains at least $\frac{1}{2}(n+3)$ points of S, then a triangulation of \mathscr{T} yields $T \geqslant \frac{1}{2}(n-1) t$ and we are finished. We may therefore assume that \mathscr{F} contains $n_{0} \leqslant \frac{1}{2}(n+1)$ points of S. But then the closure of $\mathscr{C} \backslash \mathscr{T}$ contains at least $n-n_{0}+2=\frac{1}{2}(n+3)$ points and triangulation of $\mathscr{C}-9$ gives at least $\frac{1}{2}(n-1)$ triangles. Thus

$$
T \geqslant|\mathscr{C} \backslash \quad 9| \geqslant \frac{1}{2}(n-1) t .
$$

In view of Lemmas $2.5,2.6$ and 2.7 we may assume from now on that for all maximal triangles \mathscr{T} the set $\mathscr{C} \backslash \mathscr{T}$ consists of two convex regions. By affine transformation we can normalize the situation so that one maximal triangle is an equilateral $\triangle A B C$ with side $A B$ on the boundary of \mathscr{C} (Fig. 1). By the maximality of $\triangle A B C$ we have that \mathscr{C} is contained in the trapezoid $A B D E$, and by assumption we can choose $A B C$ so that there are points of S in the interiors of

Fig. 1.
$\triangle B C D$ and $\triangle A C E$. Let F be the point of S in $\triangle B C D$ with maximal distances from $B C$ and G the point of S in $\triangle A C E$ with maximal distance from $A C$. Then \mathscr{C} is contained in the hexagon $A B U V W X$ where $U V$ is the line through F parallel to $B C$ and $W X$ is the line through G parallel to $A C$.

Now $|\triangle B U F|+|\triangle C F V|$ is maximal when $|\triangle B C F|=\frac{1}{2} T$ and therefore, for $\mathscr{P}=A B F C G$, we have

$$
|\mathscr{C}|-|\mathscr{P}| \leqslant|A B U V W X|-|\mathscr{P}| \leqslant \frac{1}{2} T \leqslant \frac{1}{4}(n-1) t .
$$

Thus there cannot be more than $\frac{1}{4}(n-1)$ points of S exterior to \mathscr{P} and hence there are

$$
\begin{equation*}
k_{1} \geqslant k-\frac{1}{4}(n-1)>0.5408(n-1) \tag{2.8}
\end{equation*}
$$

points of S which are boundary points of \mathscr{C} on the boundary of \mathscr{P}.
2.9. Lemma. If an edge \mathcal{E} of the boundary of \mathscr{C} contains $c(n-1)+1$ points of S and $f(S)=f(n)$, then either all points of $S \backslash \mathcal{E}$ are collinear, or

$$
c<\frac{2 \pi}{3 \sqrt{3}}-1+\frac{2}{n-1}<0.2092+\frac{2}{n+1} .
$$

Proof. Let the length of \mathscr{E} be L. The shortest interval determined by points of S on \mathscr{E} has length at most $L / c(n-1)$. Thus any point of $S \backslash \mathcal{E}$ has distance at least

$$
h=\frac{2 t c(n-1)}{L} \geqslant \frac{4 c}{L} T
$$

from \mathscr{E}. Since $|\mathscr{C}|>2 T$ the two edges adjacent to \mathscr{E} have sum of interior angles $>\pi$ with \mathscr{E}. Thus the part of \mathscr{C} within a distance h of \mathscr{E} has area greater than

$$
h L \geqslant 4 c T .
$$

Thus, by Theorem 1.2 , the convex hull $\mathscr{C}_{1}=\mathscr{C}(S \backslash \mathscr{E})$ has area less than

$$
\left(\frac{4 \pi}{3 \sqrt{3}}-4 c\right) T \leqslant\left(\frac{2 \pi}{3 \sqrt{3}}-2 c\right)(n-1) t
$$

and contains at least $(1-c)(n-1)$ points of S. If $\left|\mathscr{C}_{1}\right|>0$ then triangulation of \mathscr{C}_{1} yields at least $(1-c)(n-1)-2$ triangles. Hence

$$
\left(\frac{2 \pi}{3 \sqrt{3}}-2 c\right)(n-1) t>(1-c)(n-1) t-2 t
$$

so that

$$
c<\frac{2 \pi}{3 \sqrt{3}}-1+\frac{2}{n-1}<0.2092+\frac{2}{n-1} .
$$

Comparing inequality (2.8) and Lemma 2.9 we see that there must be at least three edges of \mathscr{P} on the boundary of $\mathscr{6}$. Moreover there must be two adjacent edges of 9_{P} which together contain more than

$$
\begin{equation*}
2+(0.5408-0.2092)(n-1)=2+0.3316(n-1) \tag{2.10}
\end{equation*}
$$

point of S.
2.11. Lemma. If two adjacent edges of \mathscr{P} lie on the boundary of \mathscr{C} and contain $2+c_{1}(n-1)$ and $2+c_{2}(n-1)$ points of S respectively, where $c_{1} \geqslant c_{2}>0$, then for $f(S)=f(n)$ and $n>37$ we have

