ON TURÃN-RAMSEY TYPE THEOREMS II

by
P. ERDÕS and VERA T. SÓS

This paper is a continuation of our papers [5], [10]. We investigated the following problem:

Let the edges of K_{n} be coloured by r colours, $G_{i}, 1 \leqq i \leqq r$ be the graph formed by the i 'th colour. Let $f\left(n ; k_{1}, \ldots, k_{r}\right)$ be the largest integer for which there is an r-colouring of K_{n} such that

$$
K_{k_{i}} \nsubseteq G_{i}, \quad 1 \leqq i \leqq r
$$

and

$$
\begin{equation*}
\sum_{i=1}^{r-1} e\left(G_{i}\right)=f\left(n ; k_{1}, \ldots, k_{r}\right) \tag{1}
\end{equation*}
$$

(Here $e(G)$ denotes the number of edges of G.)
Due to Ramsey's theorem for fixed $k_{1}, \ldots, k_{r}, n>N\left(k_{1}, \ldots, k_{r}\right)$ such a graph does not exist. Therefore the problem makes sense only in the case when at least one of the $k_{i} \rightarrow \infty$ with $n \rightarrow \infty$.

It is trivial that $f(n ; 3, l) \leqq \frac{1}{2} n l$. We proved in [2] that if $l=o(n)$ then

$$
\begin{equation*}
f(n ; 2 k+1, l)=\frac{1}{2}\left(1-\frac{1}{k}\right) n^{2}+o\left(n^{2}\right) . \tag{2}
\end{equation*}
$$

Bollobás-Erdős [1] and Szemerédi [11] proved that $f(n ; 4, l)=\frac{n^{2}}{8}+o\left(n^{2}\right)$ for $l=o(n)$. No asymptotic formula is known for $f(n ; 2 k, l)$ when $l=o(n)$ and $k>2$.

Here we start to investigate $f\left(n ; k_{1}, \ldots, k_{r}\right)$ for $r=3$.
Notation. $G_{n}(V ; E)$ is a graph with $|V|=n, e\left(G_{n}\right)=|E|, K\left(k_{1}, \ldots, k_{r}\right)$ is a complete r-partite graph with k_{i} vertices in the i 'th class, K_{n} is the complete graph on n vertices.

Let V be the vertex set of the complete graph K_{n}. If we consider an r-colouring of the edges of K_{n}, let E_{i} be the set of edges of K_{n} having the i th colour for $1 \leqq i \leqq r$. Put $G_{i}=G\left(V ; E_{i}\right)$ and

$$
\begin{aligned}
V_{i}(x) & =\left\{y:(x, y) \in E_{i}\right\}, \quad d_{i}=\left|V_{i}(x)\right|, \\
V_{i}(x ; U) & =\left\{y:(x, y) \in E_{i}, y \in V-U\right\}, \\
d_{i}(x ; U) & =\left|V_{i}(x ; U)\right| .
\end{aligned}
$$

For the case $r=3$ we prove the following theorems:

Theorem 1.

$$
\begin{equation*}
f(n ; 3,3, \varepsilon n)<\frac{n^{2}}{4}+c_{2} \varepsilon n^{2} \tag{3}
\end{equation*}
$$

and for $n>n_{0}(\varepsilon)$

$$
\frac{n^{2}}{4}+c_{1} \varepsilon n^{2}<f(n ; 3,3, \varepsilon n)
$$

where $c_{1}>0, c_{2}>0$ are absolute constants.
Theorem 2. Let $G_{i}\left(V ; E_{i}\right), 1 \leqq i \leqq 3$ be graphs belonging to a 3-colouring of K_{n} with the property

$$
\begin{align*}
& K_{3} \nleftarrow G_{i} \quad i=1,2, \tag{4}\\
& K_{\varepsilon n} \notin G_{3} \tag{5}
\end{align*}
$$

and
(6)

