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ON PA RWISE BALANCED BLOCK DESIGNS
WITH THE SIZES OF BLOCKS AS UNIFORM AS POSSIBLE

P. ERDŐS and J. LARSON

Dedicated to Prof. N.S. Mendelsohn on his 65th birthday

Let 1(~j = n, Ai C r5, 1-- i -- T„ is a partially balanced block design, JAIJ -- • - • s ~A j . The
authors prove that there is such a design for which lA i l = n li2 + O(n lrz- `) for some c > 0 .

If certain plausible assumptions on the difference of consecutive primes are made, then
the above inequality can be improved to lA i l = nV 2 +O((log n)Z ) . It is true that there is a
design with HAll > n"'- c ? This challenging problem is left open .

Let ~S1 = n, A i C S, 1 < i _- m, 2 < JAJ < n . Assume that every pair (x, y) of
elements of S is contained in one and only one Ai . A well-known theorem of
de Bruijn and Erdös [1] states that then m % n where the equality holds if and
only if JA, I = n - 1, jA j j = 2, 1-- i < n, or if the Ai are the lines of a finite
geometry. Such a geometry can only exist if n = uZ + u + 1, jAj j = u + 1. Its
existence has been established only if a is a prime or a power of a prime . It is
one of the outstanding problems of combinatorial mathematics to prove (or
disprove) that such a system can only exist if u = P° . Here we want to construct
a pairwise balanced design which in some sense is as close to a finite geometry
as possible . In fact we prove the following theorem .

Theorem 1 . There is an absolute constant c so that for every sufficiently large n
there is a pairwise balanced design for ISI = n with the blocks Ai C S satisfying

JAil=nt/z+0(nt12 -`), 1<i--m .

We will give two proofs for Theorem 1, the first one is constructive and the
second one probabilistic which in some sense is more illuminating . But before
we prove Theorem 1 we make a few remarks and state some open problems .
First of all observe that (1) implies

n -- m < n + O(n l- `)

	

(2)

To show (2), observe that, since every pair of elements of S must be
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contained in one and only one A„ we have

m

~~(2
)
- `2

)
'

and thus the upper bound of (2) immediately follows from (1) . The lower
bound follows from the theorem of de Bruijn and Erdős .

The following problem is interesting but seems difficult : Does there exist a
pairwise balanced design satisfying

I A; I = n1/2+ O(1) «

	

(3)

If (3) holds, then as in (2) we would have n ~_ m < n + c,n l12 .

At the moment we do not see how to decide (3), but we will show that if we
make certain plausible (but hopeless) assumptions on the difference of con-
secutive primes, then we obtain the slightly weaker

~A ;1 = n112+O((log n) 2 )

	

(4)

Constructive proof of Theorem 1 . Let pk be the smallest prime for which
Pk +A + 1 , n. A well-known theorem of Iwaniec and Heath-Brown [3] states
that, for k > ko (£),

hk+i - N < pki 2o+E

	

(5)

Eq. (5) implies that if pk is the smallest prime for which pk + pk + 1 , n, then

n<p2+pk +1<n+n 31140- e

Let now ISI I = pk + Pk + 1 and consider a finite projective Desarguesian plane
on S,. Let L,,. Lpk+ pk l,, JLJ = pk + 1 be the lines of S, and let C be a conic
of our geometry . Let x be a point not on C and L,, . . . , Lpk ., the lines through
x, let further L 1 , . . . , L(,_,),2 be the lines which do not meet C. Put

Pk+pk+1-n=rpk +l+s, O_s<pk,

(6)

and by (6), 0 -- r < pkl"+E
Omit now from S, the lines L,, , . . , L r and all the r pk + 1 points on it and

also omit s points of our conic C (a conic has pk + 1 points). Thus we are left
with a set S of n elements. The lines L I , . . . , Lr disappeared, if r < j
Pk + Pk + 1, then we now determine how many points we omitted from L;. If
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r < j -- pk + 1, i .e ., if x E L;, then we omitted one, two or three points of Li . To
see this observe that x has been omitted and if Li does not meet C we only

omitted one of its points . If it meets C, then perhaps one or two more of its

points have been omitted . If x 4 (or pk + 2 _ j .< p k + pk + 1), then we cer-

tainly omitted at least r points from L; (since it meets each of the lines Li ,
1 -- i , r in one point) and perhaps we omitted one or two of the points L; n c.
Let us now denote by A;_, what remains from L; after omitting our points,
(r < j _ pk + pk + 1) . The sets A, . . . . Apk+,,+l_, clearly give a pairwise balanced

design of the set S, ISI = n and there are at most six possible values of (A;j,

namely

A - 1,

	

Pk - 2,

	

Pk - 3,

	

pk -r,

A-r-1,

	

pk -r-2,

	

r<pk'zo+E

This completes the proof of Theorem 1 .

