
Problems and results on block designs and set systems

Paul Erdös

Let J SJ=n . A family F of subsets A i c S , 1<-kgn , is called

an r -design if every r -tuple {x 1 , . . ., xr } of S is contained in

one and only one of the A 's . If r=2 we will just call these systems

designs . (In the literature these 2 -designs are usually called partially

balanced block designs .) Usually we will restrict ourselves to designs ;

i .e ., to r=2 . There are two rivial designs . The design with m=1,

IA I J=n is completely trivial and will henceforth be ignored . Almost as

trivial is the r -design with m=,+(n_ 1 )
HA l l=n-1, A i l=r, 2sis1+(n_

1 ) .

For r=2 this trivial design is sometimes called the near pencil .

Henceforth, i-t will also be ignored .

An old theorem of de Bruijn and myself [11 states that for every

design ee have m=n with equality only for the finite geometries (we ignored

the near pencil), n=t 2+t+1, JA i J=t+1 , 1<i<_n .

r
Our theorem is a generalization of the older Fischers inequality,

which assumed that all the blocks A i have the same size .

There are several simple proofs, both combinatorial and algebraic

of our theorem . As far as I know there is no purely combinatorial proof

of the following generalization due to Ryser [2 l : Assume that every pair

{x,y} of S is contained in precisely a of the sets A k . Then

	

n

again holds . It would be nice to find a purely combinatorial proof and

to characterize those values of a and n for which equality is

possible .

As far as I know not much is known about extending the theorem of

de Bruijn and myself for r>2 . Let m(n ;r) be the smallest integer for

which there is an r -design for JSJ=n . m(n ;2)=n is the theorem of
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de Bruijn and myself. There are some results for r=3 due to Hanani and

others - in particular, it follows from results of Hanani that

cl n3/2
< m(n ;3) < c2 n3/2

Presumably we have

m(n ;r) _ (cr + o(1))n
r/2

,

but as far as I know nothing much is known about m(n ;r) for r>_4 .

Let us now assume r=2 . First we discuss m=n . Unfortunately

I can contribute nothing new here . It is well known that m=n is pos-

sible only if n=t2+t+1 and lA i l=t+1 , 1<_i<_n (we exclude the trivial

cases m=1 and the near pencil) . Further it is well known that such

block designs - finite geometries - are possible if t=p a , p prime .

It is one of the fundamental problems of combinatorial mathematics if

such a finite geometry is possible if t is not a power of a prime .

t=10 is the smallest value for which the existence of a finite geometry

is open ;i .e.,let j5j=111 .

	

Is there a system IA k i=11 , 1:5k_<111 of

subsets of S so that every pair fx,yl of s is contained in one and

only one Ak ? Unfortunately I have nothing to contribute to this

beautiful question . A classical result of Bruck and Ryser states that if

t=_1 or 2 (mod 4) then a finite geometry of t2+t+1 elements can only

exist if t is the sum of two squares . Suppose now that n=t 2+t+1 . There

are three possibilities :

I

	

A finite geometry exists if and only if t=pa .

II A finite geometry always exists if the theorem of Bruck-Ryser does

not exclude it .

III The "Truth" is somewhere in between .

Almost no progress has been made towards the resolution of this old problem .
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Let JAil=xi , and suppose the sets A i

	

form a design .

Then we must have

( 1 )

		

(2' ) _ ( 2)
i=1

but of course (1) is not sufficient for the existence of a block design .

It is perhaps not reasonable to expect to obtain a necessary and suffi-

cient condition for the sequence x1_ . . ._xm that there should be a block

design on ISl=n satisfying JA i J= xi . Denote by F(n) the number of

possible choices for {x1 , . . ., xm} where both m and the xi are vari-

able . I conjectured several years ago that (exp z= ez )

(2)

	

exp(c 1 n 1/2 log n) < F(n) < exp( c 2 n1/2 log n) .

