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ABSTRACT

It is proved that if a graph G has at least cn log n vertices, then either G or its
complement G contains a subgraph H with at least n vertices and minimum
degree at least I V(H) I /2. This result is not far from being best possible, as is
shown by a rather unusual random construction . Some related questions are
also discussed .

1 . INTRODUCTION

Let G by an arbitrary graph without loops or multiple edges. As usual, V(G),
E(G), and 8(G) denote the vertex set, the edge set and the minimum degree
of the vertices of G, respectively, and G stands for the complement of G .

Ramsey's theorem, in its simplest form, states that there exists a (minimal)
integer R(n) with the following property : If G is any graph having at least
R(n) vertices, then either G or G contains a complete subgraph on n points .
As is well known (see [1], [4], [5]), the function R(n) is exponentially
increasing .

What happens, if, instead of complete subgraphs, we look for subgraphs
which are "fairly complete", in the sense that the minimum degree of their
vertices is sufficiently large? To formulate our question more precisely, we
introduce the following notation . Given a natural number n and a E (0, 1), let
R,(n) denote the smallest integer R such that, if G is any graph of R points,
then either G or G contains a subgraph H with at least n vertices and
8(H) > a I V(H) I .
We obviously have R,(n) < R(n) . As a starting question, one can ask: For

which values a E (0,1) is the function Rjn) essentially smaller than R(n)?
In particular, in which cases is Rjn) polynomially bounded? Concerning
this, we can make the following two easy observations .
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Proposition 1 .1 . Let 0 < a < 1/2 . Then there exists a constant c(a) such
that R jn) < c(a)n, for all n .

Proposition 1 .2. Let 1/2 < a < 1 . Then there exists a constant c(a) > 1
such that Rjn) -> (c(a)), for all n .

The proof of Proposition 1 .1 is similar to, but simpler than that of Theorem
4, so we leave it to the reader. As for Proposition 1 .2, it can be established by
a routine application of the "probabilistic method ." Let us take a random
graph G on m = exp I n(a - 2) 2/2 I vertices, whose edges are drawn in
independently with probability 1/2 . We are going to show that, with
probability greater than 0, G has the following property: IfH is any subgraph
of G or G, satisfying V(H) > n, then S(H) < a I V(H) I .

For any X C V(G), let GX denote the subgraph of G spanned by X. If
S(GX) > a I X , then GX has at least a I X 1 2/2 edges. Thus, for a fixed X,

1 XI 2Prob( S(Gx) > a IX l )
<

	

( z~)

	

(

	

) 2 -(12 ) < e-(,,-2' )2 X 2 .
i=a I Xj 2 /2 á

Therefore, the probability that G does not have the required property is at
most

2

	

Prob( S( GX) > a
XCV(G)
~Xj?n

X ) < 2 Z (j"5 e (a 2)2' 2 < 1,
j =n

which completes the proof.
Propositions 1 .1 and 1 .2 indicate that the behavior of the function Ra(n)

changes suddenly at a = 1/2 . In our present paper we shall investigate this
phenomenon. We prove the following results .

Theorem 2. For everyp > 0, there is a constant Cp > 0 having the property
that, if G is any graph of at least Cpn log n vertices, then either G or G
contains a subgraph H satisfying

(i) V(H) > n,

(ii) 8(H) >
	V(H)

+P V(H) /z( log V(H)

Theorem 3. Letp be any fixed natural number . Then there exists a constant
Cp > 0 such that, for each n > no(p), one can find a graph G which has
Cp(n log n/log log n) vertices and satisfies the following condition : If H is
any subgraph of G of G, and V(H) I >_ n, then S(H) < V(H) /2 - p .
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These two assertions immediately yield that, in our notation,

C'
n log n < R 1 1 2(n) < C n log n,
log log n

where C and C are suitable absolute constants. The proofs can be found in
the next two sections .

In the last section we shall deal with the following modification of the
above problem. Let R*(n) denote the minimal integer R such that, if G is any
graph of at least R points, then either G or G contains a subgraph H with
exactly n vertices and satisfying 8(H) > a V(H) I = an .

We obviously have R,,(n) < Ra(n) < R(n), and it is easy to see that
Propositions 1 .1 and 1 .2 are valid for R ,*,(n), too. On the other hand, we can
prove the following analog of Theorem 2 .

Theorem 4. There exists a constant C > 1 such that, if n and k are natural
numbers (k < n/2) and G is any graph of at least Ckn2 vertices, then either G
or G contains a subgraph H satisfying

(i) 1 V(H) = n
(ü) 8(H) >- 2 + k.

