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0. Introduction

In the past we have published quite a few papers on chromatic numbers of graphs
(finite or infinite), we give a list of those which are relevant to our present subject in
the references . In this paper we will mainly deal with problems of the following type :
Assuming that the chromatic number x(1) of a graph is greater than K, a finite or
infinite cardinal, what can be said about the behaviour of the set of all finite sub-
graphs of 9 . We will investigate this problem in case some other restrictions are
imposed on W as well . Most of the problems seem difficult and our results will give
just some orientation. The results show that x(1) can be arbitrarily large while the
finite subgraphs are very close to bipartite graphs . It is clear from what was said
above that this topic is a strange mixture of finite combinatorics and set theory and
we recommend it only for those who are interested in both subjects . Finally we
want to remind the reader the most striking difference between large chromatic finite
and infinite graphs which was discovered by the first two authors about fifteen years
ago [4]. While for any k < w there are finite graphs with x(W) > k without any short
circuits, [1], a graph with x(W)>K>,w has to contain a complete bipartite graph
[k, K + ] for all k <w. Hence such a graph contains all finite bipartite graphs, though
it may avoid short odd circuits .

Our set-theoretical notation will be standard as for graph theory we will use the
notation of our joint paper with F. Galvin [3] with some self-explanatory changes .

1. The standard examples and the ordered edge graph

Definition 1.1 . For each ordinal a, for 2 < k < w, and for 1 < i< k -1

Wo(a, k, i) = (Vo(a, k, i), E((x, k, i))

is the graph with Y,((x, k, i)=[a] k , where E( (x, k, i) is defined by the following stipula-
tions. For X e[a] k we write X={xo, . . .,xk-1} with xo < . . . < xk _, and for
X, Y e [a] k

{X, Y} e E(a, k, i) iff y,=x j+ ; for j<k-i-1 .

We call 9ro (a, k, 1)=~F o (a, k) and we call this graph the k-edge graph on a .
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Definition 1.2. For each ordinal a, for 3 < k < w and for 1 < i < k -1,

91(a, k, i) = (Vi (a, k, i), E, (a, k, i))

is the graph with Vt (a, k, i) = [a] k where for X, Y e [a] k

X, YEE I (a, k, i) iff xi<YO<xi+1< "' <xk-2<Yk-i-2<xk-2<Yk-i-1 •

We call 5 1 (a, k, i) the k, i-Specker graph on a, and just as in the case above we omit i
for i=1 .

The above graphs are standard examples of large chromatic graphs, we list some
properties of them .

Lemma 1 .1 . (For the proofs see [3] and [4]) .
(a) x(WO(a, k, i))> K provided a-+(2k),, and, as a corollary of this, for all K>,(4),

z(W o (a, k, i))>K provided

a >, (expk-1(K))+ for all 2 < k < co, 1 < i < k -1 .

(b) Z(W 1 (K, k, i))=K for all K>w, 3<k<co, 1<i<k-1, and as a corollary of this

X(`F1(n, k, i))-> + oo if n- + oo .

(c) 5o(a, k) does not contain odd circuits of length 2j + 1 for 1 -<j < k -1 .
(d) 1 1 (a, k) does not contain a complete K-graph for 3 < k < co, and 5,(a, n2 + n+ 1, n)

does not contain odd circuits of length 2j+ 1 for 1 _<i < n, 1 < n < w.

Definition 1.3 . For a graph W = (V, E) and for an ordering -< of V we define the
ordered edge graph OE(W, -<) _ (V(9, -<), E(q, -<)) of V for the ordering -<, as follows
V(W,-<)=E . For X s[V] 2 write X={x o,x 1 } where x o -<x t . For X, YeE put
{X, Y} e E(W, -<) iff either

xt=Yo or y 1 =xo .

It is clear from the definition that the 2-edge graph § o(a, 2) is the ordered edge
graph of the complete graph with vertex set a for the natural ordering of x .

More generally the following is true :

Lemma 1.2 . For each a, and for 1 < k < co there is a well-ordering -<a,k of [a] k such
that 10(a, k+ 1) is the ordered edge graph of 90(a, k) for the ordering'< a, k . Here WO (a, 1)
is the complete graph on a-vertices and -<a, t is the natural ordering of a .

Proof. -<a,k can be any ordering of [a] k satisfying

min X <min Y * X_< a, kY.

