ON TURÁN—RAMSEY TYPE THEOREMS II

by

P. ERDŐS and VERA T. SÓS

This paper is a continuation of our papers [5], [10]. We investigated the following problem:

Let the edges of K_n be coloured by r colours, G_i , $1 \le i \le r$ be the graph formed by the *i*'th colour. Let $f(n; k_1, ..., k_r)$ be the largest integer for which there is an r-colouring of K_n such that

$$K_{k_i} \notin G_i, \quad 1 \leq i \leq i$$

and

(1)
$$\sum_{i=1}^{r-1} e(G_i) = f(n; k_1, \dots, k_r).$$

(Here e(G) denotes the number of edges of G.)

Due to Ramsey's theorem for fixed k_1, \ldots, k_r , $n > N(k_1, \ldots, k_r)$ such a graph does not exist. Therefore the problem makes sense only in the case when at least one of the $k_i \rightarrow \infty$ with $n \rightarrow \infty$.

It is trivial that $f(n; 3, l) \leq \frac{1}{2} nl$. We proved in [2] that if l=o(n) then

(2)
$$f(n; 2k+1, l) = \frac{1}{2} \left(1 - \frac{1}{k} \right) n^2 + o(n^2).$$

BOLLOBÁS—ERDŐS [1] and SZEMERÉDI [11] proved that $f(n; 4, l) = \frac{n^2}{8} + o(n^2)$ for l=o(n). No asymptotic formula is known for f(n; 2k, l) when l=o(n) and k>2.

Here we start to investigate $f(n; k_1, ..., k_r)$ for r=3.

NOTATION. $G_n(V; E)$ is a graph with |V| = n, $e(G_n) = |E|$, $K(k_1, ..., k_r)$ is a complete *r*-partite graph with k_i vertices in the *i*'th class, K_n is the complete graph on *n* vertices.

Let V be the vertex set of the complete graph K_n . If we consider an r-colouring of the edges of K_n , let E_i be the set of edges of K_n having the *i*th colour for $1 \le i \le r$. Put $G_i = G(V; E_i)$ and

$$V_i(x) = \{y: (x, y) \in E_i\}, \quad d_i = |V_i(x)|, \\ V_i(x; U) = \{y: (x, y) \in E_i, y \in V - U\}, \\ d_i(x; U) = |V_i(x; U)|.$$

For the case r=3 we prove the following theorems:

THEOREM 1.

(3)

$$f(n; 3, 3, \varepsilon n) < \frac{n^2}{4} + c_2 \varepsilon n^2$$

and for $n > n_0(\varepsilon)$

$$\frac{n^2}{4}+c_1\varepsilon n^2 < f(n; 3, 3, \varepsilon n),$$

where $c_1 > 0$, $c_2 > 0$ are absolute constants.

THEOREM 2. Let $G_i(V; E_i)$, $1 \le i \le 3$ be graphs belonging to a 3-colouring of K_n with the property

(4) $K_3 \notin G_i$ i = 1, 2,(5) $K_{\epsilon n} \notin G_3$ and (6) $|E_1| \ge |E_2| > cn^2.$ Then (7) $|E_1 \cup E_2| < n^2 \left(\frac{1}{4} - \sqrt{c} + 2c\right) + \eta n^2$

where $\eta \rightarrow 0$ with $\varepsilon \rightarrow 0$.

REMARK. We obtain the lower bound in Theorem 1 by a colouring in which G_1 is the complete bipartite graph $K\left(\left[\frac{n}{2}\right], \left[\frac{n+1}{2}\right]\right)$ and G_2 formed by two copies of a trianglefree graph with maximum independent set of size o(n) and $|E_2| = o(n^2)$. Theorem 2 shows that this extremum is sharp; by the condition (6) we have the stronger inequality (7) instead of (3).

PROOF of Theorem 1.

(a) The upper bound.