$$
c_{1}+c_{2}<\frac{1}{4}+\left(c_{1}-c_{2}\right)^{2} .
$$

Proof. Let \mathscr{A}, \mathscr{B} be the two edges and V the common vertex. Let a, b be the lengths of \mathscr{A}, \mathscr{B}. Since by assumption no triangle of maximal area has two edges on the boundary of \mathscr{C}, it follows that the triangle \mathscr{T}_{0} with sides \mathscr{A}, \mathscr{B} has area $\left|\mathscr{F}_{\mathrm{o}}\right|<T$. Let $x a$ be the minimal distance from V to $(S \cap \mathscr{A}) \backslash \mathscr{B}$ and let $y b$ be the minimal distance from V to $(S \cap \mathscr{B}) \backslash A$. Then \mathscr{A} contains an interval of length at most $(1-x) a / c_{1}(n-1)$ with endpoints in S. This interval, together with the nearest point to V of $(S \cap \mathscr{B}) \backslash \mathscr{A}$ forms a triangle whose area is at most

$$
\frac{y(1-x)}{c_{1}(n-1)}\left|\mathscr{g}_{0}\right|<\frac{y(1-x)}{c_{1}(n-1)} T \leqslant \frac{y(1-x)}{c_{1}(n-1)} \frac{n-1}{2} t=\frac{y(1-x)}{2 c_{1}} t .
$$

Thus we must have

$$
\begin{equation*}
2 c_{1}<y-x y . \tag{2.12}
\end{equation*}
$$

In a completely analogous manner we get

$$
\begin{equation*}
2 c_{2}<x-x y . \tag{2.13}
\end{equation*}
$$

Combining (2.12) and (2.13) we have

$$
x y>\left(2 c_{1}+x y\right)\left(2 c_{2}+x y\right)
$$

so

$$
\begin{aligned}
0 \leqslant\left(x y+c_{1}+c_{2}-\frac{1}{2}\right)^{2} & <\left(c_{1}+c_{2}-\frac{1}{2}\right)^{2}-4 c_{1} c_{2} \\
& =\left(c_{1}-c_{2}\right)^{2}-\left(c_{1}+c_{2}\right)+\frac{1}{4}
\end{aligned}
$$

as was to be proved.

Now, by (2.10), we have

$$
\left.\begin{array}{l}
c_{1}+c_{2}>0.3316-\frac{1}{n-1}, \\
c_{1}-c_{2}=2 c_{1}-\left(c_{1}+c_{2}\right)
\end{array}\right)<0.4184+\frac{4}{n-1}-0.3316+\frac{1}{n-1} .
$$

Thus Lemma 2.11 yields

$$
0.3316-\frac{1}{n-1}<\left(0.0878+\frac{5}{n-1}\right)^{2}+0.25
$$

which is false for $n>37$.
Thus there must be at least four edges of the pentagon \mathscr{P} on the boundary of \mathscr{C}. Hence there can be points of S exterior to \mathscr{P} in at most one of the triangles $\triangle B C D$ or $\triangle A C E$. Thus

$$
|8|-|\mathscr{P P}| \leqslant \frac{1}{4} T \leqslant \frac{1}{8}(n-1) t .
$$

Hence the number of points of S exterior to \mathscr{P} is no greater than $\frac{1}{8}(n-1)$ and hence (2.8) becomes

$$
\begin{equation*}
k_{1} \geqslant k-\frac{1}{8}(n-1)>0.6658(n-1) \tag{2.8}
\end{equation*}
$$

If there are only four edges of \mathscr{P} on the boundary of \mathscr{C} then there must be an adjacent pair containing more than $0.3329(n-1)$ points of S in contradiction to Lemma 2.11.

Finally, if $\mathscr{C}=\mathscr{P}$, then $k_{1}=k>0.7908(n-1)$. According to [1] we have

$$
|\mathscr{P}| \leqslant \sqrt{5} T<2.236 T
$$

Thus Lemma 2.9 can be improved to show that, if any side \mathscr{E} of \mathscr{P} contains $c(n-1)+1$ points of S, then

$$
\begin{equation*}
c \leqslant \frac{1}{2} \sqrt{5}-1+\frac{2}{n-1}<0.1180+\frac{2}{n-1} \tag{2.14}
\end{equation*}
$$

