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ABSTRACT

Chvátal has shown that if T is a tree on n points then r(Kk , T) _ (k - 1 )
(n - 1 ) + 1 , where r is the (generalized) Ramsey number. It is shown that the
same result holds when T is replaced by many other graphs. Such a T is called k-
good. The results proved all support the conjecture that any large graph that is
sufficiently sparse, in the appropriate sense, is k-good .

1 . INTRODUCTION

LetF and G be (simple) graphs . Define the Ramsey number r(F, G) to be the
smallest integer p such that is the edges of the complete graph Kp are colored
red and blue, then either the red subgraph contains a copy of F or the blue
subgraph contains G . This subject has received much attention lately; see [2],
[16] for surveys . One of the most interesting results in the area is the
following result of Chvátal .

Theorem 1 .1 [11] . If T is a tree on n points, then
r(Kk,T) _ (k - 1)(n - 1) + 1 .

Although this theorem is quite easy to prove (in various ways), it seems to
occupy a central place in Ramsey theory, since it lends itself to many
generalizations and analogs . In this paper we will consider what is perhaps
the most direct kind of such generalizations . The following result, which is
contained in Theorem 1 . 1, is a special case of a theory of Chvátal and
Harary.

Theorem 1.2 [121 . If G is a connected graph on n points, then r(Kk , G)
(k-1)(n-1)+1 .
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With these theorems in mind, we make the following definition : If G is a
connected graph on n points, say that G is k-good if

r(Kk , G) = (k - 1)(n - 1) + 1 .

Thus Theorem 1 .1 says that for any k, all trees are k-good . In fact, it appears
that for fixed k, any large graph that is "sparse" enough is k-good . We will
formulate an explicit conjecture of this sort shortly .

If G is a graph define the edge density of G as

max q(F)/p(F),
FC G

where the maximum is over all subgraphs of G and where q(F) andp(F) are
the number of edges and points of F, respectively . (Any notation not
explicitly defined here follows Harary [15]) . Of course, the edge density is
very close to arboricity, which can be defined as

maG q(F)1[p(F) - 11 .

We can now state precisely the conjecture mentioned above .

Conjecture . If k and x are fixed, then all sufficiently large connected
graphs with edge density no more than x are k-good .

In this article we will begin the systematic study of k-goodness ; the
problems we examine are suggested by the above conjecture . The conjecture
is somewhat related to one made in [6], being that if x is given, then there is a
t such that if G has edge density no more then x, the "diagonal" Ramsey
number r(G,G) is no more than tp(G) . Frequently, the test cases considered
and the methods used here are similar to those of [6] .

2. KNOWN RESULTS

In this section we state a few results on k-goodness that have been pub-
lished elsewhere, or soon will be . In addition, we briefly mention some
work which is closely related to k-goodness .

Theorem 2 .1 [4] . Let k be fixed and let G be a connected graph. If Gl is a
large enough graph homeomorphic to G, then G l is k-good .

Actually, the theorem proved in [4] replaces r(Kk, G) by r(F, G), where F
is an arbitrary graph . The general theorem involves a notion of "F-
goodness," a concept whose definition is slightly technical, so we mention
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here only the special case represented by Theorem 2 .1 . In the case that G, is
a cycle, Theorem 2 .1 has already been proved in [1] .

By using versions of Theorem 2 .1 and Theorem 3.1 from Section 3, and by
making certain general upper bounds on r(Kk, G) it is possible to show [8]
that all very sparse graphs are k-good . Let f(k,n) be the largest q such that
every connected graph on n points and q edges is k-good .

Theorem 2.2 [8] . If n >_ 4, f(3,n) >_ 15` 17n + 1) . If s > 0 is fixed, then if n
is sufficiently large, f(3,n) < (á + -)n to n . More generally, if k is fixed,
there are constants A and B such that

n +An 21(k-1) < f(k,n) < n +Bn41(k+1) log'n .