$$
\left|E_{1}\right| \geqq\left|E_{2}\right|>c n^{2} .
$$

Then

$$
\begin{equation*}
\left|E_{1} \cup E_{2}\right|<n^{2}\left(\frac{1}{4}-\sqrt{c}+2 c\right)+\eta n^{2} \tag{7}
\end{equation*}
$$

where $\eta \rightarrow 0$ with $\varepsilon \rightarrow 0$.
Remark. We obtain the lower bound in Theorem 1 by a colouring in which G_{1} is the complete bipartite graph $K\left(\left[\frac{n}{2}\right],\left[\frac{n+1}{2}\right]\right)$ and G_{2} formed by two copies of a trianglefree graph with maximum independent set of size $o(n)$ and $\left|E_{2}\right|=o\left(n^{2}\right)$. Theorem 2 shows that this extremum is sharp; by the condition (6) we have the stronger inequality (7) instead of (3).

Proof of Theorem 1.
(a) The upper bound.

We shall use the simple observation that

$$
\begin{aligned}
K_{3} \nleftarrow G_{i} \quad i=1,2 \\
K_{e n} \nleftarrow G_{3}
\end{aligned}
$$

implies
(8)

$$
\left|V_{1}(x) \cap V_{2}(y)\right|<\varepsilon n
$$

for any $x \neq y, x, y \in V$.
Assume $\left|E_{1}\right| \geqq\left|E_{2}\right|$. Let x_{0} be a vertex for which $d_{1}(x)$ is maximal. Let

$$
d_{1}\left(y_{0}\right)=\max _{y \in V_{1}\left(x_{0}\right)} d_{1}(y), \quad y_{0} \in V_{1}\left(x_{0}\right)
$$

Since $K_{3} \nsubseteq G_{1}$

$$
V_{1}(x) \cap V_{1}(y)=0 .
$$

Let $U=V-\left(V_{1}\left(x_{0}\right) \cup V_{1}\left(y_{0}\right)\right)$. Put

$$
E_{2}^{*}=\left\{(x, y):(x, y) \in E_{2}, x \notin U \text { or } y \notin U\right\} .
$$

First we prove
(9)

$$
\left|E_{2}^{*}\right|<\sqrt{2} \varepsilon n^{2}
$$

By (8), obviously, any point $z \in V$ can be joined in G_{2} to at most $2 \varepsilon n$ points of $V_{1}\left(x_{0}\right) \cup V_{1}\left(y_{0}\right)$. This gives (9). Thus we only have to consider the set of edges

$$
E_{2}^{* *}=\left\{(x, y):(x, y) \in E_{2}, x \in U, y \in U\right\}
$$

Put

$$
|U|=\delta n
$$

and

$$
\delta^{*} n=\max _{x \in U} d_{2}(x ; V-U)=d_{2}\left(x^{*} ; V-U\right) \quad\left(x^{*} \in U\right)
$$

As before, by (8) we get that the number of edges in G_{1} incident to a vertex in $V_{2}\left(x^{*}\right)$ is at most εn^{2}. Since $K_{3} \nsubseteq G_{1}$, the number of the remaining edges of G_{1} is less than $\frac{n^{2}}{4}\left(1-\delta^{*}\right)^{2}$. By all of these we obtain

$$
\begin{equation*}
\left|E_{1} \cup E_{2}\right|<\frac{n^{2}}{4}\left(1-\delta^{*}\right)^{2}+\delta \delta^{*} \frac{n^{2}}{2}+3 \varepsilon n^{2} \tag{11}
\end{equation*}
$$

If $\delta<\frac{2}{3}\left(\right.$ and consequently $\left.\delta^{*}<\frac{2}{3}\right)$ then (11) gives

$$
\left|E_{1} \cup E_{2}\right|<\frac{n^{2}}{4}+3 \varepsilon n^{2}
$$

So all we have to show is $\delta<\frac{2}{3}$.
We assumed $\left|E_{1}\right| \geqq\left|E_{2}\right|$, thus we may suppose

$$
\begin{equation*}
\left|E_{1}\right|>\frac{n^{2}}{8}, \quad\left|V_{1}\left(x_{0}\right)\right|>\frac{n}{4} . \tag{12}
\end{equation*}
$$

