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1. Introduction

Let „ denote the class of all graphs with n edges and denote by s(n) the minimum
number of edges a graph G can have which contains all H s . „ as subgraphs. In this
paper we establish the following bounds on s(n) :

Theorem 1 .

cn2

	

c'n2 log log n
togz n <s(n)<-log n

for n sufficiently large and c, c' some constants .

We also consider the problem of determining the minimum number of edges,
denoted by s'(n), a graph can have which contains every planar graph on n edges as
a subgraph. We prove :

Theorem 2 . s'(n) < cn' 12

In [1, 2, 3], two of the authors investigated the problem of determining the minimum
number of edges a graph or a tree could have which contains all trees on n edges as
subgraphs. For a brief survey on these `universal' graphs the reader is referred to [4] .
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2. A lower bound for s(n)

Let G be a graph which contains all graphs on n edges. Suppose G has t edges. Thus
G contains at most (') different subgraphs on n edges .

On the other hand, G contains all graphs on n edges and [n/log n J vertices where
[x J denotes the largest integer less than or equal to x. There are at least

[n/log n Jl 1

n

	

[n/log n J !

different graphs with n edges and [n/log n J vertices (see [5]) . Therefore we have

(t l > ([n/log n1)	 1	
n

	

2

	

J) [n/log n J In
By a straightforward calculation, this implies

t >, cn 2/log2n

for some constant c .
Hence we have shown s(n) > cn 2/log 2 n .

3. An upper bound for s(n)

We will prove (by the probability method) that there exists a graph with
cn2 log log n/log n edges [ that contains all graphs with at most n edges . The existence
of such a graph will follow from the following sequence of observations .

Claim 1 . . Given positive integers a and b where a < b < a log a and log log log a > 1,
there is a bipartite graph H with vertex set A v B where JAI = a and JBI = b, which satisfies
the following conditions :

(i) H has no more than abp edges where p = log log a/log a ;
(ü) For any k disjoint subsets of B, say, St_., Sk , each with cardinality at most p -t ,

and 2kp" 2 <a, we have
k

U N(Si) >-kp-2
t

where

N(Si)_{v E A : v is adjacent to all vertices in S ;} .

Proof. We consider the set of all bipartite graphs on a and b vertices with abp edges .
For a set S i cB, Is il < d=p- ', the probability of a vertex v in A being in N(Si), is at
least p°. Therefore the probability of v not being in any N(Si ) is at most (1-p°)'` . The

'Strictly speaking, we should use 3n[log log n/log n] or [3n log log n/log n] since JAI is an integer . How-
ever, we will usually not blither with this type of detail since it has no significant effect on the arguments
or results.
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(

probability that there are a-kd 2 vertices in A not in any N(S i ) is at most

kad')
(I p d)k(a-kd2) < 2ae "P"kai2 .

Since there are at most bdk choices for S i , I _< i < k, the probability for a bipartite graph
to be `bad' is at most

bA- tae Pdka/2 <(a log a)P
ik . tae-P dka(2

<(a log a )a logloga11,ga2ae a2pd-2/4 <I '

Therefore the required bipartite graph exists as claimed .

Claim 2. Given positive integers a and b where a < b < a log a and log log log a- l,

there is a bipartite graph H with vertex set A u B where JAI =a and JBI=b satisfying
thefollowing conditions :

(i) H has no more than abp edges where p=log log a/log a .
(ü) Let H' be a bipartite graph with vertex set X v Y where IX1 <_!a, I YI=b and

maximum degree p - ' . Then H' can be embedded in H in the strong sense, i .e . any one-
to-one map ~ : Y--+B can be extended to ;, :X v Y-+A v B such that A(u) is adjacent to
A(v) in H if u is adjacent to v in H' .

Proof. We take H to be the graph in Claim l . The mapping ~ will be extended to
A:Xv Y-+AvB in the following way :

For a vertex x in X, we define

S(x) = fb E B :b=~ (y) and y is adjacent to x),

M(x)=N(S(x))= f v E A : v is adjacent to all vertices in S(x)) .

The existence of . i s equivalent to a system of distinct representatives for fM(x)}xex-
It suffices to show that for any set X' 9X we have

U M(x) %1X'1 .
xsx'

This is clearly true for 1X'1 _< (log a/log log a) 2 by property (ii) of H.
Now suppose 1X'I > (log a/log log a) 2 . Since H' is of bounded degree d=

log a/log log a, for each x there are at most d 2 vertices x' in X with S(x)nS(x') 0 .
Thus there is a subset X" of X where IX"1 % I Y'1/d 2 such that all S(x), x E X", are
mutually disjoint . Therefore,

U M(x) >_ U M(x) >_
iX

Ip , IX'I .
xex'

	

xex" d
2--

This completes the proof of Claim 2 .