Another function of interest is g(k,n), the largest q for which there exists
any k-good graph with n points and q edges .

Theorem 2.3 [8] . There are constants C and D such that

Cn' i2 logs / 2 n < g(3,n) < Dn 513 log213 n .

Furthermore, if k is fixed, there are constants C' and D' such that

C'nkl(k-1) < g(k n) < D'n (k+2)ik lognn,

where n = 1 - (2)- ' .
In [8], it is also determined that f(3,3) = g(3,3) = 2, f(3,4) = g(3,4) = 5,

f(3,5) = 7, g(3,5) = 8, and f(3,6) = 12 . Indeed, in [14], all Ramsey
numbers r(K3 ,G) are determined for connected G with six points . From this,
and from the computations in [10] and [12], the following results can be
assembled : If n = 2,3,4,5, or 6, a connected graph is 3-good if and only if
G C K2 , K3 - P2 , K4 - P2 , KS - P3 , or K6 - P4 , respectively . Of course if n
is large, can hardly hope for such simple characterizations .

Another result, which extends to 3-goodness only, concerns the following
graph K(n) : Take the complete graph Kn , and for every edge ij, add a new
point vij and edges iv ij and jv,; . Thus K(n) has n + (z) points and 3(z)
edges .

Theorem 2.4 [7] . K(n) is 3-good if n > 7 .

It seems very likely that this is actually true for n >_ 4. Standard estimates
show that k(n) cannot be k-good for k >_ 4, but probably the subdivision
graph of Kn is k-good when n is large .
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As has been mentioned, other work related to k-goodness has been done .
Some of this involvés F-goodness [4], [9], or its multicolor version [3], [13],
or hypergraphs [5] .

3. TREE-LIKE GRAPHS

In this section we consider what could be thought of as the most basic
generalization of Theorem 1 .1, since the method is essentially the same as
for that theorem, and the results themselves essentially include it . We begin,
however, by stating a basic lemma and a theorem pertaining to k-goodness in
general .

Lemma 3 .1 [4] . For any connected graph G with n points,

r(Kk,G) > r(Kk- I , G) + n - 1 .

We note that as an immediate consequence we have the following .

Theorem 3 .1 . If G is k-good, it is (k - 1)-good .

Recall now that a free edge in a graph is an edge with an end point of
degree 1 . Thus, to add a free edge to a graph means to add a point and join it
to some point of the graph, by a single edge .

Theorem 3 .2. Let G be a connected graph on n - 1 points, and let G I be
formed from G by adding a free edge to it . Then

r(Kk,GI) = max[r(Kk,G), r(Kk-1,GI) + n - 1] .

Proof. Denote the right-hand side of the above by s . Obviously,
r(Kk, G I ) > r(Kk, G), and r(Kk , GI ) > r(Kk_ 1 ,GI ) + n - 1 by Lemma 3.1 .
Hence, r(Kk,GI ) > s . To prove the opposite inequality, consider a two-
colored Ks . If we have a red Kk we are done, so we may assume that we have
a blue G. Let v be a point of that G such that adding a blue free edge at that
point yields a blue G I . All lines from v to the points not in the G can be
assumed to be red, since otherwise we are again done . But s - (n - 1) >
tíKk_I,GI) points remain outside the G, and either a red Kk_ 1 or a blue GI
gives us a graph we are seeking. This completes the proof. ∎
It seems certain that r(Kk,G I ) almost always equals max[r(Kk,G),

(k - 1)(n - 1) + 1], and this might in fact be true without exception . Any
such exception would happen if and only if in the sequence r(KZ ,G) = n - 1,
r(K3 , G), r(K4,G), . . . , some two terms had a difference of n - 2, and the
preceding two had a greater difference. This might never happen, but at least
such a sequence can fail to be convex: r(K4,K3 ) = 9, r(KS ,K3 ) = 14,
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r(K6 ,K3 ) = 18. In any case we have the following result. It should be pointed
out that versions of Theorems 3 .2 and 3 .3 are also found in [8] .