The upper bound in (2) is easy (it follows almost immediately

from the fact that the number of indices k for which lA k l>10 n 1/2 is

less than n 112 ), but I was not able to prove the lower bound . No doubt

(3)

	

log F(n)

/n l
1/

	

loo n

for a certain non-zero finite positive C . Perhaps the proof of (3) will

not be difficult,but it will require more practice in constructing designs

than I ever had .

Denote by f(n) the number of those block designs which can be

obtained geometrically;i .e .,the elements are points in the plane and the

blocks the lines joining them . It is easy to see that f(n) > exp(c3 n
1/2 )

and I conjectured many years ago that

(4)

	

f(n) < exp(c4
n1/2 ) .

The proof of (4) (if it is correct) may be difficult (Szemer6di

and Trotter just proved (4) .) Probably

5



(5)

	

log f(n)/

n112
c

holds (O<c< - ) . It is unlikely that a simple and illuminating exact

formula can be found for f(n) and F(n) .

A few days ago (June 1982),1 asked R . Wilson the following

question : Let F be a family of k -element subsets of a set !S1=n

Assume that k 2>n and for any two distinct Ai , A
i

in F we have

I A i n Ai
isl . Determine or estimate max!F! .

Wilson almost immediately proved

(6)

	

IFI , n(k-1)

k -n

He observed that (6) implies that if n=u 2+u+1 , k=u+t , t>1 , then

(7)

	

IFI!_ I

	

n + 1 n l/2
TFT 11

(7) shows that i •f t?2 then for every n

(8)

	

IFI <_

	

+0 ín112 } .

Observe that (8) shows that max F does drop a great deal from

its possible maximum !F!=n u=p' , t=1 (i .e . ;when there is a finite

geometry) .

Bollobás and I tried to get lower bounds for !FJ if t=1 ,

n=u2+u+1 . We could not prove that in this case

(9)

	

lim max !F! /n = 1 .

In fact we doubted that (9) is true . Thus it is not yet clear

whether Wilson's inequalities (7) and (8) can be significantly improved .

Wilson`s .results also imply that if k=[c n1121 , c>1 then
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(10)

	

max1F1 <
-z--

n
l/2

c -1

I asked this question of 'dilson many years aqo and he told me(10)

long ago .

He further observed that if we only assume IA i r) AE I<_a

	

then

(11)

	

IFI <
n(k-a)

	

.

k -n;

Wilson never published any of these results since he tells me that

all this is more or less well known (he refers to Johnson and Selmer

"A new bound for error correcting codes" IEEE around 1965) . In any case

I now give Wilson's proofs with his permission .

The proof is really surprisingly simple . Let IF!=b , and denote

by vx the number of A 's containing the element

dently have

Thus

Hence

E v2 <_ b(b-k+l) .
xeS

nb(b+k-1) >_ n E v2 >_ ( E v ) 2 = b 2 k2
xeS x

	

xeS x

7

x of

F; v = bk ,

	

E v (v
x
-1) <_ b(b-1) .

xes
x

	

xeS
x

S . We evi-

which proves (6) . Unfortunately for k<_Fn this method only gives trivial

results .

Let r<k<n , ISI=n . f(n;k,r) is the largest integer for which

there is a family F , IFI=f(n ;k,r) , of k -element subsets of S for

which IAi n AE I<r for every A i , A
i

in F . Similarly F(n ;k,r) is

the smallest integer for which there is a family F , ;FI=F(n ;k,r) of



k -element subsets of S for which every r -tuple of S is contained

in at least one A i of F . Trivially

(11)

	

f(n ;k,r) <_ (k)

	

<_~

	

F(n ;k,r) .

( r )
One of the fundamental problems of combinatorial analysis is to

determine the values of f(n ;k,r) and F(n ;k,r) as accurately as pos-

sible and in particular to determine the cases of equality in (11) .

