SUBGRAPHS IN WHICH EACH PAIR OF EDGES LIES IN
 A SHORT COMMON CYCLE

Richard Duke
Georgia Institute of Technology
Paul Erdös
Hungarian Academy of Sciences

1. Introduction.

By a k-graph we mean a pair $G=(V, E)$ consisting of a finite set V of vertices and a collection E of distinct $k-e l e m e n t$ subsets of V called the edges of G. Our object here is to show that each such k-graph with sufficiently many vertices and sufficiently many edges must contain a subgraph H (that is, a "sub-k-graph" H), also having many edges, and having the property that each pair of edges of H lies together in a common subgraph of G which is a type of k-graph "cycle". In particular for graphs $(k=2)$ we show that each pair of edges of the subgraph H lies together in a cycle of length 4 or one of length 6 in H in the usual graph-theoretic sense, with any two edges of H which share a common vertex being in a cycle of length 4.

Our definition of a " k-cycle" for $k>2$ involves the notion of a "separating edge" which was used by Lovász [6] in the formulation of his definition of a "k-forest".
2. The Main Results.

We shall use $G^{k}(n, \ell)$ to denote a k-graph having n vertices and ℓ edges, and $\mathrm{K}^{\mathrm{k}}(\mathrm{m}, \mathrm{m}, \cdots, \mathrm{m})$ to denote the complete k -partite k -graph having m vertices in each color class. Our first result, from which the rest will be derived, is that each k-graph with sufficiently many edges contains a large number of distinct subgraphs each of which is a $K^{k}(2,2, \cdots, 2)$. The argument used is based on familiar techniques such as those employed in [3].

Theorem 1. For each positive constant c and sufficiently large n there exists a positive constant c^{\prime} such that each $G^{k}\left(n, n^{k}\right)$ contains $c^{\prime} n^{2 k}$
distinct copies of $\mathrm{K}^{\mathrm{k}}(2,2, \cdots, 2)$.

Proof. We proceed by induction on k, considering first a graph $G=$ $G^{2}\left(n, n^{2}\right)$.

By standard results (cf. [1]) we have that G contains a bipartite graph B with vertices $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ and $\left\{y_{1}, y_{2}, \cdots, y_{m}\right\}, m=\{n / 2\rfloor$, and $c_{1} n^{2}$ of the edges $x_{i}, y_{j}, 1 \leq i, j \leq m$, for some positive constant c_{1}. Let $d\left(x_{i}\right)$ denote the degree of x_{i} in B and $d\left(y_{j}, y_{l}\right)$ the number of vertices x_{i} such that each of the edges $x_{i} y_{j}$ and $x_{i} y_{l}$ are in B. Let $p=\sum_{j \neq \ell} d\left(y_{j}, y_{\ell}\right)$ and let q denote the number of copies of $k^{2}(2,2)$
in B. Then we have that $p=\sum_{i=1}^{m}\binom{d\left(x_{i}\right)}{2}$ and that $q=\sum_{\substack{j \neq \ell \\ 1 \leq j, \ell \leq m}}\left(\begin{array}{l}d\left(y_{j}, y_{\ell}\right)\end{array}\right)$.
Since p is least if the $d\left(x_{i}\right)$ are all equal and q is least when the $d\left(y_{i}, y_{l}\right)$ are all the same, we have that $p \geq m\left({ }_{2}^{2} 1^{n}\right)$ and that $q \geq\binom{ m}{2}\left(\begin{array}{c}\mathrm{p} /\binom{m}{2}\end{array}\right)$. Thus the result follows for $\mathrm{k}=2$ when n is sufficiently large.