We shall use the simple observation that

$$K_3 \notin G_i \qquad i = 1, 2$$
$$K_{en} \notin G_3$$

implies

$$|V_1(x) \cap V_2(y)| < \varepsilon n$$

for any $x \neq y, x, y \in V$.

Assume $|E_1| \ge |E_2|$. Let x_0 be a vertex for which $d_1(x)$ is maximal. Let

$$d_1(y_0) = \max_{y \in V_1(x_0)} d_1(y), \quad y_0 \in V_1(x_0).$$
$$V_1(x) \cap V_1(y) = \emptyset.$$

Since $K_3 \oplus G_1$

Let $U = V - (V_1(x_0) \cup V_1(y_0))$. Put

$$E_2^* = \{(x, y): (x, y) \in E_2, x \notin U \text{ or } y \notin U\}.$$

First we prove

$$|E_2^*| < \sqrt{2\varepsilon n^3}$$

By (8), obviously, any point $z \in V$ can be joined in G_2 to at most $2\varepsilon n$ points of $V_1(x_0) \cup V_1(y_0)$. This gives (9). Thus we only have to consider the set of edges

$$E_2^{**} = \{(x, y) \colon (x, y) \in E_2, x \in U, y \in U\}.$$

Put

(9)

$$|U| = \delta n$$

and

$$\delta^* n = \max_{x \in U} d_2(x; V - U) = d_2(x^*; V - U) \qquad (x^* \in U).$$

As before, by (8) we get that the number of edges in G_1 incident to a vertex in $V_2(x^*)$ is at most en^2 . Since $K_3 \oplus G_1$, the number of the remaining edges of G_1 is less than $\frac{n^2}{4}(1-\delta^*)^2$. By all of these we obtain

(11)
$$|E_1 \cup E_2| < \frac{n^2}{4} (1 - \delta^*)^2 + \delta \delta^* \frac{n^2}{2} + 3\varepsilon n^2$$

If
$$\delta < \frac{2}{3}$$
 (and consequently $\delta^* < \frac{2}{3}$) then (11) gives

$$|E_1\cup E_2|<\frac{n^2}{4}+3\varepsilon n^2.$$

So all we have to show is $\delta < \frac{2}{3}$.

We assumed $|E_1| \ge |E_2|$, thus we may suppose

(12)
$$|E_1| > \frac{n^2}{8}, \quad |V_1(x_0)| > \frac{n}{4}.$$

Put $|V_1(x_0)| = \frac{n}{4} + t$. If $|V_1(y_0)| > \frac{n}{12} - t$ then

$$|V_1(x_0) \cup V_1(y_0)| > \frac{n}{3},$$

i.e., $\delta < \frac{2}{3}$.

If $|V_1(y_0)| \le \frac{n}{12} - t$, then

$$d_1(x) \leq \frac{n}{12} - t \quad \text{for} \quad x \in V_1(x_0).$$

This gives

$$|E_1| \leq \frac{1}{2} \left(\frac{3n}{4} - t\right) \left(\frac{n}{4} + t\right) + \left(\frac{n}{4} + t\right) \left(\frac{n}{12} - t\right) =$$

= $\frac{1}{2} \left(\frac{n}{4} + t\right) \left(\frac{5}{6}n - 2t\right) \leq \frac{1}{2} \left(\frac{5}{24}n^2 + \frac{2}{3}nt - 2t^2\right) < \frac{n^2}{8},$

which contradicts to (12).

P. ERDŐS AND V. T. SÓS

This completes the proof of the upper bound of (3).

(b) The lower bound in (3) follows by the adaptation of a construction in P. Erdős [2]:

Let l be an integer which will be determined later, let the vertices of G be the 0-1 sequences of length 3l+1. Two vertices of G are joined by an edge in Gif the Hamming-distance of the corresponding two sequences is at least 2l+1 (i.e., if the sequences differ in at least 2l+1 places). This graph has no triangle and it follows from a theorem of KLEITMAN [9] that the size of the maximum independent set equals the common degree of the vertices.