Put $\left|V_{1}\left(x_{0}\right)\right|=\frac{n}{4}+t$. If $\left|V_{1}\left(y_{0}\right)\right|>\frac{n}{12}-t$ then
i.e., $\delta<\frac{2}{3}$.

$$
\left|V_{1}\left(x_{0}\right) \cup V_{1}\left(y_{0}\right)\right|>\frac{n}{3},
$$

If $\left|V_{1}\left(y_{0}\right)\right| \leqq \frac{n}{12}-t$, then

$$
d_{1}(x) \leqq \frac{n}{12}-\tau \quad \text { for } \quad x \in V_{1}\left(x_{0}\right) .
$$

This gives

$$
\begin{gathered}
\left|E_{1}\right| \leqq \frac{1}{2}\left(\frac{3 n}{4}-t\right)\left(\frac{n}{4}+t\right)+\left(\frac{n}{4}+t\right)\left(\frac{n}{12}-t\right)= \\
=\frac{1}{2}\left(\frac{n}{4}+t\right)\left(\frac{5}{6} n-2 t\right) \leqq \frac{1}{2}\left(\frac{5}{24} n^{2}+\frac{2}{3} n t-2 t^{2}\right)<\frac{n^{2}}{8},
\end{gathered}
$$

which contradicts to (12).

This completes the proof of the upper bound of (3).
(b) The lower bound in (3) follows by the adaptation of a construction in P. ERDŐs [2]:

Let l be an integer which will be determined later, let the vertices of G be the $0-1$ sequences of length $3 l+1$. Two vertices of G are joined by an edge in G if the Hamming-distance of the corresponding two sequences is at least $2 l+1$ (i.e., if the sequences differ in at least $2 l+1$ places). This graph has no triangle and it follows from a theorem of Kleitman [9] that the size of the maximum independent set equals the common degree of the vertices.

Now from this graph G we construct the graph G^{*} as follows: we replace each vertex by a set of vertices of size $\left[\frac{m}{2^{3 l+1}}\right]$, where l is the smallest integer for which

$$
\sum_{i=0}^{t+1}\binom{3 l+1}{i} \frac{m}{2^{3 l+1}}<\varepsilon m .
$$

It is easy to see, that this graph has no triangles and the maximum independent set has $<\varepsilon m$ vertices. The number of edges in G^{*} is $>c \varepsilon m^{2}$ where $c>0$ is an absolute constant.

Now we consider the following three-colouring of $K_{2 m}$:
Let $V=V_{1} \cup V_{2}$ with $\left|V_{1}\right|=\left|V_{2}\right|=m$. Let $G^{*}\left(V_{1}\right), G^{* *}\left(V_{2}\right)$ be two graphs isomorphic to the above constructed G^{*} and

$$
E_{2}=E\left(G^{*}\left(V_{1}\right)\right) \cup E\left(G^{* *}\left(V_{2}\right)\right)
$$

$G_{1}(V)$ be the complete bipartite graph $K\left(V_{1}, V_{2}\right)$.
This construction gives the proof of the lower bound in (3).
Remark. Very likely the following stronger result holds: There is an absolute constant c such that $(\varepsilon \rightarrow 0)$

$$
f(n ; 3,3, \varepsilon n)=\frac{n^{2}}{4}+(c+o(1)) \varepsilon n^{2}
$$

but at the moment we do not know how to prove this.
Proof of Theorem 2.
Now we construct a sequence of points x_{1}, \ldots, x_{k} and a corresponding sequence of indices i_{1}, \ldots, i_{k} where $i_{v} \in\{1,2\}$, with the following property: for $\lambda=\sqrt{\bar{\varepsilon}}$ let

$$
\begin{aligned}
& \lambda_{i_{1}}\left(x_{1}\right)>\lambda n, \\
& \lambda_{i_{v}}\left(x_{v} ; U_{v}\right)>\lambda n \text { if } \quad v>1
\end{aligned}
$$