In particular, this yields that

n log n
C'

	

< R *112(n) < Cn2
log log n

is true, for all n . We are unable to prove any better lower bound for R*(n),
than that guaranteed by Theorem 3 . However, we suspect that Theorem 4
can be essentially improved and the order of magnitude of R*(n) is in fact
close to n log n .

Throughout this paper, whenever we use the expression "H is a subgraph
of G" (or, in notation, H C G) then we shall always mean that H is a
spanned (induced) subgraph of G .

2 . PROOF OF THEOREM 2

Let H be an arbitrary graph . We define the discrepancy of H, as

D(H) = E(H) 1 -
1 C I

V(H))

i .e ., the deviation of the edge number from the "typical" value .

(1)
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First, we prove Theorem 2 for the special case p = 0 .
Let n be a natural number, and let C > 0 be a constant (which will be

specified later) . Suppose, further, that G is a fixed graph, which has C n log n
vertices .

Define a sequence H1 of disjoint subgraphs of G, in the following way . Let
Hl be a subgraph of Go = G, whose discrepancy has maximal absolute
value, and whose number of points is minimal under this assumption .
Similarly, if H,,H2 , . . . , H,_ i have already been selected, then let H; be a
minimal subgraph of G; = G\U ;=i H„ satisfying

Further, we claim that

D(H,) >_ 1 E(Hi )

1 D(Hi )

8(Hi ) >-

max
HC c i

D(H)1 .

Suppose we get stuck at the t - th step, i.e ., V(G,+i) is already empty . We
obviously have V(HI ) U . . . U V(H,) = V(G) .

Let I+ (resp . I ) denote the set of those indices i, for which D(Hi) is
positive (resp . negative). We may assume, by symmetry, that

I I V(Hi ) > (Cn log n - 1)/2 .

	

(2)ter+

V(Hi ) 1 /2,

	

for all i E I+ ,

i .e. the subgraphs H; satisfy condition (ü) in the theorem (with p = 0) .
Suppose, on the contrary, that some H,(i E I+) has a vertex v of degree
( V(Hi) - 1)/2. Then, by the deletion of v, we would obtain a subgraph
Hz C Hi , such that

V(H;) - 1

	

1 1 V(Hi) - 1 ~
2

	

2(

	

2

contradicting either the maximum or the minimum property of Ht .
Now, to complete the proof of the theorem, we have to show only that

c
I I+ I < 2 log n .

= D(H,),

(3)

Taking (2) into account, this would imply that V(Hi) >_ n for some i E I+ ,
as desired.

Let i t < i2 < . . . < i, denote the elements of I+ . By the definitions, we
have

1
D(Hi,) > D(IL2) > . . . > D(Hi) >

2

	

(4)



For the proof of (5) we need the following definition . Let H and H' be two
disjoint subgraphs of G, and let E(H, IT) denote the set of those edges of G
which run between V(H) and V(H' ) . Then the relative discrepancy ofH and
H' (with respect to G) is defined, as

D(H,H') _ E(H, H')
V(H) 1

2

(2 ( I+ - 3)/3

	

13

	

D(HÜ) > D(Hir) >
2

V(H')

Consider now any two distinct members Hik and Hii (k < 1) of our
sequence, and denote by Hik U Hi, the subgraph of G spanned by V(Hik) U
V(Hii ) . By the maximum property of Hik , we have

D(Hik U Hii) = D(H,k ) + D(Hik ,Hii ) + D(Hi
i ) -< D(Hi k ),

which yields

- D(Hik ,Hid >_ D(Hil ), if k < l .

On the other hand, using the maximum property of Hi ., we obtain

- D(Hi . U Hi . +i U Hij+z U H';+3) _

i+3
- I D(Hi ) -

	

D(Hi Hi) < D(Hi .) .
k=i

	

k

	

i<k<i<i+3

	

k

From here, by (6), we get

-D(Hii ) + D(H'J+z ) + 2 D(Hi
.+3)

< D(Hii ),

which clearly implies (5) .
It now follows by (4) and (5), that

Consequently,

3 log (3D(HÜ ) )

	

3 log (3 C 2n2 loge n)
I+ ~ <

	

<

	

,
log(3/2)

	

log(3/2)
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Further, we show that

2
D(H'1+3 ) _< 3 D(Hi;) (5)

holds for all j(1 < j <- II+ I - 3) .
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which is less than C log n/2, if C is large enough. This completes the proof of
(3) and hence the theorem in case p = 0.

