INTERSECTION PROPERTIES OF FAMILIES

 CONTATMTRC SETS OF NEARIY THE SAME SIZEP. Erdön, R. Silverman and A. Stein

Abstract

A family F of sets han property $B(B)$ if there exists a set S whose intersection with each set in F is non-empty but contains fewer than 8 elements.
P. Erdiss has asked whether there exists an absolute constant c such that every profective plane has property B(c).

In this paper, the authors, as a partial answer to this question, obtain the result that for a sufficiently large, every projective plane of order n has property $3(c \log n)$. The result is a corollary of a theoren applicable to somewhat more general families of finite sets.

A family F of sets has property B if there is a set S whose intersection with each net in che family is a proper subset of that set. Many algebraic and combinatorial problems may be restated in verms of property B.
P. Erdös [1] proposed property $B(s)$ as a stronger form of property B. A fantly F hai property B(s) If there is a set S whose intersection with each set in the family is a proper subset of that set containing fewer than s elements. Property B(a) hes been studied by, mong others, Silverman, Levinson, Stein, Abbott and Erdos.

Property B in an important combinatorial property, and the related ifterature includes, for example, a recent paper by D. Kleitman on Sperner families [4].

In this paper we consider 2 questions:

1) P. Erdös has asked whether there exists an absolute constant c such that every projective plane has property $B(c)$. 2) Further, can any analogoun result be obtained for fanilies of sets more general than projective planes?

Using probabilistic methods, we obtain a partial result for projective planes, and a somewhat more general result for finite sets. The results obtained show that there is some constant c such that, for n large enough, every projective plane of order n has property $B(c \log n)$. This is done in Section I.

We also obtain the result that a projective plane of order n has property $B(n-c \sqrt{n})$. Although this is a weaker result than the one above, the proof is of interest because it is constructive. This is done in Section II.

Section Is Ocr main reault is the fottoving.

THEOREM 1. Lat $0<a_{1} \leq a_{g}, 0<b$. Suppose $0 \leq 8 \leq 2, a \geq 1$ if $\delta=0, a<0$ if $\delta=1$. Them for ary fined a_{1}, thene io aome c_{2} euch that if F is a family of sete aatiofying the following conditiona:
i) $a_{1} n \leq|F| \leq a_{2} n$ for every $F \in F$
ii) $|F| \leq n^{b}$
then there io some aet S much that if $F \in F$ then

$$
\begin{equation*}
o_{1} n^{5} \log ^{6} n \leq|s \cap r| \leq o_{8^{n^{5}} \log ^{8} n .} \tag{1}
\end{equation*}
$$

It will fravther be ahow that if $6>0, a>1$ or $c_{1}>e b\left(a_{g} / a_{1}\right)$ and we reatriat ourseivee to large n, then a_{2} aan be ohosen arbitrarily elore to c_{1}, while othembise (again for large n) o_{2} oun be ohosen arbitrarity atoae to $\frac{\pi_{2}}{\alpha_{1}}$ eb.

The proof requires certain lemas, used for bounding talls of the multinomial and binomial distributions, which are of independent interest.

The first lemsa relaten the tail of a binomial distribution to the largest term of the tail.

LEMMA 1. LEt $\eta<p<1, q=1-p$.

Then

$$
\left.\left.t(x) \leq x_{0}\right)_{x_{0}}^{x_{0}}\right)_{p}^{x_{0}} z_{0}^{z-x_{0}}
$$

Froof? If $x_{0} \leq x p$, then the bound is trivial. Thus we shall concentrate on the case where $x_{0}>z p$. We use the following wellknown identity.

$$
\begin{equation*}
t\left(x_{0}\right)=z\left(x_{0}^{z-1}\right) \int_{0}^{p_{t}} x_{0}^{-1}(1-t)^{z-x_{0}} d t . \tag{3}
\end{equation*}
$$

A simple differentiation shous that the integrand attainn it\# maximum at $t=p$. The resmle follous femediately.

The next lemma relates the हize of a binomial coefficient ($\binom{M}{N}$ to the fraction N / M.