Now from this graph G we construct the graph G^* as follows: we replace each vertex by a set of vertices of size $\left[\frac{m}{2^{3l+1}}\right]$, where l is the smallest integer for which

$$\sum_{i=0}^{l+1} \binom{3l+1}{i} \frac{m}{2^{3l+1}} < \varepsilon m.$$

It is easy to see, that this graph has no triangles and the maximum independent set has < cm vertices. The number of edges in G^* is $> ccm^2$ where c > 0 is an absolute constant.

Now we consider the following three-colouring of K_{2m} :

Let $V = V_1 \cup V_2$ with $|V_1| = |V_2| = m$. Let $G^*(V_1)$, $G^{**}(V_2)$ be two graphs isomorphic to the above constructed G^* and

$$E_{2} = E(G^{*}(V_{1})) \cup E(G^{**}(V_{2})),$$

 $G_1(V)$ be the complete bipartite graph $K(V_1, V_2)$.

This construction gives the proof of the lower bound in (3).

REMARK. Very likely the following stronger result holds: There is an absolute constant c such that $(\varepsilon \rightarrow 0)$

$$f(n; 3, 3, \varepsilon n) = \frac{n^2}{4} + (c + o(1))\varepsilon n^2$$

but at the moment we do not know how to prove this.

PROOF of Theorem 2.

Now we construct a sequence of points $x_1, ..., x_k$ and a corresponding sequence of indices $i_1, ..., i_k$ where $i_v \in \{1, 2\}$, with the following property: for $\lambda = \sqrt{\varepsilon}$ let

$$\lambda_{i_1}(x_1) > \lambda n,$$

$$\lambda_{i_v}(x_v; U_v) > \lambda n \quad \text{if} \quad v > 1$$

where for v > 1

$$U_{\mathbf{v}}=V-\bigcup_{l=1}^{\mathbf{v}}V_{i_l}(x_l).$$

Let x_1, \ldots, x_k be maximal in the sense that for any $x \in V - \{x_1, \ldots, x_k\}$

$$d_i(x; U_k) < \lambda n.$$

Obviously, $k < \frac{1}{\lambda}$. Put

$$\begin{split} V_1 &= \bigcup_{\substack{1 \leq l \leq k \\ i_l = 1}} V_{i_l}(x_l; U_l), \quad V_2 = \bigcup_{\substack{1 \leq l \leq k \\ i_l = 2}} V_{i_l}(x_l; U_l) \\ (V_1 \cap V_2 = \emptyset) \quad \text{and} \quad V_3 = V - (V_1 \cup V_2), \end{split}$$

 $n_i = |V_i|, \ 1 \le i \le 3.$ Consider now the edges in

sider now the edges in
$$E_1 \cup E_2$$
 of the following type:

$$F_{ji,l} = \{(x, y): x \in V_j, y \in V_l, (x, y) \in E_i\},\$$

 $1 \le j \le 3, \ 1 \le l \le 3, \ i=1, 2.$

(a)
$$|F_{1,1}^1| \leq \frac{1}{4} n_1^2, |F_{2,2}^2| \leq \frac{1}{4} n_2^2$$

since G_1 and G_2 are triangle-free.

(b)
$$\begin{aligned} |F_{1,1}^1| < \lambda n^2, \quad |F_{1,2}^2| < \lambda n^2 \\ |F_{1,1}^2| < \lambda n^2, \quad |F_{2,2}^1| < \lambda n^2. \end{aligned}$$

Otherwise we would have two points x_v and x_{μ} with

$$|V_1(x_v) \cap V_2(x_\mu)| > \frac{\lambda}{k} n > \lambda \lambda n = \varepsilon n$$

which contradicts (8).

(c)
$$|F_{j,3}^i| < \lambda n^2$$
 for $j = 1, 2, 3, i = 1, 2$.