Claim 3. There exists a graph h with 4n 2 log log n/log n edges which contains all
graphs with n vertices and degree at most log n/log log n=d.



24 L. Babai et al.

Proof. We will construct a d-partite graph H as follows :
(i) FI has vertex set A, U A2 v . . . uAd + , with IAil=2n/d for each i ;
(íí) For each i, no u, v e A i are adjacent ;
(iii) The edges between A i and A, v A 2 v

	

u Ai_, form a graph described in
Claim 2.

It can be easily seen that H has at most 4n 2 log log n/log n edges. It suffices to prove
that any graph G with degree d can be embedded in H. A nice result of Hajnal and
Szemerédi [6] states that any graph with degree at most d can be colored by d+ 1
colors in such away that the sizes of the color classes differ by at most 1 . Suppose G
has color classes C, . . • . , Cd +, . We will then embed C, into A,, C 2 into A 2 , and so
on, as guaranteed by Claim 2 .

Claim 4. There exists a graph F(n) with Cn 2 log log n log n edges which contains all
graphs on n edges where C is an absolute constant .

Proof. We will construct the graph F(n) as follows :
(i) The vertex set is the disjoint union of A and B where JAI =2n log log n/log n and

IBI = 2n .
(ü) Every vertex v in A is adjacent to all vertices in V(F(n))-{v} .
(íü) The subgraph of F(n) induced by B is the graph, as described in Claim 3,

which has 4n' log log n/log n edges and contains all graphs with 2n vertices and
degree at most d •

It is easy to see that F(n) has at most 1On 2 log log n/n 2 edges. Let G be an arbitrary
graph on n edges. G has at most 2n log log n/log n vertices with degree more than
log n/log log n . These vertices will be embedded in A . The remaining part of the
graph will then be embedded in B as guaranteed by Claim 3.

This completes the proof of Claim 4 .

Remark. If instead of using the result of Hajnal and Szemerédi, we use the simple
fact that a graph on n vertices and maximum degree d can be 2(d + 1) colored so that
each color class has size at most n/d, then the resulting bound will differ from the one
presented by a constant factor .

4 . Universal graphs for planar graphs

We will use the following theorem to give an upper bound of n 3 / 2 for the universal
graphs which contain all planar graphs on n edges .

Separator Theorem (Lipton and Tarjan [6]) . Let G be any planar graph with n vertices .
The vertices of G can be partitioned into three sets, A, B, C such that no edge joins a
vertex in B with a vertex in C, neither B and C contain more than n/2 vertices, and A
contains no more than 2~ 2n/(1 - J2/3) vertices .

Let G(m) denote the graph constructed as shown in Fig . 1 .
The vertices of G(n) can be partitioned into three parts, X, Y and Z where IX1=
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Fig . 1 .

2,./-2-/(1- J2/3)=c, f, IYI=IV(G(Ln/2J))I and IZI=I V(G([n/2J))I . Any vertex in X is
adjacent to any vertex in G(n) except itself . The induced subgraph on Y is G(Ln/2])
and the induced subgraph on Z is G(Ln/2 J) .

It is rather straightforward to see that any planar graph with n vertices can be
embedded in G(n) since we can partition any planar graph into three parts, A, B and CC
as described in the Separator Theorem, and we can embed A in X, B in Y and C in Z .

We also note that G(n) has fewer than C 2 n vertices since

I V(G(n))1 < 21 V(G(n/2))1 + c 1 ,,fn-

and we can prove by induction on n that

I V(G(n))I f2 1
n( l

J2n)

Now, by the construction of G(n), we know that

IE(G(n))I < I V(G(n))I • c tf +2IE(G(n/2))I •
It follows by induction that G(n) has fewer than en 312 edges where c=c; J2/(v 2-1)=
19.7607 . . . . Therefore we have

s'(n) < cn a i s

and Theorem 2 is proved.
We note that the obvious lower bound for s'(n) is in log n which is the lower bound

for the number of edges in graphs which contains all trees on n edges (see [2]) . At
present we do not know any better lower bound than cn log n .
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