
Local Connectivity
of a Random Graph

ABSTRACT

A graph is locally connected if for each vertex v of degree --2, the
subgraph induced by the vertices adjacent to v is connected . In this paper
we establish a sharp threshold function for local connectivity . Specifically,
if the probability of an edge of a labeled graph of order n is p = ((3/2 +
s„) log n/n)'/ 2 where s„ _ ( log log n + log(3/8) + 2x)/(2 log n), then
the limiting probability that a random graph is locally connected is
exp(- exp(-x)) .

INTRODUCTION

A graph is locally connected if for each vertex v of degree --2, the
subgraph induced by the vertices adjacent to v is connected. Our sample
space, denoted ,f2,, consists of all 2(2 ) labeled graphs G, if order n . Let
p = p(n) be a number between 0 and 1 . If G has size q, i .e ., q is the
number of edges, then the probability of G is defined by

P(G) = pq(1 - P)(z)-q,
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and we refer to p as the probability of an edge .
Our aim is to study the limiting probability, lim,- . P(C), where C is

the subset of fl, which consists of the locally connected graphs . If p is
fixed, then the methods of [BIH79] show immediately that the limit above
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is 1, i .e ., "almost all graphs are locally connected ." Therefore we will

consider only p(n) such that limn-- p(n) = 0 .
Note that local connectivity is not a monotone property . That is, if G

is locally connected and H is obtained by adding an edge to G, then H
is not necessarily locally connected whether G is connected or not .
Nevertheless, we find two threshold functions for local connectivity . The
first and less interesting occurs when the probability of an edge is so
small that almost every graph consists of isolated edges and vertices .
But the second threshold is non-trivial and appears when the probability
of an edge is sufficiently high to cause every edge to belong to a triangle .

For the most part, our notation and terminology follow that of the
book [Bo79] where one can also find an introduction to the methods
used here . We also assume some familiarity with the fundamental results
of the senior co-author in [ErR59] and [ErR60] .

THE LOW THRESHOLD

A graph consisting of only isolated edges and vertices is locally connected .
If the probability of an edge is sufficiently low, almost all graphs will be
of this sort. This remark takes the following precise form .

Theorem 1 . If the probability of an edge is p = 2 x n-312 , then

Jim P(C) = e -2x2 ,

	

(2)

i .e ., 2 x n -3/2 is a sharp threshold function for local connectivity .

Proof. Let A be the set of graphs in SI n which have at least one
component which is a tree of order 3 . Erdős and Rényi (Theorem 2a of
[ErR60]) showed that

Since A C C, we have

n—

lim P(f) =
e-2x2

	

(3)

lim P(C) -- e - "' .

	

(4)
n~x

On the other hand, we have a lower bound for P(C) if we add the
probabilities of all graphs which consist only of isolated vertices and
edges :

[n/2] n

/

(2q)!

	

n
P(C) =	 pq(1 - p)(2)- q

	

(5)
q=o Zq gl2q
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It can be shown that this lower bound is also asymptotic to e -22, completing
the proof . I

GRAPHS WITH EACH EDGE IN A TRIANGLE

Let B be the set of graphs in f2,, which have each edge in a triangle .
The determination of a sharp threshold function for this set plays a crucial
role in our study of the limiting probability of the set of locally connected
graphs .

We define the random variable X(G) to be the number of edges of G
which are not in triangles. Thus the expected number of these edges is

where

E(X) _
(
2n) p(1

- p2)n 2 . (6)

If we take p = (c log n/n)'I' with constant c > 0, then

E(X) Vc n3 /2-c(log n) 1/2

	

(7)

Then, if c > 3/2, E(X) - 0 as n -~ -. Therefore, P(B) = P(X , 1) -->
0 or P(B) 1, i .e ., almost every graph has every edge in a triangle .

On the other hand, if 0 < c

	

3/2, then E(X)

	

+ oo . In this case
it is easy to show that E(X 2) E(X) 2 . In fact, E(X 2) = E(X) + 2P2 ,
where Pz is given below in (14) . It follows from Chebyshev's inequality
that

P(X = 0) , (E(X2)/E(X)2) - 1 .

	

(8)

Since P(B) = P(X = 0), we have P(B) -> 0 as n ~, i .e ., almost every
graph has an edge not in a triangle .

Thus, we have established a rough threshold for this property and we
refine the result in the next theorem .

Theorem 2. If the probability of an edge is

p = ((3/2 + e„) log n/n)' /2

	

(9)

en = (log log n + log(3/8) + 2x)/(2 log n),

	

(10)

then the limiting probability that a random graph has every edge in a
triangle is
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lim P(B) = e -e 1 (11)
n~x

Proof. First we note that with p defined by (9) and (10), we have on
substitution in (6) :

E(X) -
e-x .

	

(12)

It follows from the probabilistic form of the method of inclusion and
exclusion that

~z>

P(X = 0) _

	

(- 1)kPk ,

	

(13)
k=0

where Pk is the sum, taken over all k-sets of pairs of vertices, of the
probabilities of all graphs in which these k pairs of vertices are adjacent
but none of these k edges are in triangles . Note that P, = E(X), while

P2

	

2!(2, 2, n -
4)P2(1 - p2) 2(n-4)(1 + 0 (1))

+ 2 n(n - 1)(n - 2) P2(1 - P)[(I - P) + P(1 - p2 )]n-3

In general the dominant contribution to Pk is made by k-sets of disjoint
edges and we have

from which it follows that

Pk ., . 1

	

n 2 n-2k k
k!(2, 2, . . .,2,n-2k P1 - p

which completes the proof. i

Pk -v (e-x) k/k! .