Otherwise we would have an $x \in V$ with

$$\max_{i} d_i(x; V_3) \geq \lambda n.$$

But since

$$d_i(x; V_3) = d_i(x; U_k)$$

this would contradict the maximality of the sequence x_1, \ldots, x_k . By (a)—(c) we obtain

(13)
$$|E_1| \leq \frac{1}{4} n_1^2 + 10\lambda n^2$$

(14)
$$|E_2| \leq \frac{1}{4} n_2^2 + 10\lambda n^2.$$

1

Now by the assumption

$$|E_1| \ge |E_2| \ge cn^2$$

we get

$$a_i \ge 2n\sqrt{c-10\lambda}$$
 $i=1, 2.$

Hence by (13) and (14)

$$|E_1| + |E_2| \le n^2 \left(\frac{1}{4} - \sqrt{c} + 2c\right) + \eta(\varepsilon) n^2$$

where, as a simple computation shows, $\eta(\varepsilon) \rightarrow 0$ with $\varepsilon \rightarrow 0$.

REMARK. If
$$c > \frac{1}{16}$$
, there does not exist a three colouring of K_n , for which
 $K_3 \notin G_i$, $i = 1, 2$
 $K_{en} \notin G_3$
 $|E| \ge |E| \ge cn^2$

and

 $|E_1| \leq |E_2| \leq cn^2.$

REMARK. First observe that the constant $\frac{1}{4} - \sqrt{c} + 2c$ in Theorem 2 is best possible. To see this, let

$$V = V_1 \cup V_2, \quad V_1 \cap V_2 = \emptyset,$$

$$|V_1| = [2\sqrt{cn}], \quad |V_2| = [(1-2\sqrt{c})n],$$

$$V_i = A_i \cup B_i, \quad |A_i| = [\frac{1}{2}|V_i|], \quad |B_i| = [\frac{1}{2}|V_i|+1], \quad i = 1, 2$$

Join every vertex of A_i to every vertex of B_i in G_i (for i=1, 2). Let the further edges of G_1 , resp. G_2 form a graph on A_2 and on B_2 , resp. on A_1 and on B_1 which has no triangle and the number of independent points is o(n). (It is well-known, that such a graph exists and in fact we used this method in P. ERDŐS-V. T. SÓS [1] or in (6) of the proof of Theorem 1. Obviously this colouring has the required properties.

To get the exact result for $f(n; 3, 3, \epsilon n)$ is rather hopeless because of its close connection with the Ramsey-numbers. This close connection is shown already by the following

PROPOSITION 1. Let $\varepsilon(n) \rightarrow 0$ with $n \rightarrow \infty$. Then

(15)
$$R(3,\varepsilon(n)n) = o(n)$$

implies

(16)
$$f(n; 3, 3, \varepsilon(n)n) = o(n^2).$$

(Here R(k, l) is the Ramsey-number.)

PROOF. (a) Suppose $R(3, \varepsilon(n)n) = o(n)$ and that with a constant c > 0

$$f(n; 3, 3, \varepsilon(n)n) > cn$$

holds. This means, that we have a three-colouring of K_n , for which

$$K_3 \notin G_i \qquad i = 1, 2$$
$$K_{\varepsilon(n)n} \notin G_3$$

Studia Scientiarum Mathematicarum Hungarica 14 (1979)

32

and, e.g., $|E_1| > \frac{c}{2}n^2$. Thus we have a vertex x with $d_1(x) > cn$. Since $K_3 \subset G_1$, in $V_1(x)$ we have only edges of E_2 and E_3 .

But this means, that we have a two-colouring of the edges of K_{cn} , where in the first colour class there is no K_3 and in the second there is no $K_{\varepsilon(n)n}$. This contradicts (16).

The converse statement, that (16) implies (15) is probably true, too, but we could only prove the following weaker result:

Assume that

$$R(3,\varepsilon(n)n) > cn.$$

Then

$$f\left(n; 3, 3, \frac{\varepsilon(n)n}{2c}\right) > cn^2.$$

We hope to return to this subject later.