For every fixedp > 0, the proof can be carried out very similarly . Instead
of (1) we can make use of the following function

Dp(H) _
1

E(H) I - -
2

V(H)
2

- P(

Let G be an arbitrary graph of Cnlog n vertices, as above . Choose a
subgraph H, C G, for which Dp(H) is maximal. (However, here we do not
need the minimum property of H, .) If H,, H2,. . . , Hr _, have already been
selected, then put G; = G \U;-i H, and let H, be a subgraph of G;
satisfying

Df(Hi )

	

max Dp(H) .
HC Gi

We stop at the t-th step, if I V(Gt+,) I < C n log n/2 .
Observe that the numbers p(Hi ), (1 < i :5 t) are all positive, if n is large

enough. Let I+ (resp. I_) denote the set of those indices i for whichD(Hi) is
positive (resp . negative) . We may suppose, by symmetry, that

C
Z 1 V(Hi ) > 4 n logn .

Der+

Further, it is easy to see, using the definition, that the graphs H; (i E I+) satisfy
condition (ü) in the theorem . From this point the proof goes along essentially
the same lines as for p = 0 . The only difference is that in the proof of the
analogue of (3) we have to use the following result of [2] . There exists an
absolute constant /3 such that any graph of N vertices has a subgraph H
satisfying D(H) > /3N312 . The minor technical changes are left to the
reader .

3. A WEIGHTED RANDOM CONSTUCTION

In this section we are going to prove the following slightly weaker form of
Theorem 3 .

Theorem 3' . Let C > 1 be an (arbitrarily large) real number. Then there
exists a constant s(C) > 0 such that, for every n > no(C), one can find
a graph G having at least Cn vertices and satisfying the following condition :
If H is any subgraph of G or G, and I V(H) > n, then 8(H) _<
(z - E(C)) V(H)1 •

V(H) I log V(H)1) 3 / 2 (l')



The proof uses a rather unusual random construction .
Let C > 1 be fixed, and let n be a natural number, sufficiently large

compared to C. Further, putK= [C + 2], i .e ., the integer part of C + 2 . We
define a random graph G, as follows . Let

where the sets V; are disjoint and

V1 1 =

V(G) = V = VI U VZ U • • U VK ,

V21=, . ._ IVK

1

	

1

	

3i+3j+1

2

	

3K
P i;

1

	

1 )6i

2 + 3K '

x
E m; = m and=1

X

	

m m
mi >_m- 1 V,1 -K

	

>_
i<;

	

6K'

	

6K
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= C (1
-	
3K)

n
J

.

The edges of G will be drawn in independently of each other. Let us connect
a pair of points x E V„ y E Vj(1 < i, j < K) by an edge, with probability

if i j

ifi=j.

We claim that there exists a constant 8(C) > 0 such that, if n -• -, then
the probability that G_ meets the conditions of the theorem tends to one . In
particular, this means that Theorem 3' is true for n > n,, (C) .

For any subset XC V, let Gx denote the subgraph of G_ spanned by X. If
v E X, then we shall write d,,x (G) for the degree of v in _GX .
Fix now a set XC V, satisfying X = m > n, and put m t = IX n vi ,

(1 < i < K) . Let j be the maximal integer, for which m; >_ m/6K2. Then,
obviously,

Choose an arbitrary point a E X n V, and consider the random variable
d,x(G) . Using that

K

da,x(G) _ .~ da,(a)UV, (G) .

we get the following upper bound for the expected value of da,x (G),

(7)
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and, by (7),

E[da,x (G)l = ZZ mipij + (m, - 1 )p;;

M

	

mi

	

m;

< 2

	

(3K)3i+3i+i + (3K) 6;'

E[da , x (G)l <
1	 1	

M (2 ( 3K)6x

According to (8), d,,, x (G) can be expressed as the sum of K independent
random variables of binomial distribution . Applying Chernoff's Inequality
(see, e.g., [3]) or any other standard result about the "tail" of the binomial
distribution, we immediately obtain that there exists a constant t(K) > 0,
depending only on K, such that

Prob(da,x (G)'- (1 + X) E[da,x (G)l} < e-t(K)X 2m ,

(9)

for every A > 0 . Since the random variables da,x (G), (a E X Cl 1;) are
nearly independent, it is easy to check that

Prob(8(Gx) >_ (1 + X)E[d a ,x (G)](

< 2 fl Prob(d,,, x (G) >_ 91 + A) E[da,x (G)]}
aExn vj

< 2 exp [ -t(K)X2 mmi ] < 2 exp [ - t(K)A2n216K2 ]

Thus, by (9), we get

ProbS 8(Gx) >_ (1 +
A) (2

	

(3 1 )óK ) m ~ < 2 exp[ t(K) X2n2/6K 2 ],

if n is large enough.
Let I denote a natural number (1 < Z < K), such that

(10)

m i (3K) -31 = Max mi (3K)-3i .