Probabilistic proof of Theorem 1 . We shall show that if we omit from S I in all
possible ways

T„ = pk+Pk+1 - n

elements, we almost surely are left with a set $, which will satisfy (1). We can
omit T„ elements from S, in

(Pk+Pk+ 1 ~
T„

ways. To complete our proof it will suffice to show that for all but

o((pk +~~ + 11`

of these omissions, we omitted from each L i,

	

pk + Pk + 1,

Tdpk + o((Tjpk)"(log n) z)

	

(7)

elements. Eq . (7) easily follows by standard methods of elementary theory of
probability and we only outline the proof . Put

T"+

	

1z(log n}2 = u,

	

T" - e
("k`)

l ~z( log n)z = v .
Pk

	

Pk

	

Pk
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Then the number of ways we can omit from pk + pk + 1 elements T, of them so
that there should be at least one line Li , 1 -- i < pk + pk + 1 from which we
omitted more than u or fewer than v elements is clearly less than

(pk+pk+1)~pk
+I

G `u
k

k +s)( T. Pu-
S) +

~ (vk
±t)lT„ Pv+t))'s=1

	

~_,

o«pk +~~
+ 1))

which again completes the proof of Theorem l .

At the moment we do not see how to prove (or disprove) (3) . The con-
structive proof of Theorem 1 gave a pairwise balanced design with only 6
different sizes of the blocks. It would be of some interest to show that 6 can be
decreased to 3 and perhaps even to 2 .

Now we deduce (4) from conjectures on pk+1 - pk . The Riemann hypothesis
would imply pk+,-Pk <pk2+E and nearly 100 years ago Piltz conjectured

pk+1 - pk = o(pk). Finally 50 years ago Cramer [2] conjectured that

lim sup(pk+i - pk)1(log k)2 = 1 .

(8)

A simple computation which we suppress gives that the expression in (8) is

Eq. (9) seems to be unattackable by the techniques at our disposal . We now
deduce (4) from (9). First we prove the following lemma .

Lemma 2 . In every finite geometry of p2 + p + 1 points there always is a set of
lines L 1i . . . L„ r , p 115 so that no three of the L; are concurrent and no three of
the (2) points L; n L;, 1 ~, i < j _ r are on a line .

Proof. The proof of Lemma 2 is simple . Let L1i . . . , L, be a maximal system of
lines satisfying the conditions of Lemma 2 . In other words if L„ is any of the
other p 2 + p + 1- r lines of our geometry L„ either goes through one of the (2)
points L; fl L„ 1- i <j - r or for some k, i l , j 1 , i2 , j2i 1 _- k _- r, 1 < i1 < j, -_ r,
1= i2 < j2 < r the points L„ n Lk, L;, fl L;,, L n n Ln are on a line. The first
condition eliminates at most (2)(p + 1) lines and the second condition

(P + 1)r((2)

(9)
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lines. Thus by our maximality condition we must have

p 2 +p+1 - r- (p+1)((2)+r((2),

or r > p115 which proves Lemma 2 .

Let C be a conic of our geometry . Observe that Lemma 2 remains true if we
further insist that none of our lines L,, . . . , L, intersect . The proof of this follows
immediately from the fact that there are

lines not intersecting C.
Now we are ready to deduce (4) from (9) . Let as in the proof of Theorem 1 pk be

the smallest prime for which pk
+ pk + 1 -- n . Eq. (9) implies that for n > no

n=pk+pk +1<n+3 (log n)2 .

	

( 10)

Let r be the largest integer for which

pk+A+1-n>pk +l+pk +(pk -1)+ • +pk -r

and put

p2+p+1-(p+1)-(p21)=(2)

pk+pk +l-n=2pk +1+2,(pk -i)+s, 0<s<pk -r-1

and by (10) r -- 3(log n)2 . Let now I S11 = pk + pk + 1 be a finite geometry and

Ll , . . . , L,+2 are r + 2 lines which satisfy Lemma 2 and do not meet the conic C.

Omit the linesL I , . . . , L,+2 and all the points on them and also s points of the conic

C. Then we are left with a pairwise balanced design on S, ISI = n with

pk + pk - r - 1 = n + O(n' 12(log n)2)

blocks A;, 1, i pk + pk - r - 1. By Lemma 2 a line L;, j 54 1, 2, . . . , r + 2 meets
U;±Í L, in at most r + 2 and at least r points, further L; can meet C in 0, 1 or 2
points. Thus the possible values of JAJ are

pk +1-r, pk - r,

	

pk -r-1, pk -r-2, pk -r-3,
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which by (10) proves (4) . Our method is quite inadequate for the proof of (3) and if
(3) is true a new idea will probably be required .

The following problem is perhaps of some interest . Consider a finite geometry
of n = u z + u + 1 points . Let xt , . . . , xk be a maximal set of points no three of
which are on a line . In other words the lines joining x; and x;, 1 < i < j , k contain
all the points of our geometry. Determine or estimate the smallest possible value
of k. Clearly k > n 114 . Is k = o(n t l2) possible ? Can the exponent 5 in Lemma 2 be
improved ?
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