Unfortunately I have nothing to contribute towards the solution

of this beautiful problem and want just to make a few historical remarks .

The case of the so called Steiner triples (k=3 , r=2) is completely solved .

There is equality in (11) if and only if n=_1 or 3 (mod 6) . Steiner

triples should really be called Kirkman triples since Kirkman completely

solved the problem of their existence more than 10 years before Steiner

posed the problem. I wonder if Steiner could have seen Kirkman's paper?

I hope the reader will forgive me if I seem to doubt the honesty of a

great mathematician . I quote from the very interesting book of Felix Klein

	Development of Mathematics in the 19-th century : When Steiner became old

and his productivity suffered "fallen out with God and Himself" he

claimed that he found results which he in fact read mainly from English

authors ."

After the case k=3 , r=2 was settled almost nothing happened for

nearly a century . Then Hanani settled the cases k=4 , r=3 ; k=4 , r=2 ;

k=5

	

r=2 .

In a series of brilliant papers Wilson nearly completely settled

r=2

	

He proved that if n>n o(k,2) there is equality in (11) if and only

if n satisfies certain congruence conditions . If r>2 there are no

general results other than r=3 , k=4 settled by Hanani .
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Very recently Rödl proved that for every k and r

(12)

	

f(n ;k,r) _ (1+ o(1)) (k) /
(r)

Special cases of (12) were proved earlier by Rtnyi, Hanani and myself .

Jean Larson and I investigated the following problem : Let A(n)

be the largest integer for which there is a design on the set jsl=n ,

each block of which has size ?A(n) Observe that if n=p 2a+pct+1 then

there is a finite geometry and we have A(n)=pa+1 ; i .e ., A(n)=[nl/2 1+1

for infinitely many n . We proved A(n) > n1/2-n1/4+c where c>O is

a small but positive constant . If we make plausible but hopeless assump-

tions on the distribution of primes we obtain A(n)>n 112 - (log n) c .

We have a fascinating unsolved problem : Is it true that there is an

absolute constant C so that for all n

(13)

	

A(n) > nl/2 - C ?

We thought that (14) is more likely false . I offer 250 dollars

for the proof or disproof of (13) . Our paper has just appeared in the

volume dedicated to Mendelsohn .

The following somewhat vague conjecture should be true : Let

s ;=n ,

	

fA i }

	

1<_ism

	

the blocks of a design . Assume that m>n

but that m-n is "small" . Then there is a finite geometry on Is l l>_M,

ISI I-m small elements so that we obtain our design from the finite

geometry by omitting ISI I-n suitably chosen elements .

Perhaps it would be worthwhile to try to extend our work with

Jean Larson for r -designs, perhaps this is not hopeless .

In a forthcoming paper V . T . Sbs, R . Wilson and I investigated

the following question : Let IS I =q 2+q+1 where we assume that q is such

that there is a finite geometry in s (i .e . a design with ;B i d=q+1 ,
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1<isg2+q+1 ) . Let now {A i } , 15i<_m be a design for which m>q 2+q+1 .

Then m_>q2+2q+1

	

In other words : no design can have m blocks for

q2+q+1<m<g2+2q+1 We further show that unless our design is obtained by

breaking up a block of our finite geometry we in fact have m>q 2+(2+c)q ,

where c is a positive absolute constant. Probably c can be chosen to

be 1 but at present we can not prove this . Answering a question of Doyen

we determine with fairly good accuracy the set of possible values of m .

Some of these questions could be investigated for r -designs but as far

as I know nothing is known .

In a paper which will soon appear in Discrete Mathematics, R . C .

Mullin, V . T . Sbs, D. R . Stinson and I investigated the following related

problem .

Let IS ;=v and b=B(v) be the smallest integer for which there

is a non-trivial design on v elements and b blocks . Such a design will

be called minimal . We prove that for v>5 we have

+n+1 if n2 +2<_v5n2 +n+1

(14)

	

B(v)

	

2
+n

	

if n2 -n+3 _ v _ n 2 +1

2 +n- 1 if v=n2 -n+1 .