	

(11)
1<i<K

Ifb is any fixed point ofX n Vi , then one can estimate the expected value of
db,x (G), as follows.



Taking (11) into account, we obtain

or, equivalently,

E[db,x(G)] _

	

mipil + (m1 - I)p11

M

	

mi

	

m i
2 -

	

(3K )si+31+i + (3K) 61

	

1

E[db,x(G)] >_ m

E[db,x(G)] < m

1	 1	 -'
(2 (3K)9x )

(2 (3K)9x )

From here one can deduce, exactly in the same way as above, that there
exists a constant s(K) > 0, such that

ProbS 8(Gx) >- (1 + X) (2

	

(3K)9K m <2e-s(K»,2,,2

	

(10')

holds for all A > 0, n > no(K) .
Put X _ X(K) _ (3K) -lox Then, we clearly have
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(1 + A) (2
(3K)6x ) < ( 1 + A)

(2 (3K)9x ) < 2 -
A .

	

(12)

By (10), (10'), and (12), the probability that G_ or G_ contains a subgraph H
such that V(H) >_ n and 8(H) > (z - X(K)) V(H) is less than

xY (Prob~8(Gx) >-
( 12

- X) 1X 1 ~+ Prob58(G) >
(

1
2 - A ) IXI })

IXI>n

<2 nK (2 exp[-t(K)X 2(K)n216K2 ] + 2 exp[-t(K)\2(K)n2]),

(9')

which tends to 0, if K= [C + 2] is kept fixed and n ~ . In other words,
Theorem 3' holds with E(C) _ X(K) = a([C + 2]) .
Theorem 3 can be established very similarly . As a matter of fact, its proof
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is the marginal case of the above one, when K is a slowly increasing
function of n, (K- log n/log log n) .

4. SUBGRAPHS OF FIXED SIZE

The aim of this section is to prove Theorem 4 .
Let n, k be fixed, as in the theorem . Further, let X and Y, X > Y, be two

positive numbers which will be specified later.
Take an arbitrary graph G having Xn vertices . A theorem of Erdös and

Spencer [2] (see also [3]) states that there exists an absolute constant a > 0
such that, if

then G contains a subgraph Go of at most Yn vertices, whose discrepancy
(see (1)) satisfies

x
I D(GO) I

	

a(Yn)siz
C
log y

)

We may suppose, by svmmetry, that D(GO) > 0 . Define a sequence of
subgraphs Hl , H2 . . . . C Go , as follows . Let H, be a subgraph of Go , which
has exactly n vertices and whose number of edges is maximal. If H1 ,
H2 , . . ., H;_, have already been determined, then put G; = Go\
U;.=i Hr and let H; be a subgraph of G; satisfying

V(Hi )

E(Hi)

Yn >_ log(Xn),

	

(13)

= n,

= max E(H)
HC Gi
V(H) I=n

(14)

We stop at the yth step, if I V(Gy+ ,) G n .
We may assume that every H; (i = 1,2, . . . zy) has a vertex v„ whose

degree (in Hi ) is less than n/2 + k . Otherwise,

8(Hi) >_ 2 + k,

	

(15)

and there is nothing to prove. Further, observe that any vertex v E V(G;+,)
has at most n/2 + k + 1 neighbors in V(Hi ) . If this were not true, then
replacing v i by v we would get a graph whose number of edges is greater than
I E(Hi ) I, contradicting the definition .



Now, we clearly have

E(G O ) I <
r i

~E(H) I + I E(G.,+i)

and, taking y < Y into account,

1E(GO)

On the other hand, by (14),
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+
(
y+1 )n(n +k+1

2

	

2

	

)
,

<(Y+1)
(
n ) +

(
Y2 1 ) n(n+k+11 .

	

(16)

i
~ E(G O ) I >

1 Yn
_ 2

2 )+a(Yn)3/2log)
X
Y

2

	

(17)

Put Y= n/k, X = e6ki,,2 n/k . Then (13) obviously holds (for n > k > ko ),
and an easy calculation shows that (16) and (17) contradict each other . This
means that our assumption was false, and there exists at least one H i (1
i < y) satisfying (15) . This completes the proof.
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