LEMMA 2. Therg exiote an abeotute conetant β auch that, if $0<N<M$, then
(4)

Proof. By Sterling'in formula, there is some constant β^{\prime} such that

$$
\begin{equation*}
\left(\frac{M}{N}\right) \leq \beta^{\prime}\left(\frac{M+\frac{1}{2}}{e^{M}}\right)\left(\frac{e^{N}}{N^{N+\frac{1}{2}}}\right)\left(\frac{e^{M-N}}{(M-N)^{M-N+\frac{1}{2}}}\right) \tag{5}
\end{equation*}
$$

Thus
(6)

$$
\left(\frac{M}{N}\right) \leq \sqrt{\frac{M}{M-1}} \beta^{\prime} \frac{x^{M}}{s^{N}(M-N)^{M-N}},
$$

and (4) follous.

We also need to bound the terms of a multinomial distribution using terms of a binomial distribution.

LEMMA 3. Let $r<1, A+B=C, x+y=a \leq r C, p=A / C$, $q=B / C=1-p, \quad h(x)=\left(x_{x}^{A}\right)\left(\frac{B}{y}\right) /\left(C_{z}^{C}\right), b(x)=\left(x_{x}^{z}\right) p^{x} q^{y}$. Then $\quad h(x)=o_{\gamma}(b(z))$.

Proof. Let

$$
\begin{equation*}
Q=\frac{h(x)}{b(x)}=\frac{\left(1-\frac{1}{A}\right) \ldots\left(1-\frac{x-1}{A}\right)\left(1-\frac{1}{B}\right) \ldots\left(1-\frac{y-1}{B}\right)}{\left(1-\frac{1}{C}\right) \ldots\left(1-\frac{z-1}{C}\right)} \tag{7}
\end{equation*}
$$

Without loss of generality, we may assume $\mathrm{A} \leq \mathrm{C} / 2$. Since $\mathrm{B} \leq \mathrm{C}$, $1-j / B \leq 1-j / C$, so

$$
\begin{equation*}
Q \leq \frac{\left(1-\frac{1}{A}\right) \ldots\left(1-\frac{x-1}{A}\right)}{\left(1-\frac{y+1}{C}\right) \ldots\left(1-\frac{y+x-1}{C}\right)} \cdot \frac{1}{y-\frac{y}{C}} . \tag{8}
\end{equation*}
$$

Since

$$
1-\frac{1}{A} \leq 1-\frac{y+j}{C} \text { if } j \geq \frac{y}{C-A},
$$

and

$$
\begin{aligned}
& 1-\frac{1}{A} \leq 1 \\
& Q \leq \frac{1}{\prod_{0 \leq j<\frac{y}{C-A}}\left(1-\frac{y+j}{C}\right)} .
\end{aligned}
$$

Now consider
(9) $\quad \log Q \leq-\sum_{0 \leq j \frac{y}{c-A}} \log \left(1-\frac{y+1}{c}\right)$.

Since

$$
\cdots y+j<z \leq x, \frac{y+j}{C}<\gamma
$$

and

$$
-\log \left(1-\frac{y+1}{c}\right) \leq \frac{3-2 \gamma}{2-2 \gamma} \cdot \frac{y+j}{c} .
$$

Hence

$$
\begin{aligned}
& \log Q \leq \frac{3-2 y}{2-2 \gamma} \quad \sum \frac{y+1}{C} \\
& 0 \leq y<\frac{y}{C-A}
\end{aligned}
$$

or

$$
\log Q \leq \frac{3-2 y}{2-2 Y} \cdot \frac{y}{2(C-A)^{2} \cdot C}(2(C-A)+1)(y+C-A)
$$

or

$$
\log Q=\frac{3-2 \gamma}{2-2 \gamma} \cdot \frac{\gamma C}{2(C / 2)^{2} \cdot C} \cdot 2 C \cdot(1+\gamma) C=0_{\gamma}(1) .
$$

We now use these first three lemmas to obtain a bound on the tall of a multinomial distribution.