where for $v>1$

$$
U_{v}=V-\bigcup_{l=1}^{v} V_{i_{l}}\left(x_{l}\right) .
$$

Let x_{1}, \ldots, x_{k} be maximal in the sense that for any $x \in V-\left\{x_{1}, \ldots, x_{k}\right\}$

$$
d_{i}\left(x ; U_{k}\right)<\lambda n .
$$

Obviously, $k<\frac{1}{\lambda}$. Put

$$
\begin{gathered}
V_{1}=\bigcup_{\substack{1 \leq \leq \leq k \\
i_{l}=1}} V_{i_{l}}\left(x_{l} ; U_{l}\right), \quad V_{2}=\bigcup_{\substack{\leq \leq \leq k \\
i_{l}=2}} V_{i_{l}}\left(x_{l} ; U_{l}\right) \\
\left(V_{1} \cap V_{2}=\emptyset\right) \quad \text { and } \quad V_{3}=V-\left(V_{1} \cup V_{2}\right),
\end{gathered}
$$

$n_{i}=\left|V_{i}\right|, 1 \leqq i \leqq 3$.
Consider now the edges in $E_{1} \cup E_{2}$ of the following type:

$$
F_{j i, l}=\left\{(x, y): x \in V_{j}, y \in V_{l},(x, y) \in E_{i}\right\}
$$

$1 \leqq j \leqq 3,1 \leqq l \leqq 3, i=1,2$.
(a)

$$
\left|F_{1,1}^{1}\right| \leqq \frac{1}{4} n_{1}^{2}, \quad\left|F_{2,2}^{2}\right| \leqq \frac{1}{4} n_{2}^{2}
$$

since G_{1} and G_{2} are triangle-free.
(b)

$$
\left|F_{1,1}^{1}\right|<\lambda n^{2}, \quad\left|F_{1,2}^{2}\right|<\lambda n^{2}
$$

$$
\left|F_{1,1}^{2}\right|<\lambda n^{2}, \quad\left|F_{2,2}^{1}\right|<\lambda n^{2} .
$$

Otherwise we would have two points x_{v} and x_{μ} with

$$
\left|V_{1}\left(x_{v}\right) \cap V_{2}\left(x_{\mu}\right)\right|>\frac{\lambda}{k} n>\lambda \lambda n=\varepsilon n
$$

which contradicts (8).
(c)

$$
\left|F_{j, 3}^{i}\right|<\lambda n^{2} \quad \text { for } j=1,2,3, \quad i=1,2 .
$$

Otherwise we would have an $x \in V$ with

But since

$$
\max _{i=1,2} d_{i}\left(x ; V_{3}\right) \geqq \lambda n .
$$

$$
d_{i}\left(x ; V_{3}\right)=d_{i}\left(x ; U_{k}\right)
$$

this would contradict the maximality of the sequence x_{1}, \ldots, x_{k}.
By (a)-(c) we obtain

$$
\begin{align*}
& \left|E_{1}\right| \leqq \frac{1}{4} n_{1}^{2}+10 \lambda n^{2} \tag{13}\\
& \left|E_{2}\right| \leqq \frac{1}{4} n_{2}^{2}+10 \lambda n^{2} . \tag{14}
\end{align*}
$$

Now by the assumption

$$
\left|E_{1}\right| \geqq\left|E_{2}\right| \geqq c n^{2}
$$

we get

$$
n_{i} \geqq 2 n \sqrt{c-10 \lambda} \quad i=1,2 .
$$

Hence by (13) and (14)

$$
\left|E_{1}\right|+\left|E_{2}\right| \leqq n^{2}\left(\frac{1}{4}-\sqrt{c}+2 c\right)+\eta(\varepsilon) n^{2}
$$

where, as a simple computation shows, $\eta(\varepsilon) \rightarrow 0$ with $\varepsilon \rightarrow 0$.
Remark. If $c>\frac{1}{16}$, there does not exist a three colouring of K_{n}, for which