	

(16)

Since P(X = 0) is contained between any two consecutive partial sums
of the sum on the right side of (13) and (16) holds for fixed k, we have

lim P(X = 0) _ y ( - 1)k(e-x)k/k!,

	

(17)
n-

	

k=0



and
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THE HIGH THRESHOLD

After passing the threshold of Theorem 1, we observe that local connectivity
is not achieved by almost all graphs until at least the stage of connectivity
is reached. To see this, one follows the evolution of the random graph
as developed in [ErR60] . For example, if pn 1/2 -> - but pn -> 0, each
component of the random graph is a tree (Theorem 4a of [ErR60]) and
hence the graph is not locally connected .

If pn = c, a constant, the random graph passes through the "Double
Jump" phase of the evolutionary process (see p . 52 of [ErR60]) . We
define the random variable X(G) to be the number of vertices of degree
1 in G which are adjacent to vertices of degree %2 . A graph with such
an end-vertex is not locally connected . The expected value of X is

E(X = n(n - 1) p (1 - p)n-2 [1 - (1 - p)n
_ 2 ]

E(X 2 ) = E(X) + n(n - 1){(n - 2)p 2 (1 - p) 2,7- '

+ (n - 2)(n - 3)p 3 (1 - p)2n -5

	

(19)

+ (n - 2)(n - 3)p2(1 _ p)2n-4[1 - (1 - p)n-4] 2 } .

It can be seen that E(X 2) - E(X)2 for pn = c. Hence P(X = 0) 0,
and so the random graph is sure to be locally disconnected . Furthermore,
as we approach full connectivity with p = c log n/n and 0 < c < 1, the
same conclusion holds. Thus, in the late stage when p = (log n + x)/n
and the random graph consists of a single component plus perhaps some
isolated points (see Lemma on p . 292 of [ErR59]) we can be certain that
the big component has end-vertices, i .e ., the giant is fuzzy .

If p = c log n/n with constant c > 1, the random graph is connected
but we have seen earlier in Theorem 2 that it is sure to have an edge
which does not belong to a triangle . Hence it is locally disconnected and
we cannot hope for local connectivity until we reach the threshold of
formulas (9) and (10) . In this case we have the following precise result .

Theorem 3. If the probability of an edge is given by formulas (9) and
(10), the limiting probability that a random graph is locally connected is

lim P(C) = e-e

	

(20)

Proof. Let A be the set of all graphs in SZ n such that the neighborhood
of each vertex consists of one component plus perhaps isolated vertices .
Let B be those graphs such that each neighborhood has no isolated
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vertices . Note that B is exactly as before, i .e ., every edge is in a triangle .
Finally Co consists of those graphs which are both connected and locally
connected. When the probability of an edge is given by (9) and (10),
almost all graphs are connected. Hence P(C) and P(CO ) are equal in the
limit. But for each n

Co =AnB.

	

(21)

Therefore P(B) , P(_Q and since B n Co C A, the proof can be completed
by showing that P(A)

	

0, i.e ., almost all graphs are type A .
Define X(G) to be the number of vertices in G whose neighborhoods

do not consist of one component and perhaps some isolated vertices .
We can estimate E(X) by using the following observation on p . 59 of
[ErR60] . If s > 0 and pn/log n

	

-, then almost all graphs satisfy

where the sum is over all m in the interval (1 - s)pn < m < (1 + s)pn
and P(m) is the probability that an m-set of vertices does not consist of
one component plus perhaps isolated vertices .

For any m in the interval above,

> log m (1 - s)p'n
p

	

m log((1 + s)pn)'

and on substitution of p from formula (9) in the right side of (24), we
find that for any 8 > 0 there is s > 0 so for n sufficiently large

p > (3 - 8)log m/m .

	

(25)

The proof of the lemma on p . 292 of [ErR59] can be used together
with the lowerbound (25) for p to obtain an upper bound for P(m) . We
find that

P(m) = C(a" ,' + (
a2/M2-8 )log log m

+ m28-s logm • e(log log m)21z)

	

(26)

(24)

(1 - s)pn < deg v < (1 + s)pn (22)

for all vertices v .
Now we estimate the expected number of bad vertices to be

E(X) -V n
~Cn

	

1
pm(1 - P),-,-,P(M),

)
(23)

M
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where 0 < a < 1 and a, and az are positive constants . Then it can be
shown that nP(m) - 0, completing the proof. 1

We conclude by observing that when the probability of an edge is
beyond the high threshold of Theorem 3, almost every graph is locally
connected . To see this let p = (c log n/n) 1 / 2 with c > 3/2. Now we can
show that the expected number of vertices whose neighborhoods are
disconnected tends to zero . As in the proof of Theorem 3 we obtain a
lower bound for p using (24), but with c > 3/2 we find for n sufficiently
large

p > 2c(1 - s)
log m .

	

(27)
M

Therefore by choosing e small we can be assured that 2c(1 - s) _
3 + 5 . The probability that an m-set is disconnected is C(m'-(3+s) ) (see
[ErR59]) . Therefore the expected number of disconnected neighborhoods
is nQm -z-s) and this bound tends to zero for m in the range of (22) .

References

[B1H79] A. Blass and F . Harary, Properties of almost all graphs and
complexes, J. Graph Theory 3 (1979) 225-240 .

[Bo79] B . Bollobás, Graph Theory, Springer, New York (1979) .
[ErR59] P . Erdős and A . Rényi, On random graphs 1, Publ. Math .

Debrecen 6 (1959) 290-297 .
[ErR60] P . Erdős and A . Rényi, On the evolution of random graphs,

Magyar . Tud Akad . Mat . Kutato Int . Kozl . 5 (1960) . 17-61 .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