LEMMA 4. Let $a>0, a>1, A=a n, B \geq n^{\alpha}, C=A+B$, $n=k_{3 n^{8}} \log ^{8} n / n$ (wheme o and 5 are neatrioted as in the statement of the thearem), $x_{0}=c n^{5} \log ^{8} n$. Liet $p, q, i(x), b(x)$ be defined as in Lensna 3. Let
(10) $T\left(x_{0}\right)=\left\{\begin{array}{lll}\bar{E} & h(x) & \text { if } x_{0}>B p \\ x<x_{0} & & \\ z & h(x) & \text { if } x_{0} \leq s p . \\ x<x_{0} & h(x) & \end{array}\right.$

Then
(12)

$$
\begin{aligned}
& T\left(x_{0}\right) \operatorname{cosen}\left\{n^{5} \operatorname{tog}^{8} n\left(2\left(1+\log \frac{a k}{C}+o(1)\right)-\alpha k+o(1)\right)\right. \\
& +8 \operatorname{tog} n+s \log \operatorname{tog} n\} \text {. }
\end{aligned}
$$

Proof. Since $\frac{z}{c} \leq \frac{\mathrm{kn}^{5} \log ^{8} n}{n} \rightarrow 0$ as $n \rightarrow \infty$, we may use Lemma 3 to obtain $T\left(x_{0}\right) \ll t\left(x_{0}\right)$. We now use the bound on $t\left(x_{0}\right)$ from Lemma 1 to obtain
(12)

$$
T\left(x_{0}\right) \ll x_{0}\left(x_{0}^{z}\right) p^{x_{0}} q^{z-x_{0}}
$$

Using the bound on the binomial coefficient obtained in Lemma 2 as well as our definition of p and q, we find

$$
\begin{equation*}
T\left(x_{0}\right) \ll x_{0} \cdot \frac{1}{\left(\frac{x_{0}}{z}\right)^{x_{0}}\left(1-\frac{x_{0}}{z}\right)^{z-x_{0}}}\left(\frac{A}{C}\right)^{x_{0}}\left(\frac{B}{C}\right)^{z-x_{0}} \tag{1.3}
\end{equation*}
$$

Segregating by exponent,
(14)

$$
T\left(x_{0}\right) \ll x_{0}\left(\frac{z\left(1-\frac{x_{0}}{z}\right) A}{x_{0} B}\right)^{x_{0}}\left(\frac{B}{C\left(1-\frac{x_{0}}{z}\right)}\right)^{z}
$$

and thus

$$
\begin{equation*}
T\left(x_{0}\right) \ll \operatorname{cn}^{5} \log ^{s} n \quad \frac{\left\{\frac{a k}{c}\left(1-\frac{c n}{k B}\right)\right\} \operatorname{cn}^{5} \log ^{s} n}{\left\{\left(1+\frac{a n}{B}\right)\left(1-\frac{c n}{k B}\right)\right\} \frac{k B n^{5} \log ^{s} n}{n}} . \tag{15}
\end{equation*}
$$

Since $B \geq n^{a}$ with $a>1$,

$$
\begin{equation*}
\left(I-\frac{c n}{k B}\right)^{\mathrm{cn}^{5} \log ^{\mathrm{s}} \mathrm{n}} \sim \exp \left\{-\frac{\mathrm{c}^{2} n^{1+5} \log ^{8} n}{k B}(1+o(1))\right\} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{kBn} \mathrm{n}^{8} \log ^{\mathrm{s}} \mathrm{n}}{\mathrm{n}} \quad \sim \exp \left\{a k n^{5} \log ^{5} \mathrm{n}(1+o(1))\right\} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{kBn}^{5} \log ^{3} \mathrm{n}}{\mathrm{n}} \sim \exp \left\{-\mathrm{cn} \log ^{5} \mathrm{n}(1+o(1))\right\} \tag{18}
\end{equation*}
$$

Combining (15)-(18) yields (11).
We now use this estimate to show that the tail can be made smaller than any negative power of n.