$$
\begin{aligned}
& K_{3} \notin G_{i}, \quad i=1,2 \\
& K_{\varepsilon n} \notin G_{3}
\end{aligned}
$$

and

$$
\left|E_{1}\right| \geqq\left|E_{2}\right| \geqq c n^{2} .
$$

Remark. First observe that the constant $\frac{1}{4}-\sqrt{c}+2 c$ in Theorem 2 is best possible. To see this, let

$$
\begin{gathered}
V=V_{1} \cup V_{2}, \quad V_{1} \cap V_{2}=\emptyset \\
\left|V_{1}\right|=[2 \sqrt{c} n], \quad\left|V_{2}\right|=[(1-2 \sqrt{c}) n] \\
V_{i}=A_{i} \cup B_{i}, \quad\left|A_{i}\right|=\left[\frac{1}{2}\left|V_{i}\right|\right], \quad\left|B_{i}\right|=\left[\frac{1}{2}\left|V_{i}\right|+1\right], \quad i=1,2 .
\end{gathered}
$$

Join every vertex of A_{i} to every vertex of B_{i} in G_{i} (for $i=1,2$). Let the further edges of G_{1}, resp. G_{2} form a graph on A_{2} and on B_{2}, resp. on A_{1} and on B_{1} which has no triangle and the number of independent points is $o(n)$. (It is well-known, that such a graph exists and in fact we used this method in P. Erdős-V. T. Sós [1] or in (6) of the proof of Theorem 1. Obviously this colouring has the required properties.

To get the exact result for $f(n ; 3,3, \varepsilon n)$ is rather hopeless because of its close connection with the Ramsey-numbers. This close connection is shown already by the following

Proposition 1. Let $\varepsilon(n) \rightarrow 0$ with $n \rightarrow \infty$. Then

$$
\begin{equation*}
R(3, \varepsilon(n) n)=o(n) \tag{15}
\end{equation*}
$$

implies

$$
\begin{equation*}
f(n ; 3,3, \varepsilon(n) n)=o\left(n^{2}\right) \tag{16}
\end{equation*}
$$

(Here $R(k, l)$ is the Ramsey-number.)
Proof. (a) Suppose $R(3, \varepsilon(n) n)=o(n)$ and that with a constant $c>0$

$$
f(n ; 3,3, \varepsilon(n) n)>c n^{2}
$$

holds. This means, that we have a three-colouring of K_{n}, for which

$$
\begin{aligned}
K_{3} & \notin G_{i} \quad i=1,2 \\
K_{\varepsilon(n) n} & \neq G_{3}
\end{aligned}
$$

and, e.g., $\left|E_{1}\right|>\frac{c}{2} n^{2}$. Thus we have a vertex x with $d_{1}(x)>c n$. Since $K_{3} \nleftarrow G_{1}$, in $V_{1}(x)$ we have only edges of E_{2} and E_{3}.

But this means, that we have a two-colouring of the edges of $K_{c n}$, where in the first colour class there is no K_{3} and in the second there is no $K_{\varepsilon(n) n}$. This contradicts (16).

The converse statement, that (16) implies (15) is probably true, too, but we could only prove the following weaker result:

Assume that
Then

$$
R(3, \varepsilon(n) n)>c n
$$

$$
f\left(n ; 3,3, \frac{\varepsilon(n) n}{2 c}\right)>c n^{2}
$$

We hope to return to this subject later.

Some remarks on the Ramsey-numbers

As it is well-known, Erdős and Szekeres [7] proved

$$
\begin{equation*}
R(k, l) \leqq\binom{ k+l-2}{k-1} \tag{17}
\end{equation*}
$$

Probably (17) is not very far from being best possible, in particular

$$
c_{2} \frac{n^{2}}{(\log n)^{2}}<R(3, n)<c_{1} \frac{n^{2} \log \log n}{\log n}
$$

It seems certain that

$$
\begin{equation*}
R(4, n)>n^{3-\varepsilon} . \tag{18}
\end{equation*}
$$

The probability method surely must give (18) but so far technical difficulties prevented success.