Theorem 3.3 . Let G by a connected graph, and form a graph Gn on n points
by successive additions of free edges to G. Then if n is large enough, Gn is
k-good .

Proof. This is a straightforward double induction on n and k, using
Theorem 3 .2 .

In fact, one can also deduce Theorem 3 .3 from the following formula,
which is not hard to derive using Theorem 3 .2 :

r(Kk, G n ) = max[r(Kk , G), r(Kk 1 ,G) + n - 1, . . . .
r(K3 ,G) + (k - 3)(n - 1), (k - 1)(n - 1) + 1] .

As has already been said, in the usual case all the middle terms of the above
should drop out. For instance it is easily checked that if G = K3 , then

r(K3 ,Gn) = max(6,2n - 1), r(K4,Gn) = max(9,3n - 2),

r(KS ,GJ = max(14,4n - 3), r(K6 ,G.) = max(18,5n - 4),

r(K7 ,Gn) = max(23,6n - 5) .

4 . GRAPHS WITH BRIDGES

It is very plausible to guess that if G and H are k-good, so is a graph formed
by connecting G and H with a bridge . This is true, and in fact we can prove
slightly more .

Theorem 4.1 . Let G and H be connected graphs having m and n points,
respectively. Suppose G satisfies r(Kk,G) -< (k - 1)(m - 1) + 3, and H is
k-good. Let F be formed by joining G and H by a bridge . Then F is k-
good.

Proof. Since p(F) = m + n, we need to prove r(Kk,F) < (k - 1)
(m + n - 1) + 1 . As always, we can assume k >_ 3, as well as m >_ 2, n >_ 1 .
Starting with r(Kk , G) < (k - 1)(m - 1) + 3, we may use Lemma 3 .1 to
deduce other inequalities . Except for the last, all of the following are actually
weaker than could be derived .

r(Kk_,,G) <- (k - 2)m + 1, r(Kk_ 2,G) -< (k - 3)m + 1, . . ,
r(K3 , G) < 2m + 1 .

	

(1)
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We also weaken the original inequality to

r(Kk,G)<_(k-1)(m+n-1)+1 .

	

( 2)

We will use these inequalities in place of the original ; we could in fact have
used them in the statement of the theorem, instead of the simpler but more
restrictive one .

Consider now a two-colored complete graph on (k - 1)(m + n - 1) + 1
points, and assume it contains neither a red Kk nor a blue F; we will derive a
contradiction . Let u and v be the points of G and H, respectively, at which
the bridge is to be attached to form F. We will show now that we must have
k - 1 disjoint blue copies G	GGk -1 of G, with points u l , . . . , u k 1,

respectively, corresponding to u, and with the edges u iu; all being red . We
will call this a (k - 1 ;G)-configuration, and we will build it up by finding
(1;G) configurations (this term having its obvious meaning) successively for
1=1,2, . . ., k-1 .

A (1 ;G)-configuration is just a blue G, so by (2) we have one . Suppose now
we have a (1 ;G)-configuration with 1 < 1 < k - 2 . This has lm points, so that
(k - I - 1)m + (k - 1)(n - 1) + 1 points remain. Since H is k-good, these
points span a blue copy of H ; designate it Hl , with v, being the point
corresponding to v . Delete this point; we still have enough to guarantee a blue
copy H2 of H, with its corresponding v2 . We can continue this process until
only (k - 1)(n - 1) points are left . Thus we find (k - l - 1)m + 1 = s blue
copies of H, say H,	Hs , with corresponding v 1 , . . . , vs . The vj are all
different, but the H generally overlap.