The same argument as in the proof of Lemma 2.2 now yields that

$$
\begin{align*}
k \geqslant\left(2-\frac{1}{2} \sqrt{5}\right)(n-1) & >0.8919(n-1) \tag{2.15}\\
& >5(0.1180(n-1)+2)
\end{align*}
$$

for $n>37$, in contradiction to (2.14).
Thus \mathscr{C} has no more that four sides. Hence $|\mathscr{C}| \leqslant 2 T$ and the first part of Theorem 2.1 follows from Lemma 2.7. To prove the affine equivalence of extremal sets to S_{0} for even n, divide the quadrilateral \mathscr{C} along a diagonal. One of the two triangular parts, \mathscr{F}_{0}, must contain at least $\left[\frac{1}{2}(n+3)\right]$ points of S. Thus
triangulation of \mathscr{F}_{0} yields at least $\left[\frac{1}{2}(n-1)\right]$ triangles. If $f(S)=f(n)$, we must have $|\mathscr{F}|=T$ and all points of $\mathscr{F}_{0} \cap S$ on the boundary of \mathscr{F}_{0}. Since all points of S on the boundary of \mathscr{C} appear on two opposite edges of \mathscr{C}, it follows that all but one of the points of $\mathscr{T}_{0} \cap S$ are on one side of \mathscr{F}_{0}. Since all triangles in the triangulation must have area $t=T /\left[\frac{1}{2}(n-1)\right]$ it follows that there are exactly $\left[\frac{1}{2}(n+1)\right]$ equally spaced points on one side \mathscr{A} of \mathscr{C}. The argument applies equally to the triangle \mathscr{S}_{0} with side \mathscr{A} and opposite vertex at the other endpoint of the opposite side. Hence $\left|\mathscr{T}_{0}\right|=\left|\mathscr{J}_{0}\right|=T$ and the opposite side, \mathscr{B}, is parallel to \mathscr{A}, and contains $\left[\frac{1}{2} n\right]$ points of S. If n is even this shows that \mathscr{C} is a parallelogram and that the points of \mathscr{B} are also equally spaced. For odd n we can vary the length of \mathscr{B} and the spacing of the $[n / 2]$ points on \mathscr{B} as long as $b \leqslant a$ and none of the intervals on \mathscr{B} has length less than $2 a /(n-1)$ where a, b are the lengths of \mathscr{A}, \mathscr{B}.

The condition $n>37$ was used primarily in the proof of Lemma 2.2. With the use of the integral part $\left[\frac{1}{2}(n-1)\right]$ instead of $\frac{1}{2}(n-1)$ it is easy to prove the result for smaller even n, but it would prove tedious to analyze all cases with $5<n<38$.

We only comment that for small odd n there are other extremal n-tuples. Thus for $n=7$ the set S consisting of the vertices and center of a regular hexagon also yields $f(S)=3$, and for $n=9$ the square 3×3 lattice S also yields $f(S)=4$.

3. Related problems and conjectures

One can pose the analogous problem in higher dimensions.
3.1. Problem. Let S be a set of n points in E^{m} not all in one hyperplane and let $f_{m}(S)$ denote the ratio of the maximal and minimal volumes of nondegenerate simplices with vertices in S. Find $f_{m}(n)=\inf _{S} f_{m}(S)$.

In analogy to the solution for the case $m=2$ it is easy to verify that

$$
\begin{equation*}
f_{m}(n) \leqslant[(n-1) / m] \tag{3.2}
\end{equation*}
$$

by taking equally spaced points on parallel lines through the vertices of an ($m-1$)-simplex. It is reasonable to conjecture that equality holds in (4.2) for sufficiently large n.

An apparently different problem seems to lead to the same construction.
3.3. Problem. Let S be a set of n points in E^{m} not all in one hyperplane. What is the minimal number $g_{m}(n)$ of distinct volumes of nondegenerate simplices with vertices in S ?

The above example shows that $g_{m}(n) \leqslant[(n-1) / m]$ and we conjecture that equality holds at least for sufficiently large n.

Theorem 1.2 and Lemmas 2.5 and 2.6 suggest various extensions of Sas' results [2].
3.4. Problem. If the inscribed triangle \mathscr{T} of maximal area has one side on the boundary of the convex domain \mathscr{C} what is $\max _{6}|\mathscr{E}| A T \mid$?

Sas' theorem is valid for the maximal areas of an n-gon, $n \geqslant 3$, inscribed in a convex curve \mathscr{C} that is, the n-gon contains a maximal proportion of $|\mathscr{C}|$ if and only if \mathscr{C} is elliptic and the n-gon is affine-regular. This leads to generalizations of Problem 3.4.
3.5. Problem. Let $\mathscr{P}=p_{1} p_{2} \cdots p_{n}$ be inscribed in the convex curve \mathscr{C} and let $1 \leqslant i_{1} \leqslant i_{2}<\cdots<i_{k} \leqslant n$. If the edges $P_{i} P_{i+1}, j=1,2, \ldots, k$, are on \mathscr{C} what is $\max _{c}|\mathscr{C} / /|\mathscr{P}|$?

References

[1] P. Erdös, A. Meir, V. Sós and P. Turàn, On some applications of graph theory, II, Studies in Pure Mathematics (Presented to Richard Rado), (Academic Press, London, 1971) 89-99. (MR44\#3887.)
[2] E. Sas, On a certain extremum property of the ellipse, Mat. Fiz. Lapok 48 (1941) 533-542. (MR 8, p. 218.)