Greenwood and Gleason [8] proved

$$
R_{1}\left(k_{1}+1, \ldots, k_{r}+1\right) \leqq \frac{\left(k_{1}+\ldots+k_{r}\right)!}{k_{1}!\ldots k_{r}!}
$$

This gives for example

$$
R_{3}(3,3, n) \leqq c n^{4}
$$

and more generally

$$
R_{r}(3,3, \ldots, \underset{\sim}{1}, n) \leqq c_{r} n^{2 r} .
$$

A simple observation leads to the following improvement:
Proposition 2.

$$
\begin{equation*}
R(3,3, n)=o\left(n^{3}\right) \tag{19}
\end{equation*}
$$

and more generally

$$
\begin{equation*}
R_{r}(3,3, \ldots, 3, n) \leqq r n R_{r-1}(\underset{\text { I }}{3}, \ldots, \underbrace{3,}_{r-1}, n)=o\left(n^{r+1}\right) . \tag{20}
\end{equation*}
$$

Proof. Let us consider a "good" r-colouring of K_{m} for $k_{1}=\ldots=k_{r-1}=3$, $k_{r}=n$. Let $G_{i}, 1 \leqq i \leqq r$ the graph formed by the edges of the i th colour-class. Put

$$
V_{i}(x)=\left\{y:(x, y) \in E_{i}\right\}, \quad 1 \leqq i \leqq r .
$$

Let $U=\left\{x_{1}, \ldots, x_{v}\right\}$ be the vertex-set of a maximal-sized complete graph in G_{r}. We have $v \leqq n-1$. By the maximality of $|U|$ we have

$$
\bigcup_{j=1}^{v} \bigcup_{i=1}^{r-1} V_{i}\left(x_{j}\right)=V-U .
$$

Since $G_{i}, 1 \leqq i \leqq r-1$ is triangle-free,

$$
\left|V_{i}\left(x_{j}\right)\right|<R_{r-1}(3, \ldots, 3, n) \text { for } j=1, \ldots, v .
$$

Now taking into consideration $R(3, n)=o\left(n^{2}\right)$, this proves (20).
Remark. We have no nontrivial lower bound for $R(3,3, n)$. It is trivially true, that

$$
R(3,3, n) \geqq 2 R(3, n)
$$

We expect that

$$
\begin{gathered}
R(3,3, n) / R(3, n) \rightarrow \infty \\
R(3,3, n) n^{-2} \rightarrow \infty
\end{gathered}
$$

or even more,

$$
R(3,3, n)>n^{3-\varepsilon} .
$$

Some remarks on the two-colourings of K_{n}

The following problem belongs to the questions we considered in [5]. Let $f(n ; G)$ be the smallest integer for which every graph of n vertices and of $f(n ; G)$ edges contains a subgraph isomorphic to G and $f(n ; G, \varepsilon n)$ be the smallest integer for which every graph of n vertices and $f(n ; G, \varepsilon n)$ edges either contains a subgraph isomorphic to G or has an independent set of size εn.

First we investigate conditions which imply

$$
\begin{equation*}
f(n ; G, \varepsilon n) \leqq \eta n^{2} \tag{21}
\end{equation*}
$$

where $\eta \rightarrow 0$ with $\varepsilon \rightarrow 0$ or

$$
\begin{equation*}
f(n ; G, \varepsilon n)<f(n ; G)(1-c) \tag{22}
\end{equation*}
$$

with a $c>0$.
We prove some preliminary results about (21) and (22) and state without proof a few more results.

Proposition 1. (21) holds for $G \sim K(1, r, r)$.
Proof. We need the following result of Erdős:

For every l there exists a constant $c_{l}>0$ such that if $n>n_{0}$ and $e\left(G_{n}\right)>c n^{2}$ then G_{n} contains a $K\left(l, c_{l}, n\right)$.

Using this it is easy to show that if for $G_{n} e\left(G_{n}\right)=c n^{2}$ and the largest independent set in G_{n} has size less than $\varepsilon(c) n$, then G_{n} contains a $K(1, r, r)$.