Consider the l points u i, i = 1, . . . , l. No edge ui v, can be blue, since that
would yield a blue F; therefore all are red . Now consider the graph spanned
by v i , . . . , vs . By (1), r(Kk_,, G) -< (k - l - 1)m + 1 = s, unless l = k - 2,
in which case we have r(K2 ,G) = m < s. Hence, v,, . . . , vs span either a red
Kk_ I or a blue G. But the former is a contradiction, since the red Kk_ 1 and
u 1 , . . . , u, would span a red Kk , and the latter yields a (1 + 1 ;G)-
configuration . Thus we see by induction that we must have a (k - 1 ;G)-
configuration .

This configuration leaves (k - 1)(n - 1) + 1 points; these points span a
red Kk (a contradiction) or a blue H, say H, with its corresponding v 1 . But if
any edge u i v, is blue, we have a blue F, and if all are red, we have a red Kk .
This contradiction completes the proof.

It seems very likely that the following further result is true . Fix k and let
S be a fixed finite set of connected graphs, and let G by a graph formed by
attaching members of successively by bridges ; then if G is large enough,
G is k-good . Of course, this is immediate if all members of are k-good, in
view of Theorem 4 .1, but we have not been able to prove the more general
result . The result ought to be true, even if our main conjecture is false. A
good place to begin on this problem would be with the following graph : Take
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a large star and attach a copy of K3 to each endpoint. Is this graph
3-good?

5 . POWERS OF GRAPHS

One important test case for our conjecture is that of powers of graphs . Recall
that G` is the graph formed from G by joining with an edge any two points at
distance t or less . We will prove that Pn is k-good when n is large, and then
extend this slightly . The problem is closely related to that of Sec . 5 of [6],
and we will begin by stating three lemmas, taken essentially from there. They
have been weakened or slightly altered to suit the case at hand .

Lemma 5 .1 [6] .

r(Kk,mK,) < ml + k r+i

Lemma 5 .2 [6] . If d and t are given, then there is an I with the following
property. If K1,, is two colored, either there is a blue Ktr or there is an
x > l - l/d such that at least x points of each part of the KI l are each joined
by red edges to at least x points of the other .

In the above, it is sufficient to take I about as large as td" . (The
corresponding approximate condition given in [6] is in error.)

Lemma 5 .3 [6] . Let G and H be graphs related in the following way : For
every point of G there corresponds a set of l points ofH. For every edge e of
G, the set of edges joining points of the two sets corresponding to the end
points of e has the property that at least x points of each set are each joined to
at least x points of the other set.

Suppose further that x > l - 1/0(G). Then G C H.

Theorem 5 .1 . If k and t are fixed, then Pn is k-good, when n is large
enough.

Proof. We use induction on k . As always, k = 2 is trivial . Now assume
that the theorem is true for k - 1 . Consider a two-colored Ks , where
s= (k - 1)(n - 1) + 1, and assume, contrary to the theorem, that there is
no red Kk and no blue Pn ; we will derive a contradiction .
Let l be as in Lemma 5 .2, with k - 1 and 2t in place of d and t ; also, let l

satisfy l > 2kt. Then, by Lemma 5.1 there is a c depending only on k and t
such that r(Kk, mK,) < s, where m > (s - c)/Z = [(k - 1)(n - 1) + 1 - c]/l.
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Therefore, since we have no red Kk by assumption, we have m disjoint blue
KI .

Consider now these m copies ofKI . We form a new two-colored Km in the
following way . Let each point of the Km correspond to a different one of these
KI , and let each edge of the Km correspond to the KI,1joining the two KI in the
original graph. If this K11 contains a blue K2t,2,, color the corresponding edge
of the Km blue; otherwise color it red.

We now apply Theorem 1 .1 to this Km . We see that there is a b depending
only on k and t so that the Km either contains a red Kk or a blue Pu , where
u > (n - b)/l . Suppose first that it contains a red Kk . By Lemma 5 .2 and the
choice of l, we see that for each edge of the Kk we have found, the red edges
of the corresponding K„ satisfy the second alternative of that lemma, with
x > 1- l/(k - 1) . But in this case, we can apply Lemma 5 .3. Here G = Kk ,
and H is the red subgraph of the K(l, . . . , 0 which corresponds to the red Kk
we have found in the Km . Thus this case leads to a contradiction .