Some remarks on the Ramsey-numbers

As it is well-known, ERDŐS and SZEKERES [7] proved

(17)
$$R(k,l) \leq \binom{k+l-2}{k-1}.$$

Probably (17) is not very far from being best possible, in particular

$$c_2 \frac{n^2}{(\log n)^2} < R(3, n) < c_1 \frac{n^2 \log \log n}{\log n}.$$

It seems certain that

(18)

The probability method surely must give (18) but so far technical difficulties prevented success.

 $R(4,n)>n^{3-\varepsilon}.$

GREENWOOD and GLEASON [8] proved

$$R_1(k_1+1,\ldots,k_r+1) \leq \frac{(k_1+\ldots+k_r)!}{k_1!\ldots k_r!}.$$

This gives for example

$$R_3(3,3,n) \leq cn^4$$

 $R_r(3, 3, ..., 3, n) \leq c_r n^{2r}.$

and more generally

PROPOSITION 2.

(19)
$$R(3, 3, n) = o(n^3)$$

$$R(k,l) \leq \binom{k+l-2}{k-1}.$$

and more generally

(20)
$$R_{r}(3, 3, ..., 3, n) \leq rnR_{r-1}(3, ..., 3, n) = o(n^{r+1}).$$

PROOF. Let us consider a "good" r-colouring of K_m for $k_1 = ... = k_{r-1} = 3$, $k_r = n$. Let $G_i, 1 \le i \le r$ the graph formed by the edges of the *i*th colour-class. Put

$$V_i(x) = \{y \colon (x, y) \in E_i\}, \quad 1 \le i \le r.$$

Let $U = \{x_1, ..., x_v\}$ be the vertex-set of a maximal-sized complete graph in G_r . We have $v \le n-1$. By the maximality of |U| we have

$$\bigcup_{j=1}^{\nu}\bigcup_{i=1}^{r-1}V_i(x_j)=V-U.$$

Since G_i , $1 \le i \le r-1$ is triangle-free,

$$|V_i(x_i)| < R_{r-1}(3, ..., 3, n)$$
 for $j = 1, ..., v$.

Now taking into consideration $R(3, n) = o(n^2)$, this proves (20).

REMARK. We have no nontrivial lower bound for R(3, 3, n). It is trivially true, that $R(3, 3, n) \ge 2R(3, n)$.

We expect that

$$R(3, 3, n)/R(3, n) \rightarrow \infty$$
$$R(3, 3, n)n^{-2} \rightarrow \infty$$
$$R(3, 3, n) > n^{3-\epsilon}.$$

or even more,

Some remarks on the two-colourings of K_n

The following problem belongs to the questions we considered in [5]. Let f(n; G) be the smallest integer for which every graph of n vertices and of f(n; G) edges contains a subgraph isomorphic to G and $f(n; G, \varepsilon n)$ be the smallest integer for which every graph of n vertices and $f(n; G, \varepsilon n)$ edges either contains a subgraph isomorphic to G or has an independent set of size εn .

First we investigate conditions which imply

(21) $f(n; G, \varepsilon n) \leq \eta n^2$ where $\eta \rightarrow 0$ with $\varepsilon \rightarrow 0$ or (22) $f(n; G, \varepsilon n) < f(n; G)(1-c)$

with a c > 0.

We prove some preliminary results about (21) and (22) and state without proof a few more results.

PROPOSITION 1. (21) holds for $G \sim K(1, r, r)$.

PROOF. We need the following result of Erdős:

Studia Scientiarum Mathematicarum Hungarica 14 (1979)

34

For every *l* there exists a constant $c_l > 0$ such that if $n > n_0$ and $e(G_n) > cn^2$ then G_n contains a $K(l, c_l, n)$.

Using this it is easy to show that if for $G_n e(G_n) = cn^2$ and the largest independent set in G_n has size less than $\varepsilon(c)n$, then G_n contains a K(1, r, r).