Proposition.

$$
f(n ; K(3,3,3), \varepsilon n)=\frac{n^{2}}{4}(1+\eta)
$$

where $\eta \rightarrow 0$ with $\varepsilon \rightarrow 0$.
Proof. The stronger

$$
f(n ; K(3,3,3)) \leqq \frac{n^{2}}{4}(1+\eta)
$$

follows from Erdős-Stone [6].
We can prove the lower bound as follows:
Let $\left|V_{1}\right|=\left[\frac{n}{2}\right],\left|V_{2}\right|=\left[\frac{n+1}{2}\right]$. We join every vertex of V_{1} to every vertex of V_{2}. Additionally on V_{1} resp. on V_{2} we consider a graph whose largest independent set has size εn and which contains no circuit C_{r} with $3 \leqq r \leqq 5$. (We know the existence of such a graph from [3], [4].) This graph contains no $K(3,3,3)$ since the vertex set of $K(3,3,3)$ cannot be decomposed into two sets neither of which spans a graph without a circuit.

In a forthcoming paper we prove the more general
Theorem A. Let G be a graph which is k-chromatic and the vertex-set can be decomposed into $k-1$ sets which span graphs without circuits. Then there is a $c>0$ such that

$$
f(n ; G, \varepsilon n) \leqq \frac{n^{2}}{2}\left(1-\frac{1}{k-1}-c\right)
$$

for $\varepsilon<\varepsilon_{0}, n>n_{0}$.
As to (22) we prove
Theorem B. Let G be a graph which is k-chromatic and the vertex-set of G cannot be decomposed into $k-1$ sets such that the subgraphs spanned by these sets have no circuit. Then for every $\eta>0$

$$
f(n ; G, \varepsilon n) \geqq \frac{n^{2}}{2}\left(1-\frac{1}{k-1}-\eta\right)
$$

if $\varepsilon<\varepsilon_{0}(\eta), n>n_{0}(\eta)$.
Added in proof (December, 1981). We proved with A. Hajnal and E. Szemerédi that

$$
f(n ; 2 k, l)=\frac{1}{2}\left(\frac{3 k-5}{3 k-2}\right) n^{2}+o\left(n^{2}\right) \text { for } \quad k \geqq 2
$$

when $l=o(n)$. The proof will appear in a quadruple paper in Combinatorica.

REFERENCES

[1] Bollobás, B. and Erdős, P., On a Ramsey-Turán type problem, J. C. J. (B) 21 (1976), $166-168$.
[2] Erdős, P., On the construction of certain graphs, J. Combinatorial Theory 1 (1966), 149-153.
[3] Erdős, P., Graph theory and probability I, Canadian J. Math. 11 (1959), 34-38.
[4] Erdös, P.: On circuits and subgraphs of chromatic graphs, Math. 9(1962), 170-175.
[5] Erdős, P. and T. Sós, V., Some remarks on Ramsey's and Turán's theorem, Combinatorial Theory and its Applications. Coll. Math. Soc. J. Bolyai, Balatonfüred, Hungary, 1969, 395-404.
[6] Erdős, P. and Stone, E. H., On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-1091.
[7] Erdős, P. and Szekeres, G., A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.
[8] Greenwood, A. M. and Gleason, A. M., Combinatorial relations and chromatic graphs, Canadian J. Math. 7 (1955), 1-7.
[9] Kleitman, D. J., Families of non-disjoint subsets, J. Combinatorial Theory $\mathbf{1}$ (1966), 153-155.
[10] T. Sós, V., On extremal problems in graph theory, Proc. Calgary Internat. Conf. on Combinatorial Structures, 1969, 407-410.
[11] Szemerédi, E., Graphs without complete quadrilaterals, Mat. Lapok 23 (1973), 113-116 (in Hungarian).
(Received April 10, 1980)

MTA MATEMATIKAI KUTATÓ INTÉZETE
REÁLTANODA U, 13-15.
$\mathrm{H}-1053$ BUDAPEST
HUNGARY