LEMMA 5, (Let everything not apeotfioally defined betow be definea as in Eemma 4.) Suppose a is bounded curay from both 0 and a, b fired and a_{1} arbitrary. Then theme exist $k_{2} o_{2}$ such that,
defining $x_{i}=o_{i} n^{5} \log ^{n} n$ and $T\left(x_{1}\right)$ and $T\left(x_{i}\right)$ as the Lower and upper tails of the maltinomial distribution as in Lemma 4,

$$
\begin{equation*}
n^{b} T_{T}\left(x_{i}\right)=o(2), \quad i=1,2 . \tag{19}
\end{equation*}
$$

Proof'. We must show that k, c_{2} can be chosen so that

$$
\begin{align*}
& b \log n+n^{5} \log ^{n} n\left(c_{1}\left(1+\log \frac{a k}{c_{i}}+o(1)\right)-n k+o(1)\right) \tag{20}\\
& \\
& \quad+5 \log n+s \log \log n \rightarrow- \\
& \text { as } n \rightarrow-\quad 1=1,2 .
\end{align*}
$$

First choose k large enough to make the coefficient of ${ }^{5} \log ^{5} \mathrm{n}$ less that $-(b+8)$ for $i=1$. Then choose c_{2} so that the same condition holds with $1=2$.

We are now prepared to prove a preliminary version of the theorem.

LEMA 6. Let $a>0$. If the hypotheses of the theorar hold then the opnoluaion also holds if F ala aatiafiee the additional condition
(81) iii. $\left|\bigcup_{E \in F} \vec{F}\right| \geq \max \left(n^{a}, n^{b}\right)$.

Proof. Let $F \hbar=U F$. Choose k so that $z=k|F \hbar| n^{6} \log ^{5} n / n$ is F CF
an integer. Let F_{F} be the event that a set $S C F$ of size z nat isfies

$$
|s \cap F|<c_{1} n^{\delta} \log ^{n} n \text { or }|s \cap F|>c_{2} n^{\delta} \log ^{n} n \text {. }
$$

We will prove the lemma by showing that k and c_{2} can be chosen so that $P(E)<1$.

Letting R_{1} represent $<$ and R_{2} represent $>$,

$$
P\left(|S \cap F| R_{1} c_{1} n^{\delta} \log n\right)=x_{x R_{1} c_{1} n^{6} \log n} h(x) \text {, }
$$

where
(22) $h(x)=\frac{\binom{|\mathrm{F}|}{\mathrm{x}}\binom{|F *|-|\mathrm{F}|}{z-\mathrm{x}}}{\binom{|F|)}{z}}$.

Thus

$$
\begin{equation*}
\mathrm{P}\left(|\mathrm{~S} \cap \mathrm{P}| \mathrm{R}_{1} \mathrm{c}_{1} \mathrm{n}^{\delta} \log \mathrm{n}\right)=\mathrm{T}_{\mathrm{F}}\left(\mathrm{x}_{1}\right), \quad 1=1,2 \tag{23}
\end{equation*}
$$

and hence

$$
\begin{equation*}
P\left(E_{F}\right) \leq T_{F}\left(x_{1}\right)+T_{F}\left(x_{2}\right) \tag{24}
\end{equation*}
$$

Now let E be the event that a set $S \subset F *$ of size z satisfies $|S \cap F|<c_{1} n^{6} \log ^{s} n$ or $|S \cap F|>c_{2} n^{5} \log ^{s} n$ for at least one set $\mathrm{F} \in \mathrm{F}$. Then

$$
\begin{align*}
P(E) & \leq \underset{F \in F}{\sum P\left(E_{F}\right) \leq \underset{F \in F}{\sum}\left[T_{F}\left(x_{1}\right)+T_{F}\left(x_{2}\right)\right]} \tag{25}\\
& \leq|F| \max T_{F}\left(x_{1}\right)+|F| \max T_{F}\left(x_{2}\right) \\
& \leq 2 \mathrm{n}^{b} \max T_{F}\left(x_{1}\right)=o(1)
\end{align*}
$$

by Lemma 5 . This proves Lemma 6.
We now observe that condition iii. is unnecessary. If $|F|$ is not large enough, we may augment F by including sets disjoint from the original sets. The conclusion will hold for this augmented famlly and thus must also hold for the original family F as well. This proves the theorem.

Note that our proof has actually shown that almost all subsets of F_{*} of size $k|F *| n / \log ^{5} n / n$ will be "blocking sets".