Now assume that the result is true for ($k-1$)-graphs ($k>3$) and consider a k -graph $G^{k}\left(\mathrm{n}, \mathrm{cn}^{\mathrm{k}}\right)$. Again we may assume that our k -graph contains a k-partite sub-k-graph B having vertex set $V=\bigcup_{i=1}^{k} x^{i}$, $x^{i}=\left\{x_{1}^{i}, x_{2}^{i}, \cdots, x_{m}^{i}\right\}, m=\lfloor n / k\rfloor$, and $c_{1} n^{k}$ of the edges $\left(x_{j_{1}}^{1}, x_{j_{2}}^{2}, \cdots, x_{j_{k}}^{k}\right)$ for some positive constant c_{1}. Let A_{ℓ}, $\ell=1,2, \cdots, N=\binom{m}{2}^{k-1}$, denote those sets consisting of two vertices from each of the $X^{i}, 2 \leq i \leq k$, and let $d\left(A_{\ell}\right)$ denote the number of vertices x_{j}^{1} in X^{1} for which $\left(x_{j}^{1}, x_{j_{2}}^{2}, x_{j_{3}}^{3}, \cdots, x_{j_{k}}^{k}\right)$ is an edge of B for each choice of $x_{j_{2}}^{2}, x_{j_{3}}^{3}, \cdots$, and $x_{j_{k}}^{k}$ from A_{ℓ}. Similarly let $\hat{d}\left(x_{j}^{l}\right)$ denote the number of the sets A for which $\left(x_{j}^{1}, x_{j_{2}}^{2}, x_{j_{3}}^{3}, \cdots, x_{j_{k}}^{k}\right)$ is an edge of B for each collection $x_{j_{2}}^{2}, x_{j_{3}}^{3}, \cdots, x_{j_{k}}^{k}$ chosen from A_{l}. For some constant c_{2} there are at least $c_{2} m$ vertices in X^{1} each contained in $c_{2} n^{k-1}$ edges of B. For such
a vertex $\mathrm{x}_{\mathrm{j}_{1}}^{1}$ the (k-1)-graph whose edges are all of the $(k-1)$-sets P_{i} for which $\left\{\mathrm{x}_{j_{1}}^{1}\right\} \cup P_{i}$ is an edge of B has at least $c_{2} n^{k-1}$ edges, and by the inductive hypothesis, contains at least $c_{3} n^{2 k-2}$ copies of $K^{k-1}(2,2, \cdots, 2)$ for some positive constant c_{3}. For such a vertex we have $\hat{d}\left(x_{j_{1}}^{1}\right) \geq c_{3} n^{2 k-2}$. Since $\sum_{\ell=1}^{N} d\left(A_{\ell}\right)=\sum_{j=1}^{m} \hat{d}\left(x_{j}^{1}\right)$, it follows that $\sum_{\ell=1}^{N} d\left(A_{\ell}\right) \geq t$, where $t=c_{4} n^{2 k-1}$, for some positive constant c_{4}. Thus we have $\sum_{\ell=1}^{N}\left(\frac{d\left(A_{\ell}\right)}{2}\right) \geq N\binom{t / N}{2}$, from which the result follows for large n.

As a consequence of this theorem we have that for each positive constant c there exists a positive constant c^{\prime} such that for sufficiently large n each $G^{k}\left(n, c^{k}\right)$ contains an edge which is contained in at least $c^{\prime} n^{k}$ distinct copies of $K^{k}(2,2, \cdots, 2)$. (This fact for $k=2$ could also be obtained as a nice application of the powerful graph-theoretic result of Szemerédi given in [8]). It is easily checked that a subgraph H of $G^{2}\left(n, \mathrm{cn}^{2}\right)$ which consists of $\mathrm{c}^{\prime} \mathrm{n}^{2}$ copies of $\mathrm{C}_{4}=K^{2}(2,2)$ all having a common edge $x y$ has the property that each pair of edges of H are contained in a cycle of length 4 or one of length 6 in H. Any two edges of H which share a common vertex will be in a cycle of length 4 , except possibly for some pairs where both edges contain the same vertex of the edge $x y$ while neither contains both x and y. If we let H_{1} be the subgraph consisting of those edges of H which do not meet $x y$, then for some positive constant $c^{\prime \prime}, H_{1}$ contains $c^{\prime \prime} n^{2}$ distinct copies of C_{4} all sharing a common edge $x^{\prime} y^{\prime}$. Let H_{2} be the graph formed by adding to these $c^{\prime \prime} n^{2}$ copies of C_{4} in H_{1} the remaining edges of each C_{4} in H which includes both the edge $x y$ and some edge in H_{1}. It now follows that any two edges of H_{2} which share a vertex lie in a cycle of length 4 in H_{2} and so this subgraph has the properties described in the following result:

Corollary 1. For each positive constant c there exists a positive constant c^{\prime} such that for sufficiently large n each $G^{2}\left(n, n^{2}\right)$ contains a subgraph H with $c^{\prime} n^{2}$ edges which has the property that each pair of edges of H are contained in a cycle of H of length 4 or 6 and each pair of edges which share a common vertex are in a cycle of length 4.