Lemma 1 .3 . Let 5 be a graph with x(~F) < 2" for K > 1 and let -< be any ordering of
the vertices. 'Then x(OE(9, -<)) < 2K .

Proof. Let I be W_ (V, E). Then V is the union of 2" independent sets . Since the
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complete graph of 2K vertices is the union of K bipartite graphs, there are disjoint
partitions V = A ; u Bi of V for i < K such that Ee U ;,K[A i, B ;] . We now parti-
tion each [A i, B;] into the union of two sets independent in OE(9) . Let C;=
{{xo, x t } e[A„ B,] : x j EA i} for j<2. Clearly C; contains no edge of OE(W) and
Có v C1= [A„ B,] for i < K .

In what follows log denotes the 2 basis logarithm and log(k) is the k-times iterated
logarithm function .

Corollary 1 .4 . If I is a subgraph of n vertices of some 9o(a, k) for k?2 then

X(1) < ck 1og(k-1) (n) for some ck > 0 .

To close this section we mention the first problem we cannot solve .

Definition 1.4. For each (infinite) graph 9_ (V, E) let

fv°(n)=max{X(!#(A)) : A c VA JAI =n} .

Problem 1 . For what functions f : w- (o is it true that for all cardinals x > w there
is a graph W With X('§) > K and f,'(n) <f(n) for n < (o .

Corollary 1 .4 shows that log" ) (n) is such a function for all k < w and it is clear that
f, '(n)--* + oo for n-+ + oo for all graphs with X(9) >, w . In [5] we ventured a con-
jecture that if is a class of finite graphs such that for all K > co there is a graph with
X(W)>K all whose finite subgraphs are in .F, then .F must contain all finite sub-
graphs of 9o(w, k) for some k < w. This, if true, would imply that the result given by
Corollary 1 .4 is best possible, but we do not really believe in this . It should be noted
that a theorem of Erdös [2, p . 172] implies that for all functions f with f (n)-> + or-
for n-4 ,x there exists a graph W with X(~) =w and fs°(n) < f(n) .

Finally we mention that the problem of the order of magnitude of f"(n) for large
x-chromatic graphs of cardinality K is completely open . We do not know fy° ( n) for
W=W,(w, 3) .

2. Omitting vertices of subgraphs

Definition 2.1 . Let 9= (V, E) be a graph ;

f,'(n)=min{max{JZJ : ZcA A Z is independent} : A c VA JAI n} .
f,'(n)=min{max{JZJ : ZeAA~§(Z) is bipartite} : Ac VA!IA I =n} .

Clearly f,.'(n)- zfw (n) holds. We are interested in the problem if these functions
can be large for a graph of large chromatic number . The following theorem contains
our main information about this .
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Theorem 1 . For all E > 0 and for all x there is a graph 5 with x(W) > x such that

f92, (n)>(1 -E)n

holds for all n < a) .

Proof. By Lemma 1.1(a) we only have to show that for lk= lo(co, k) f2 k(n), (1-2/k)n .
Let A c [w] k , JAI = n, for some 2 < k < ao and for some n . We prove, by induction on n,
that there is a set Z e A, IZI > ( 1 -1,'2k)n such that Z spans a bipartite graph of W(O), k) .
The statement is trivial for n=1 . Assume n > 1 and that the statement is true for all
n'<n . For x Ea) let S(x)={X EA : x EX}, and P(x)={X EA : x=x; for 1<i<k-2
where X= {x o , . . . , xk _ 1 } . By averaging, there is an x E a0, with IS(x)I > 0 and
IP(x)J>(1-2/k)IS(x)J . Now the graph induced by P(x) can be shown to be bipartite
by the following partition : A0 = {X E P(x) : x=x, A i is even}, A 1 = {X E P(x) : x=x, A i

is odd,1 . Ao v A 1 = P(x) and A ; contains no edge of W(w, k) for j < 2 . By induction,
there is a subset QeA \S(x), IQI >, (1 -21'k)(n - IS(x)I), which induces a bipartite
graph of Wo((o, k) . Since no edge of W,(co, k) joins a point of P(x) to a point of A\S(x),
Z=P(x)tiQ satisfies the requirements of the theorem .