We may observe that if $\delta>0$ or $s>1$, then, in the proof of Lemma 5, it is only necessary to make $\log \frac{0 k}{c_{i}}<-1$. Thus k can be chosen arbitrarily close to c_{1} / e_{2} and c_{2} arbitrarily close to $\mathrm{er}_{2} \mathrm{k}$. Thus if $8>0$ or $s>1$ then c_{2} can be taken arbitrarily close to c_{1}.

```
If }\delta=0\mathrm{ and }a=1\mathrm{ , then it suffices to make
```

$$
\begin{equation*}
1+\log \frac{a k}{c_{1}}<0, a k>b \tag{26}
\end{equation*}
$$

for $a_{1} \leq a \leq a_{2}, \quad i=1,2$.
This is equivalent to making

$$
\begin{equation*}
b / a_{1}<k<\frac{c_{1}}{e c_{2}} \tag{27}
\end{equation*}
$$

This can be done if $c_{1}>$ bb $\left(\frac{\sigma_{2}}{c_{1}}\right)$. In this case c_{2} can be made arbitrarily close to c_{1}. If $c_{1} \leq e b\left(\frac{d_{2}}{d_{1}}\right)$, then k must be chosen large forcing c_{2} to be chosen larger as well in (20). However, in this case we can certainly choose c_{2} close to cb $\left(a_{2} / a_{1}\right)$. We thus see that if

1) $\delta>0, s>1$ or $c_{2}>\mathrm{eb}\left(\alpha_{2} / a_{1}\right)$
and
ii) $c_{2}>c_{1}$,
then, if I is large enough, there is some set S such that $c_{1} n^{8} \log ^{5} n \leq|S \Pi F| \leq c_{2} n^{5} \log ^{5} n$ for every $F \in F$.

Another way of looking at the above is that, thinking of c_{2} Bs a function of n,
(28) $\quad 1 m_{\mathrm{n}}$ inf $c_{2}\left\{\begin{array}{l}=c_{1} \text { if } 5>0, s>1 \text { or } c_{1} \geq \mathrm{eb}\left(\alpha_{2} / \alpha_{1}\right), \\ \leq e b\left(\frac{a_{2}}{\alpha_{1}}\right) \text { otherwise. }\end{array}\right.$

Applying the above to the case of projective planes, we immediately have the following corollary.

COROLLARY. Let $c>2 e$. If n is Large enough, then the projective plane of omer n has property Bic log n).

Section II.
We now demonstrate construction of a "blocking set" and show that a projective plane P of order n has property $B(n-p(n))$, where $p(n)$ is of order \sqrt{n}.

We first indicate the method of proof. Consider an arbitrary point x in P, and the Lines $\ell_{1}, \ldots, \ell_{n+1}$ through x. The lines have the properties that: a) $i \neq j=t_{i} \cap t_{j}=(x) ;$ b) $u_{i} \varepsilon_{i}=P$. To pick the pointa for the "blocking" set s, we: 1) pick y_{1}, \ldots, y_{k}. y_{i} on line l_{1}, in geriaral position, l.e., no line in p containing more than 2 of then (we can do this as long an $\binom{k-1}{2}<n$).
2) repeat 1), k ines at a time. No line contains more than $2 \mathrm{k}^{\prime}$ of $\left\{y_{1}\right\}$, where $k^{\prime}=\left[\frac{\mathrm{k}}{\mathrm{k}}\right]+1$, and the set intersects every Iine through x.

Now, consider a line ℓ, not containing x. Let $t=\left\{x^{1}, \ldots, x^{j}\right.$, $\left.x^{j+1}, \ldots, x^{n+1}\right\}$. Every other line of P contalns exactly one point of ℓ. We pick the remaining points for S as follows: 3) repeat 2), for $1=1, \ldots, j$ where $j \leq \frac{n}{2 k^{\prime}+1} ;$ 4) augment the set obtained from 1) , 2) and 3) by x^{j+1}, \ldots, x^{n+1}.