Now turn to the case in which the Km contains a blue Pu . This Pu yields, in
our original Ks , the following blue graph: We have u blue copies of KI , say
H,, . . . , Hu . Each H; is joined to Hi+1 by a blueK2 , ?, i = 1, . . . , u - 1 . By
reducing each K2r,2, to a Kt,,, we can assure that the t points by which H, is
joined to Hi_ 1 are disjoint from the t points by which H; is joined to Hi+ , .
Denote the l - 2t points ofH1 which are not points of attachment for Hi- I or
Hi+1 by I

This blue graph has n - a points, say, where a < b, and contains
We wish to work in a more points . Assume that a < u, as it will be if n is large
enough. Suppose a new point v, is found which is joined to 2t points of V, by
blue lines . It is not hard to see that this will yield a P„_Q+ , . Similarly, if new
points v2 , . . . , vQ can be found so that v i is joined to 2t points of V, we will
have the Pn we desire .

Suppose we have found a suitable v, , . . . , vi- I , and are now attempting to
find a suitable vi . There are s - (n - a + i - i) ? (k - 2)(n - 1) + 1
points not in the blue graph. We now use, for the only time in the proof, the
inductive assumption that r(Kk ,, r n ) _ (k - 2)(n - 1) + 1 . From this, we
have a red Kk_ 1 among these points. Consider now the lines joining this Kk 1
to Vi . Every point of V must have a blue line going to the Kk_ 1 , since
otherwise we have a red Kk . Hence, at least Z - 2t blue lines join V to the
Kk_ 1 . But l - 2t > (k - 1)(2t - 1), so some point of the Kk_, must have at
least 2t blue lines joining it to V . Therefore, if n is large enough the desired
v1 , . . . , v Q all exist, and we have a blue Pn , completing the proof. ∎

It is interesting to observe that Theorem 5 .1 implies Theorem 2.1 ; this is
immediate from the following lemma .

Lemma 5 .4 . Let G be a fixed graph with p points and q edges . If Gn is a
graph with n points which is homeomorphic to G, then G,, CPn+2q . This
lemma is almost self-evident, but actually carrying out the details is
somewhat complicated, so we momentarily defer the proof.
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Our purpose in introducing Lemma 5 .4 is not really to produce a very
complicated proof of Theorem 2.1, but to prove a result which combines
Theorems 2.1 and 5 .1 .

Theorem 5 .2 . Let k and t be fixed and let G be a connected graph . If G l
is a large enough graph homeomorphic to G, then Gi is k-good .

Proof. Let G have p points and q edges. Then if G l has n points,
G l C Pn+Z4 . But it is clear then that G, C P,p+z q ) . The desired result now
follows from Theorem 5. 1, with t(p + 2q) in place of t. ∎

It remains only to give a proof of Lemma 5 .4 .

Proof of Lemma 5.4. Let t(p,q) be the smallest t such that G„ C Pn
when Gn is any graph with n points which is homeomorphic to a graph with
p points and q edges. We must show that t(p,q) < p + 2q (and therefore
that it exists). Actually we will show more, namely that t(p, q) <
max[p, t(p, q - 1) + 2], so that since obviously t(p, l) = 1, t(p, 2) :5 p, we
have t(p, q) < p + 2q - 4, q > 2 . In fact it will be convenient to show as well
that the p points of Gn which correspond to the points of G can all be put at
one end of the P„ .
Suppose now that we have shown this for q - 1 . Without loss of

generality, we may assume that Gn be obtained entirely by subdividing edges
of G, so that every edge of G corresponds to a path of length at least one in
Gn . Let Gn, be Gn with one of the paths corresponding to an edge of G
removed, leaving m points. Then by hypothesis Gn, C P , q-l ), and moreover
the points vl , . . . , vp of the path vl , . . . , vn, correspond to the points of G .
Write t for t(p,q -1) .
We now insert some new points. Between vp and vp+i insert vp and v'p,

between vp+t and vp+t+l insert vp+t and v'p+t, and so on. Suppose that we can
continue this process until n - m new points have been inserted. Then any
points that were no more than t steps apart are now no more than t + 2 steps
apart. Furthermore, if i and j were the points to be joined by the new path,
they can be joined by a path vwpvp+t