The theorem yields that there is a sequence E n-+0 so that for some 9 with x( ~I)=co,
fy(n)> n(1-E, ). We do not know how fast e, can tend to 0 . A result of Folkman gives
information for the case Zn - f J (n) is bounded. This says that if 1n -f9" (n) < k then
X(g)<2k+2.

Here we at least know that the situation is different for graphs with chomatic
number > a) .

Lemma 2 .1 . If y(W) > w then there is an e > 0 such that fw'(n) < z -On .

Proof. Clearly (S contains X, vertex disjoint copies of some C2;+1 for some i<0.) .

The union of m copies has cardinality m(2i+ 1) and contains no free set larger than mi .

Problem 2. Does there exist a graph 6 and c>0 such that x(9)=w,, 191=w1 and
fwl (n) > cn .

Here we only have the very little information that the Specker graph '# 1 (0) 1 , 3)
does not have this property . To see this it is sufficient to prove :

Theorem 2. Let I=9 1 (w, 3) . Then

1

	

m log log m
f~(m)<~ ~ log m

Proof. We define an c ,[n] 3 with
I J >,

n log n/8 log log n such that for all MC .!F,

M independent in 9, IMI <4n holds for all sufficiently large n . This will prove the
result . Let a;= [log n`] for i < i o = [log n/log log n] . Then a, E n for i < i o . Let X(t, i)=
{t, t+a z „ t+azi+11 and ={X(t, i) : X(t, i)en} . Then I .FI>,n log n/8 log log n pro-
vided n is large enough. Let M c .F, IMI 3 4n . We prove that M contains an edge of
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~. Let M,={t : X(t, i) E M} . Then Y j , io IM i J=JMJ>4n. Let

N i=ItrM i :3t'EM i t'+a2i<t<t'+a z i +i } .

We claim that IN i J > IM i I -2n/log n . We can choose elements t o , . . ., t,_, of Mi so
that M i cU{[t,, tl+a2i+1) : 1<jJ where the above intervals are pairwise disjoint .
Now

Since
azi 2

<

	

,
azi+ , log n

IM i -Nil <2n/log n .
It follows now, that

2n

	

2nI IN ` l>

	

IM ' l log log n
>4n-

l og log n
>n .

i

	

O

	

i

	

U

Then there are i 1 < i2 with Nil nN iz * 0. Let t E Ni , nN iZ . Then for some t' EMi ,,
t'+a2i,<t<t'+azi,+1, X(t',i 1)EM. On the other hand X(t, i z ) EM iz cM. Now
t+az i 2 >t'+a2 i 2 >t'+azi,+1 since [log n 2í,+1]< [log n 21,.] if i 1 <i2 and n is large
enough. Then X(t', i 1 ) and X(t, i 2 ) are adjacent in W.

3. Omitting edges of a subgraph

Definition 3.1 . Let

. f~3,(n)=max{min{JE'J : (A, [A] 2 nW\E') is bipartite} : AcV nJAl=n} ;

more generally for 2 < k < w,

fw'(n, k)=max{min{lE'I : (A, [A]2 n9\E') has
chromatic number <k, : Ae V A JAI =n{ .

Clearly fw,(n, 2)=fw(n), and it is obvious that

fw' (n, k) < fw' (n, k') fork' < k .

It is also clear from the definition that n -fw2(n) < 2fw3 (n) . This in view of Lemma 2 .1
implies that for any given graph W with y(,#) > w there is an E > 0 such that f,3 (n) > En .

This contrasts again with the situation for finite graphs . L. Lovász recently in-
formed us that, as a generalization of a theorem of T . Gallai, he can prove the following
theorem : For 2 < r < co there is a finite graph IN with x(9) > r + 2 and f$(n) = O(n1-11r)

We describe his example : Let m be even. Let V be the set of r-dimensional lattice
points mod(m), (x o , . . . , x r _ 1 ), (Yo, •.., Yr-1) are connected if for some i < r Ix i -Y i J = 1,
and x;=yj for j i, j<r . This graph satisfies the requirements for large enough m.
In case of infinite chromatic graphs we are again left with the examples W o ()!, k).

M iANi cU{[t i , t i +azi +i ]A(ti+azi, t t + .a zi+1 ) : 1« .
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Theorem 3 . (a) For all x > w there exists a graph with

y(~) > x and fw'3 (n) < 2n 3 2

(b) V c > 0 there is an r < w such that for all x _> OJ there exists a graph with x(9) > x
and fw(n, r) -<_c n' " .