The aggregate net S obtained from steps 1) through 4) has the required propertien of intersecting each. Une in P in a non-empty set whose cardinality is less than $n+2-1$, so P has property $B(n+2-j)$. We further note that $f \sim \sqrt{n}$, so P has property $B(n-p(n))$, where $p(n) \sim \sqrt{n}$. This is the desired resulv.

LEMMA 7. Let $=$ be a point in p, and t_{1}, \ldots, i_{k} be k diatinat Itned through x, where k \&e a poritive integar aotution of $(k-1)(k-2)<2 \pi$. Then we oan choose pointe $y_{i} \in(i, \quad i=1,2, \ldots, k$, such that no tine in P oontains more than 2 of the z_{f}.

Proof. Choose $y_{1} \in f_{1}, y_{2} \in \ell_{2}$. There in a 1 ine in $P,\left\langle y_{1}, y_{2}\right\rangle$ containing both y_{1} and y_{2}, θ_{3} intersects that inne in one point, so there are points other than x in ℓ_{3} not on $\left\langle y_{1}, y_{2}\right\rangle$. Let $y_{3} \in f_{3}-<y_{1}, y_{2}>$. Inductively, select $y_{1} \in r_{1}, 1=1,2, \ldots, k-1$, in such a way that no line of P contains more than two of the collection.

That this is possible, can be seen as follows. When $k-1$ points have been selected, there are exactly $\binom{k-1}{2}$ ines in p containing two of them. b_{k} intersects each such line in one point. Since f_{k} contains $n+1$ points, there in a point on t_{k} which is not x, and not on any of those $\binom{k-1}{2}$ Ines, as long as $n+1>\binom{k-1}{-2}+1$. But this condition is assured by the hypothesis that $(\mathrm{k}-1)(\mathrm{k}-2)<2 \mathrm{n}$.

LEMMA 8. As in Lamma 7 , let a be a point in B, and $\varepsilon_{1}, \ldots, b_{k}$ be k dietinot tines through x, where k ia a poritive integer eatution of $(k-1)(k-8)<B r$. Furthermore, Let k ' be the amalleat integar ewak that $k^{r} \geq \frac{n}{k}$. Then we can ohooee pointe $y_{i} \in t_{i}$, $i=1,2, \ldots, k$, euch that no tine in P aontaine more than $2 k$, of the V_{i}.

Proof. Choose $y_{1} \in \varepsilon_{1}, y_{2} \in \mathcal{B}_{2}, \ldots, y_{k} \in \mathcal{Z}_{k}$ as in Lema 7. Similarly choone $y_{k+1} \in \ell_{k+1}, y_{k+2} \in \ell_{k+2}, \ldots, y_{2 k} \in \ell_{2 k}$ and then continue, in groupa of k points, ultinately reaching $y_{\left(k^{\prime}-2\right) k+1} \in \ell_{\left(k^{*}-2\right) k+1}, \cdots$, $y_{\left(k^{\prime}-1\right) k} \quad \mathrm{f}^{-4}\left(k^{\prime}-1\right) k$. Finally, again using Lema 7 , choose
$y_{\left(k^{\prime}-1\right) k+1}{ }^{8}\left(k^{\prime}-1\right) k+1, \ldots, y_{n} \in{ }^{8}{ }_{n}$. We have partitioned y_{1}, \ldots, y_{n} into k ' aubsets such that no line in P contains more than 2 pointif from any subset. Thus no line in P contains more than $2 k$ ' of the y_{1}.

LBMA 9. Seleat integerv k and k ' at in Lemma 8 . bet t be a Line in F and $x^{(j)}, x^{(2)}, \ldots, x^{(j)}$ be diatinot pointis on f. We oan ohoose a aet $s^{(j)}$ of pointe in P ouch that
a) If ℓ^{\prime} is a line in E, than no more than $2 j k$ ' elementa in $s^{(j)}$ are on e^{t}, and
b) If $e^{\prime} \neq t$ ie a zine in P aontaining one of the pointe $z^{(t)}$, then $s^{(j)}$ oontaine at zeast one point. of ir.