Equality holdsif there is a projective plane on n 2+n+1 elements .

We also consider the embeddability of minimal designs into

projective planes and prove several re ults . E .g .,if v=n2-a , a>0 and

a 2+a(2n-3)-(2n2-2n)50 then a minimal resign on v elements can be

imbedded into a projective plane of n 2+n+1 elements . Further if v=

=n 2_ n+2 (v>8) and B(v)=n2 -n-1 then the design can be embedded .

Assume that n 2-n+25vsn2+n+1 and that the minimal design on v

elements can not be embedded into the projective plane on n 2+n+1 elements .



We then prove

(15)

	

B(v) >_ v +
3457

n .

The constant in (15) is no doubt very far from being best possible .

Many unsolved problems remain,e .g,, is it true that

16

	

lim su

	

B(v) - v
( )

	

v--
P

	

v112 -

and assume that there is a finite

smallest integer so that if F(n)

S are given then there always is

11

(16) seems to us a very interesting and intriguing problem . It is

related to (13) .

To end the paper I state a few disconnected problems and results .

V . T . Sbs and I proved that if JSI=v then in a design on S there

always is an element xES which is not contained in at least v- f -1

blocks . Equality holds if and only if the design is a finite geometry .

A geometric version of this result is stated as follows . Let there

be given n points in the plane not all on a line . Then there always

is a point xo so that there are at least n-2 lines which are not

incident to xo . It is easy to see that this is best possible .

We further considered the following two problems . Let v=n2+n+1

geometry on ISI=v . Let F(v) be the

subsets Ah , 1<_h5F(n) , IA h l=n+1

a subfamily A
~1

	 A . , t=n2+n+1
~t

which forms a finite geometry . It is easy to see that for some 0<c<1

F(n) >
c( n+1)

and perhaps in fact

F(n) _ (1+o (1))( n+1)

of



Denote by H(n) the smallest integer so that every G(3)(n ;H(n))

contains a Fano plane . G (3) (n ;t) is a three uniform hypergraph of n

vertices and t edges (i .e . triples), the Fano plane is the finite

geometry of 7 points and 7 lines . We conjectured that

H(2n) = n2 (n-1) + 1 ,

and the extremal graph is the well known triple system of TurAn .

S=S I U 5
2

, 1S1 j=1S2 I=n , S l n S 2 =0 . The edges are the triples which have

a non-empty intersection with both S 1 and S2 . Clearly this triple

system contains no Fano plane since it is two-chromatic and the Fano

plane is known to have chromatic number three . It is well known and easy

to see that all finite geometries except the Fano plane have chromatic

number two .

A very recent paper of Wallis led me to the following question :

Let G(n ;tn ) be a graph of n vertices and to edges whose complementary

graph can be covered by n-1 or less edge disjoint complete graphs of

size not exceeding n-2 . By the theorem of de Bruijn and myself t n_?1 .

Determine or estimate the smallest possible value of t o . Perhaps to>_cn

Let F be a 2 -design on p2+p+1 elements . Assume that F

contains two blocks A 1 , A 2 satisfying JA 1 !=JA2 1=p+1 , A1 r) A2 = 0 .

Determine or estimate minIF1 . Our Lemma C gives IFI>p 2+3p this prob-

ably can be improved and and a non-trivial upper bound can be obtained .

Magliveras conjectured that if there is a finite geometry
2

on n2+n+1 elements and n>n o then one can partition the ( n n+l l)
2

subsets of size n+1 of I s ;=n
2
+n+1 into (n n+11) (n 2+n+1) -l finite

geometries . My first idea was to try to disprove this, but I got

nowhere with this plan,and at the moment I can not attack this attractive

conjecture .
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Let IS',=m and let F, , . . . F t

	

be a family of designs on the
m

set S, no two of which have a block in common and which are essentially

different;i .e .,there is no permutation of the elements of S which

carries F i into F
i

. Denote by h 1 (m) = max t m .