By Lemma 1 .1 it is sufficient to prove

Theorem 3.A . (a) If9=Wo(co, 2), then fg3(n)<2n3/2 ,

(b) If 9 _ 9(co, k) for some 3 < k < co, then for all g > 0 there is an r < a) such that

v(w,
r)<n'+k-1+q

f

	

.

Proof. (a) Let V e[w]2 , 1 VI =n . Put V(x)={{x, y; : jx, y) E V,, v(x) =IV(x)J for x Ew.
Fore E V, let 1(e, V')= {e' e V' : je, e') Ell .Let A= {x e (1) : v(x) > n'/2) . Then IA I < n'/ 2 ,
since IVI=n . We now split V into the union of three disjoint sets . Let V;=
e E V : IenAJ=jj for j<3 .
We claim that for all e E V IW(e, Vo v V2)1 <2n' 12 . Indeed let e= )x, y) . Then

IW(e, Vou V2)I<t{u, x) : f, u, x) E Vo v Vzjl+I{tu, )'i : {u, y) E Vou V2 )I .

Clearly it is sufficient to see that 1{ {u, x} : {u, x} e Vo v V2)I <n''2 . For x E A this holds
because I

AI < n1,12, for x 0 A this holds because v(x) < n"2 . It follows that the
IU { V(e, Vo v V2 ) : e E V) I < 2n3 2.Omitting all these edges from the subgraph spanned
by V, only the edges spanned by V remain there . But W(Vi ) is bipartite as shown by
the partition V, = jre E V1 : min e E A), V2 = {e e V, : max e e A) .

(b) By (a) and by Lemma 1 .2 this follows, by induction on k, 2 < k < co, from the
following theorem

Theorem 4 . Let 2 < k < oo . S is said to have property P(k) iffor all g > 0 there is an
r < (o with f, (n, r) < n' " ' + n . If W _ (V, E) has property P(k) and -< is any ordering
of V, then OE(W, -<) has the property P(k+ 1) .

Proof. Let r(q)=min{r : fw,(n, r)!<n' _"' holds for all n<o)j . We now have to
show that for all n there is an s such that for all n <a)

fóE(,)(n, s) < n ' +(k+ i

Given q > 0, first choose ?1'< rl, t7'> 0 . Then choose rl" > 0 so that (1 -(k + 1) - '
(1 +k - ' +q")=1-6 for some d > 0 . Let 1 be an integer with 1 < lá . We claim that

max((r(n")+2)1, min {n: 21 n'+(k+')-'+q'<n'+(k+n-I+n ))= s

satisfies the requirements of the theorem . Let E'cE, IE'I=n . For x E V let E'(x)=
Yj : {x, y) E E) and é(x)= IE'(x)J . For E" e E' and e E E'

~#(e, E")=1e E E" : je, e') E OE(V, -<)) .

Let A={x e V : é(x)>n1. Then JAI<n'-(k+') '-" We partition the set E'
into three pieces . Let E,= le E E' : l e -AI = j) for j<3. For each e E E', IW(e, E2)1,<
2n(k+1) '+n' hence omitting 2n' +(k+1) '+n' edges. E2 is independent and no edge



joins any point of EZ to any other point of E' . The subgraph spanned by El in the
ordered edge graph is clearly 2-chromatic, Eo g[A]Z . Since AI~nt-(r+t)-'-" by
the assumption, there is an E*cEo, ~ E*q,IAIh+k-'+?i"=ni-a so that (A, E 0 \E*)
has chromatic number at most r(q") . But then, by Lemma 1 .3 the subgraph induced
by Eo \E* in the ordered edge graph has chromatic number -<r(q") too. We now
proved that omitting 2n1 +(r+ t) '"'edges of the ordered edge graph there is E* c E'
so that the subgraph spanned by E' \E* is at most 2 + r(q") chromatic, and E* 1< nl -6
Repeating this procedure at most I times we obtain that omitting 21n' +( ' + ' ) I

(< n' +(r+ t) '"'for n >, s) edges the ordered edge graph is at most s chromatic.

We think that the main unsolved problem of this section is of finite character . It is
not known if Lovász' example is best possible .

Problem 3. Assume has chromatic number w. Can f w'(n) tend to infinity very
slowly? Can it be at most log n or log )k)(n) for k < uo?
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