Proof. For each $\mathrm{x}^{(i)}$, $\operatorname{let} e_{1}^{(1)}, \ldots, t_{\mathrm{n}}^{(1)}$ be the lines in P , other than 8 , containing $x^{(1)^{1}}$. For each $x^{(1)}$, choose $y_{1}^{(1)} \in \ell_{1}^{(1)}$, $\ldots, y_{n}^{(1)}$ \& $i_{n}^{(1)}$ as in Lemma 8. Let $S^{(1)}$ be the set of $y_{m}^{(1)}$ no
so chosen. Condition b) is clearly satisfled. So is condition a), as we can partition $S^{(j)}$ into j components and no line $\varepsilon^{\prime} \neq 8$ contains more than $2 \mathrm{k}^{\text {, }}$ points from each component. Note that $\mathrm{S}^{(\mathrm{J})}$ is also disjoint from 8, since it contains no $x^{(i)}$, and further each point in $S^{(j)}$ is chosen from a line other than $\&$ which contains some $x^{(1)}$ and thus no other points of ℓ.

We are now ready to prove the main result,

THEOREM 2. Select k, k^{\prime} as in Lemma 8, and an znteger $\dot{j} \leq n /\left(2 k^{\prime}+1\right)$. Then p has property $B(n+2-j)$.

Froof. Choose $S^{(j)}$ as in Lemma 9 and let $S^{\prime}=\{x \in \&: x$ is not one of the $\left.x^{(i)}\right)$. Let $s=s^{(1)} U s^{\text {1 }}$.

Since each line disjoint with S^{\prime} is not ℓ and contains one of $\left\{x^{(i)}\right\}$, and each such line contains one element of $S^{(j)}, S$ contains at least one point on each line. Since S^{\prime} contains $n+1-j$ points of ℓ and $S^{(j)}$ is disjoint with k, S contains exactly $n+1-j$ points of ε.

On the other hand, if $\ell^{\prime} \neq \varepsilon$, then ℓ^{\prime} contains at most $2 \mathrm{fk}^{\prime}$ points of $S^{(j)}$ and one point of S^{\prime}. Thus ℓ^{\prime} contains at most $2 k^{\prime}+1$ points of S.

But $1 \leq n /\left(2 k^{\prime}+1\right)$, so $2 j k^{\prime}+1 \leq n+1-j$. Thus no Hne in p contains more than $n+1-j$ points of S. We further note that $\mathrm{k} \sim \sqrt{2 \mathrm{n}}$ and $\mathrm{k}^{\prime} \sim \sqrt{\mathrm{n} / 2}$, thus $\mathrm{j} \sim \sqrt{\mathrm{n} / 2}$. Q.E.D.

ACKNOKLEDGEMENT: The authors wish to thank the editor for his helpful suggestions and Joel Spencer, who has pointed out that the necessity for using the multinomial distribution in Section I can be obviated by choosing S in the following manner: For each $x \in F *$, let x belong to S with probability $\mathrm{kn}^{8} \log ^{3} \mathrm{n} / \mathrm{n}$.

References

[1] H.L. Abbott and A. Liu, On property B(B), Ars Combinatoria, v. 7, (1979), pp. 250-260.
[2] P. Erdös, On a combinatorial problem, Nordisk Mat. Tidskr., v. 11, (1963), pp. 5-10.
[3] P. Erdös, Chau Ko and R. Rado, Intersection theorems for systems of finite seta, Quart. J. Math., Oxford (2), 12 (1961), 313-320.
[4] D. Kleitman, The number of Spemner families of arubsets of an n element aet, Colloq. Math. Soc. J. Bolyai, 10, 1973, pp. 989-1001.
[5] H. Levinson, and R. Silverman, Generalisatione of property B, Proc. 2nd Int. Conf. Comb. Math., NYAS, NY, 1978.
[6] R. Silverman and A. Stein, Minimal families taoking property $B(s)$ II, Proc. 11th S.E. Conf. on Comb., Graph Theory, and Computing, Boca Raton (1980).
[7] J. Spencer, Sequences with amall diserepanoy relative to n evente, Compositio Mathematica (to appear).

Nemetvolgyi Ut 72 C Budapest (XII), Hungary
Fairfield University, Fairfield Connecticut 06430
University of Connecticut, Waterbury, Connecticut 06710