Before considering an analogue of this corollary for $k>2$ we must formulate an appropriate counterpart for the notion of a "cycle" in a graph. Our approach involves the following notion due to Lovász [6]. An edge E of a k-graph $G=(V, E)$ is a separating edge of G if there exists a partition of V into k classes such that E meets each class of this partition, but every other edge of G meets at most $k-1$ of these classes. (For $\mathrm{k}=2$ a separating edge is simply a "cutedge" in the usual graphtheoretic sense). Lovász called a k-graph each of whose edges is a separating edge a k-forest and showed in $[6]$ that a k-forest with n vertices has at most $\binom{n-1}{k-1}$ edges. In [9] Winkler showed that the ($k-1$)dimensional simplices of a simplicial complex which triangulates a ($k-1$)dimensional closed manifold, thought of as the edges of a k-graph, include no separating edges. Lovász obtained a more general result in [.7] by considering a matroid of rank k defined on the vertices of such a simplicial complex. In [5] Lindström extended Lovász' theorem by allowing, in place of a ($k-1$)-manifold, a cycle of an arbitrary chain-complex, and also obtained new proofs of the earlier results of Lovász and Winkler. It follows from these results (or by a slight modification of the proof of Winkler's theorem in [9]) that a graph G which is such that each set of $k-1$ vertices is contained in an even number of edges has no separating edges. A k-graph G is called strongly connected provided that for each pair of edges E and F of G there exists a finite sequence of edges of $G, E=E_{1}, E_{2}, \cdots, E_{\ell}=F$ such that $\left|E_{i} \cap E_{i+1}\right|=$ $k-1$ for $1 \leq i \leq \ell-1$. We shall use the term k-cycle to denote a k-graph with at least one edge, which has no separating edges and which is minimal with respect to this property. If an edge E of a k-graph G has a subset of $k-1$ vertices which is not a subset of any other edge of G, then it is easy to see that E is a separating edge of G. It follows that any strongly connected k-graph which is such that each set of $k-1$ vertices is contained in 0 or exactly 2 edges must be a k-cycle in our sense. (Note that these conditions applied to the highest dimensional simplices of a simplicial complex define a pseudomanifold in the sense of Brouwer and Lefschetz [4]. A k-cycle of this type would also be a
circuit in the associated k -simplicial matroid over GF(2), but the relationship between our $k-c y c l e s$ in general and the matroid circuits is not clear). We may now formulate the following result:

Corollary 2. For each positive constant c there exists a positive constant c^{\prime} such that for sufficiently large n each $G^{k}\left(n, c^{k}\right)$ contains a sub-k-graph H with the property that each pair of edges of H are contained in a common k-cycle of H.

Proof. As for $k=2$ the proof consists of showing that a subgraph consisting of $c^{\prime} n^{k}$ copies of $k^{k}(2,2, \cdots, 2)$ all sharing a common edge has the desired property. To see that this is so consider two edges E and F in such a subgraph and let the vertices of the k-edge common to all of the $K^{k}(2,2, \cdots, 2)$ in this k-graph be x_{1}, x_{2}, \cdots, and x_{k}. If E and F are contained in the same copy of $k^{k}(2,2, \cdots, 2)$, then this k-partite k-graph is the required k-cycle. Suppose then that E and F are in distinct $K^{k}(2,2, \cdots, 2)$'s, say, Y and Z, and that the vertices of Y and z, other than the x_{i} are y_{1}, \cdots, y_{k} and z_{1}, \cdots, z_{k}, respectively, where for some $r, 1 \leq r \leq k, y_{i}=z_{i}$ for $i=r+1, r+2, \cdots, k$ and $y_{i} \notin \mathrm{z}, \mathrm{z}_{\mathrm{i}} \notin \mathrm{Y}$ for $1 \leq \mathrm{i} \leq \mathrm{r}$. Let X denote the k -graph obtained from $Y \cup Z$ by deleting all k-tuples containing x_{1}, x_{2}, \cdots, and x_{r}. Note that X contains both E and F. Let A denote a set of $k-1$ vertices which are contained in some edge of X . For exactly one value of j , $1 \leq j \leq k$, A does not contain x_{j}, y_{j}, or z_{j}. If A contains any y_{i} or z_{i} with $1 \leq i \leq r$, then A is contained in precisely two edges of X, one containing x_{j} and the other y_{j} or z_{j} (or $y_{j}=z_{j}$ if $j>r$). If A contains no y_{i} or z_{i} with $1 \leq i \leq r$, then we must have $j \leq r$, since otherwise A contains x_{1}, x_{2}, \cdots, and x_{r}. In this case A is again in two edges of x, one with y_{j} and the other with z_{j}. Thus in each case A is contained in exactly two edges of X.

To see that X is also strongly connected first note that each edge of X contains at least one y_{i} for $1 \leq i \leq r$ or at least one z_{i}, $1 \leq i \leq r$, but not both. An edge E containing some $y_{i}, 1 \leq i \leq r$, is joined to the edge with vertices y_{1}, \cdots, y_{k} by a sequence of edges where each successive edge is obtained from its predecessor by replacing one vertex by a vertex among $y_{1}, y_{2}, \cdots, y_{k}$. Similarly an edge
containing $a z_{i}, l \leq i \leq r$, is joined to the edge with vertices z_{1}, z_{2}, \cdots, and z_{k}. Now ($y_{1}, y_{2}, \cdots, y_{k}$) and ($z_{1}, z_{2}, \cdots, z_{k}$) can each be joined by a sequence of edges to an edge containing x_{2}, x_{3}, \cdots, and x_{r}. Finally, since the edges $\left(y_{1}, x_{2}, x_{3}, \cdots, x_{r}, y_{r+1}, \cdots, y_{k}\right)$ and $\left(z_{1}, x_{2}, x_{3}, \cdots, x_{r}, z_{r+1}, \cdots, z_{k}\right)$ share $k-1$ vertices, we have that X is strongly connected. By the remarks above, X must be a k-cycle which concludes the proof.