	

v'p+tv'pv; . It is clear that the
transition in the middle can be carried out, and that no jump need be greater
than max(p, t+2) . If the new points are not enough, simply create enough new
points after v,,, and drop back to a jump of 2 . It is clear that in either case, we
have arranged Gn as a subgraph of P; +Z in the desired way, completing the
proof.

It would be of interest to strengthen Lemma 5 .4 . Very likely t(p,q) is
approximately equal to q .

6 . WHEELS

An interesting class of graphs with bounded edge density is that of wheels .
Here we are only able to show 3-goodness . The notation for wheels is in a
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confused state, so we offer the following : Denote the n-spoked wheel by
W1 , n . This also allows for multihubbed wheels, by defining Wh, = Kh + Cn .

Theorem 6 .1 . Any wheel with at least five spokes is 3-good.

Proof. By a result of [14], r(K3, W,,5) = 11 . We prove that r(K3 , W,,n) _
2n + 1 when n > 5 by induction on n . Assume the result true for n - 1, and
consider a two-colored K2,+ , . If there is no red K3 , the induction hypothesis
assures us that there is a blue Wl,n -, . Assume that there is no blue Wl n ; we
will show that this leads to a contradiction .

Let v be the point forming the hub of the blue Wi,n-,, and let A be the set of
points on its rim ; denote the points of A by a,, . . . , an_ 1 in order around the
rim. Among the remaining points, let B be the set of points connected to v in
blue, and C be the set connected to v in red. We make the preliminary
observations that B + I CI = n + 1, that all edges spanned by C are blue,
and hence that B is nonempty, since otherwise C would span a blu Kn . We
now prove a series of facts, leading to a contradiction .

Fact 1 . Any point of B is joined to A by at most one blue edge .

To see this, assume to the contrary that for some b E B and 1 <- i < j <
n - 1, ba t and ba; are blue. Clearly, i and j cannot be consecutive (taken
modulo n - 1), for then we would immediately have a blue Wl , n . For the
same reason, bai+, and ba;+l must be red. Hence a,+la;+, must be blue, to
avoid a red K3 . But then we have a blue W,,n , with hub v and rim
a1a2 . . . aiba,a,-, . . . ai+,a;+la;+2 . . - an-1-

Fact 2. The graph spanned by A contains a bl1eKn_ 2 .

This is immediate from Fact 1, since any two points joined to the same
point in red must be joined in blue .

Fact 3 . All lines spanned by B are blue.

To see this, simply note that for any bl , b2 E B, the lines b, a i and b2ai must
be red for some i, in view of Fact 1 .

Fact 4 . All lines joining B to C are blue .

To see this assume the contrary, so that be is red for some b E B, c E C .
Without loss of generality, assume bai is red for i = 2, . . . , n - 1, so aia; is
blue for 2 < i < j < n - 1 . Then ca i is blue for i=2, . . ., n - 1 . But this
leads to a blue Wl.n : The hub is a2i and the rim is a,va3ca 4a 5 • • • an-, .



r

RAMSEY-THEORETIC RESULT OF CHVÁTAL 49

We can now conclude the proof of the theorem : By Facts 3 and 4, together
with the fact that all edges spanned by B are blue, we have that B U C spans
a blue Kn+1, and so we have a blue W1 , n .

Finally, we observe that r(K3,W1 , 3 ) = r(K3iK4 ) = 9 and from [10],
r(K3,W1,4) - 11 .