PROPOSITION.

$$f(n; K(3, 3, 3), \varepsilon n) = \frac{n^2}{4}(1+\eta)$$

where $\eta \rightarrow 0$ with $\varepsilon \rightarrow 0$.

PROOF. The stronger

$$f(n; K(3, 3, 3)) \leq \frac{n^2}{4}(1+\eta)$$

follows from Erdős-Stone [6].

We can prove the lower bound as follows:

Let $|V_1| = \left[\frac{n}{2}\right]$, $|V_2| = \left[\frac{n+1}{2}\right]$. We join every vertex of V_1 to every vertex of V_2 . Additionally on V_1 resp. on V_2 we consider a graph whose largest independent set has size ϵn and which contains no circuit C_r with $3 \le r \le 5$. (We know the existence of such a graph from [3], [4].) This graph contains no K(3, 3, 3) since the vertex set of K(3, 3, 3) cannot be decomposed into two sets neither of which spans a graph without a circuit.

In a forthcoming paper we prove the more general

THEOREM A. Let G be a graph which is k-chromatic and the vertex-set can be decomposed into k-1 sets which span graphs without circuits. Then there is a c>0 such that

$$f(n; G, \varepsilon n) \leq \frac{n^2}{2} \left(1 - \frac{1}{k-1} - c \right)$$

for $\varepsilon < \varepsilon_0, n > n_0$.

As to (22) we prove

THEOREM B. Let G be a graph which is k-chromatic and the vertex-set of G cannot be decomposed into k-1 sets such that the subgraphs spanned by these sets have no circuit. Then for every $\eta > 0$

$$f(n; G, \varepsilon n) \geq \frac{n^2}{2} \left(1 - \frac{1}{k-1} - \eta \right)$$

if $\varepsilon < \varepsilon_0(\eta), n > n_0(\eta)$.

3*

Added in proof (December, 1981). We proved with A. Hajnal and E. Szemerédi that

$$f(n; 2k, l) = \frac{1}{2} \left(\frac{3k-5}{3k-2} \right) n^2 + o(n^2) \text{ for } k \ge 2$$

when l = o(n). The proof will appear in a quadruple paper in Combinatorica.

REFERENCES

- [1] BOLLOBÁS, B. and ERDŐS, P., On a Ramsey-Turán type problem, J. C. J. (B) 21 (1976), 166-168.
- [2] ERDŐS, P., On the construction of certain graphs, J. Combinatorial Theory 1 (1966), 149-153.
- [3] ERDős, P., Graph theory and probability I, Canadian J. Math. 11 (1959), 34-38.

[4] ERDős, P.: On circuits and subgraphs of chromatic graphs, Math. 9 (1962), 170-175.

- [5] ERDŐS, P. and T. Sós, V., Some remarks on Ramsey's and Turán's theorem, Combinatorial Theory and its Applications, Coll. Math. Soc. J. Bolyai, Balatonfüred, Hungary, 1969, 395-404.
- [6] ERDŐS, P. and STONE, E. H., On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087-1091.
- [7] ERDŐS, P. and SZEKERES, G., A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.
- [8] GREENWOOD, A. M. and GLEASON, A. M., Combinatorial relations and chromatic graphs, Canadian J. Math. 7 (1955), 1-7.
- [9] KLEITMAN, D. J., Families of non-disjoint subsets, J. Combinatorial Theory 1 (1966), 153-155.
- [10] T. Sós, V., On extremal problems in graph theory, Proc. Calgary Internat. Conf. on Combinatorial Structures, 1969, 407–410.
- [11] SZEMERÉDI, E., Graphs without complete quadrilaterals, Mat. Lapok 23 (1973), 113-116 (in Hungarian).

(Received April 10, 1980)

MTA MATEMATIKAI KUTATÓ INTÉZETE REÁLTANODA U. 13—15, H—1053 BUDAPEST HUNGARY

Studia Scientiarum Mathematicarum Hungarica 14 (1979)

81-271- Szegedi Nyomda - F. v.: Dobó József igazgató