It was show by Brown, Erdös, and Sós in [2] that each 3-graph $G^{3}\left(\mathrm{n}, \mathrm{cn}^{5 / 2}\right)$, for n sufficiently large, contains a simplicial complex which is a triangulated 2-sphere. An analysis of the proof of Corollary 2 shows that for $k=3$ each pair of edges in the sub- $k-g r a p h$ of $G^{2}\left(n, n^{3}\right)$ constructed are contained together in a triangulated 2sphere in that subgraph.

Further Results and Problems.
It is not difficult to show that each $G^{2}(n, \operatorname{cnf}(n))$ contains a subgraph with $c^{\prime}(f(n))^{2}$ edges each two of which lie on some common cycle. The existence of graphs with large girth and fixed minimum degree (see [1], Chpt. 3) shows, however, that a $G^{2}(n, \operatorname{cnf}(n))$ may contain no subgraph in which each pair of edges lie on a short common cycle. What conditions would insure the existence of a large subgraph in which each set of m edges, no three incident with the same vertex, all lie on a common cycle?

Many questions remain to be answered concerning k-forests and the graphs we have called k-cycles. In particular we have no characterization of these k-cycles. As indicated, each k-graph in which every set of $k-1$ vertices is contained in any even number of edges (and hence each circuit of a k-simplicial matroid over GF(2)) must contain a k-cycle. There exists a 3 -cycle, however, (with 6 vertices and 13 edges) which contains no nonempty sub-3-graph in which each set of 2 vertices is contained in an even number of edges. (If each k-cycle did contain such a subgraph, the notions of " k-cycle" and "matroid circuit" would coincide).

A k-forest on n vertices has at most $\binom{n-1}{k-1}$ edges (cf. [5] or [6]).

There exist exactly two 3 -forests on 5 vertices with 6 edges, one having as edges all 3 -subsets of $\{1,2,3,4,5\}$ which contain 1 and the other having (123), (124), (125), (145), (234), and (235) as edges. The properties of those k-forests with the maximum possible number of edges have yet to be investigated. It is not known whether every collection of separating edges in a strongly connected k-graph with n vertices can be extended to a k-forest with $\binom{n-1}{k-1}$ edges, or whether, in a k-graph with many edges, the fraction of edges which are separating edges must be small.

It follows from Lindström's result [5] that the k-forests contained in a k-graph are independent sets in the k-simplicial matroid determined by H. Examples given in [5] show, however, that the collection of all k-forests in H need not be equal to the collection of independent sets for some matroid.

The 7 -point projective plane, or any larger Steiner triple system, viewed as a 3 -graph, shows that a 3 -forest may not be 2-colorable.

References

[1] B. Bollobás, "Extremal Graph Theory," Academic Press, New York, 1978.
[2] W.G. Brown, P. Erdös, and V.T. Sós, On the Existence of Triangulated Spheres in 3-Graphs and Related Questions, Periodica Math. Hung., Vol. 3 (1973), 221-228.
[3] P. Erdös, On Extremal Problems of Graphs and Generalized graphs, Israel J. Math., Vol. 2 (1964), 183-190.
[4.] S. Lefschetz, "Topology", Chelsea Pub. Co., New York, 1956.
[5] B. Lindström, On Matroids and Sperner's Lemma, Europ. J. Comb., Vol. 2 (1981), 65-66.
[6] L. Lovász, Topological and Algebraic Methods in Graph Theory in "Graph Theory and Related Topics" (Proc. Conf. Univ. Waterloo, Waterloo, Ont., 1977), pp. 1-14, Academic Press, New York, 1979.
[7] L. Lovász, Matroids and Sperner's Lemma, Europ. J. Comb., Vol. 1 (1980), 65-66.
[8] E. Szemerédi, Regular Partitions of Graphs, in "Proc. Colloq. Inter. C.R.N.S." (J.-C. Bermond, J.-C. Fournier, M. Das Vernas, D. Sotteau, Eds.), 1978, 399-401.
[9] P.M. Winkler, On Connectivity of Triangulations of Manifolds, Discrete Math., Vol. 32 (1980), 93-94.