7 . MULTICOLOR RESULT

Define multicolor Ramsey numbers in the obvious way : If G1i . . . , G, are
graphs, r(GI , . . . , GJ is the smallest integer p such that if the edges of Kp are
colored in c colors, then, for some i, G; is contained in color i. Most results on
k-goodness can be extended to multiple colors by means of the following
result.

Theorem 7.1 . Set k = r(Kkl , . . . , Kk) . Then if G has n points and is k-
good,

r(Kk ,, . . . , Kk,, G) = (k - 1)(n - 1) + 1 .

Proof. Denote the left-hand sideby r. To see that r > (k - 1)(n - 1) + 1,
color a K(k_1)(n_1) in the following way. Color k - 1 disjoint copies of Kr_,
in color c + 1 . The remaining graph has chromatic number k - 1 . But by a
result of Lin [ 17], this graph can be colored in c colors without aKkt in color i
for any i, so we are done. To see that r_< (k- 1)(n - 1) + 1, identify the
first c colors momentarily. Since G is k-good, we have either a G in color
c + 1 or a Kk in the first c colors; but by the definition of k, we would then
have a KkÍ in color i for some i . This complete the proof. ∎

Of course, the following is an immediate corollary of this and Theorem
1 .1 .

Theorem 7 .2 . If k= r(Kkl , . . . , Kk) and T is a tree on n points, then

r(Kk,, . . .,Kkc,T)=(k-1)(n-1)+1 .

Naturally, these results are fully effective only in the eight cases in which
r(Kkl , . . . , Kk) is known.

8. OPEN PROBLEMS

The biggest open problem here is that of settling the conjecture of Sec . 1 . The
authors offer a total of $25 .00 (U.S.) for settling it. Our money is probably
safe, since it seems very difficult . Various other problems are mentioned in
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other sections, and we will not call attention to them again ; but we mention
some other problems suggested by results in those sections .

It would be of considerable interest to narrow the gaps of Theorems 2.2
and 2.3 . In particular, does f(3,n)/n -+ - as n -? In Sec . 4, what can be
said if F is formed by identifying a point of G and a point of H? Several
problems are also suggested by Section 6 . Obviously, it would be desirable to
show that for each k, all large wheels are k-good. It would also be interesting
to consider multihubbed wheels . Even more interesting might be to combine
Theorems 2.1 and 6.1 by replacing a wheel with G I + K1 , where GI is as in
Theorem 2 .1 . One might even be able to combine Theorems 5 .2 and 6 .1 in a
similar way, but this seems very difficult .

Another problem worthy of study is that of cubes. If k is fixed, are all large
cubes k-good? Since the cubes have unbounded edge density, this would go
beyond the conjecture of Sec . 1 . Of course, Theorem 2.3 already shows that
that conjecture does not tell the whole story . A possibly related question is
the following. Let {GJ be a sequence of k-good graphs with bounded edge
density and order going to infinity . Is it true that G„ X K2 is k-good when n is
large enough? One could also ask about other products and other operations
on graphs .

Another area of importance is that of general inequalities for r(Kk,G),
especially upper bounds . For instance, in [8] it is shown that if k ? 3 and G
has p points and q edges, then

r(Kk ,G) < (p + 2q)(k- I)l 2

Other similar results are to be found in [6] . Such results are useful, for
instance, in determining how large n must be for Theorem 3.3 to apply . The
same is true for Theorem 2.1 . Even less is known about bounds for r(F, G) in
general; such bounds have direct application to F-goodness .

We have considered here only connected G . However, there is a natural
way to extend the definition of k-goodness to disconnected graphs . Stahl [ 18]
has evaluated r(Kk, F), where F is any forest. The result depends only on k
and the orders of the components of F, and therefore provides an appropriate
definition of k-goodness for completely arbitrary graphs. This could be a very
interesting direction to pursue .
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