Let further be Fi , . . . F'

	

be another family of designs no two
t'
m

of which have a common block . Denote by x1")>x(i)> . . ., the sizes of

the blocks of F~ and assume that the sets fx~' ) , . . .1 and lx~ j) , . . .1

are not identical . This condition clearly implies that there is no

permutation on the elements of S which carries Fi into F~ . Put max

tm = h2 (m) . Clearly h 1 (m) >_ h 2 (m) . Estimate h l (m) and h 2 (m) as well as

possible from above and below . I am not even sure if they are of

polynomial growth . Though perhaps here I overlook a trivial point .
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Several of my old problems in combinatorial geometry have recently

been settled by Szemer6di-Trotter and Beck . Szemerbdi and Trotter proved

that if there are n points in the plane and k lines where n 112<k<_(n )

then the number of incidences between the points and the lines is less

than c nl/3 k2/3

	

This remarkable inequality is essentially best possible

and they proved (4) by using this inequality . Beck (independently)

proved a weaker inequality from which he deduced another conjecture of

mine : Let there be given n points in the plane no n-k on a line . Then

they determine at least c k n lines . The value which Beck's proof gives

for the i C is no doubt very far from being best possible . Perhaps if

only o(n) points are on a line then the points determine at least

2
(1+0(1))

	

lines . It follows from a result of• Sylvester that if true

this is best possible .

I conjectured that any set of n points determines at least

cn
/

distinct distances and the lattice points show that if true
0o n

this is best possible . In fact I thought that perhaps one of our n

points has the property that there are at least c n /

		

distinct
og n

distances from it . 30 years ago L . Moser proved these conjectures with

n2/3 instead of cn~

		

. A few months ago F . Chung proved that
og n

n points determine at least c n5/7 distinct distances and very recently

Beck proved that the number of distinct distances from one of the points

is >n2/3 +c where c>0 is small but is independent of n . Perhaps

one of the points, say x i ., has the property that every circle of center

xi contains o(n c ) of the other x i 's .

Very recently V . T . Sós, Trotter and I considered the following

problems : Let {A 1 , A 2 , . . ., Am l

IÁ1 1 ? IÁ2 1 ? . . .

	

Denote by

be a design on n elements .
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k
(17)

	

F(n ;k) = max E JAil
i=1

where in (17) the maximum is extended over all possible designs of n

elements and

k
(18)

	

f(n ;k) = max E JLij
i=1

where in (18) the maximum is extended over

obtained from n points in the plane . Clearly F(n ;k)_f(n ;k)

first of all it would be of interest to determine the smallest

k=k(n) for which f(n ;k) < F(n ;k) . It is easy to see that

(19)

	

F(n ;k) < max (cIn
k1/2 , c2 n1/2 k ) .

all designs which can be

(19) can probably be replaced by an asymptotic formula, but we have

not yet done this . Several further related questions can be asked

but we leave this to the interested reader .

Finally we thought that perhaps the following problems might be

of interest (we only thought of these problems recently,thus we

apologize to the reader if the problems turn out to be trivial) . Let

{A i } be a design on the elements x1 , . . ., xn and denote by v i

the number of A i 's containing x i

	

Let Iv1 1? . . .> __ Iv n l . Denote by

G(n) the number of possible choices of {v 1 , . . ., vn} . Denote by g(n)

the number of possible choices of {v I , . . ., vn } which where the x i

are points in the plane .

	

How do Gn and g(n) compare to F(n)

and f(n)? (See (3) and (4).) If the sizes of the {A i } are given

can we have many choices of the {v i } ? Is there any hope of getting a

reasonable condition for v 1> . . .?vn so that there should be a design

for which v i blocks contain x i , 15i_n ?

is

and
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