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Let 1 <a, < . . . <a, he a sequence of integers Consider the integers of the form

1

	

a; + aj , a;aj , 1 <= t <_ .j < n .
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It is tempting to conjecture that for every E>0 there is an n , so that for every n > n :,
there are more than n' -' distinct integers of the form (1) . We are very far from being
able to prove this, but we prove the following weaker

Theorem 1 . Denote bt /(n) the largest integer so that for ecerv a _ a,,

	

.,a,! there
are at least,f(n) distinct integers of the,form (1) . Then

(2)

	

n",<f(n)<nzexp(-c, log n ; log log n) .

We expect that the upper bound in (2) may be close to the "truth" .
More generally we conjecture that for every k and n > n 11(k) there are more than n k

distinct integers of the form
k

a, + . . . + a, ,

	

1 1 `t ',
j=1

At the moment we do not see how to attack this plausible conjecture .
Denote now by gtn) the largest integer so that for every ;a, , . . , a„', there are at least

g(n) distinct integers of the form

h

(3)

	

` e;a ;,

	

II a; (e ;=0 or 1)
i=1

	

i=1

n

We conjecture that for n > n,(k), gin) > n k . Unfortunately we have not been able to
prove this and perhaps we overlook a simple idea . We prove
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gin)< exp (c } log 2nAog log n) .

Again we believe (without too much evidence) that Theorem 2 may be close to the
final truth . Perhaps our conjectures remain true if the a's are real or complex numbers .

Some more conjectures : Let IN(n, k) be a graph of n vertices x 1 , x 2 , . . . . x„ and k
edges. Make correspond a; to x, . Consider the set of 2k integers .

(4)

	

fai +a;, a i a;

where x i is joined to x ; . We conjecture that for every e > 0 and 0 < 2<_ I if k > n' ''
then there are more than n' "distinct integers of the form (4) . Our proof of Theorem
1 does not seem to apply here . The conjecture very likely remains true if the a's can
be real numbers . P . ERDŐs once thought that the conjecture may hold even if we only
assume k > cn, but A . RuBIN showed that this is not true if the a 's can be real numbers
and it perhaps fails even if the a's are restricted to be positive integers .

Finally we state a few related problems . Let a ib i = T i =1, 2, . . . , n . Consider the
sums

a i,+ a i ,,

	

b i,+b i ,,

	

a;,+b,,

Is it true that all but one of three sets have more than n' ` distinct elements?
Consider the sets {k(n-k), 1 < k <n', and

	

1 <=I <m ;, Can one estimate the
number of integers which are common to both sets'?

Let a,, . . ., a„ be such that there are only en distinct sums of the form a i + a ;,
1 -_i<j_<- n . Then there certainly must be more than n2- distinct products of the
form a ia ;, t <_ i S j :5 n . Perhaps there are more than n 2 ,jlog n)` products of the form
a i a;, 1 _<_i<_j<_n . The deep results of FREIMAN can possibly be used here [1].

n 2 +n
Finally a problem of different kind . Let 2n - 1 < t - - - . It is easy to see that one

can find a sequence of integers a ,< . . . < a, so that there should be exactly t distinct
integers in the sequence a i +a;, I < i 5 j :5 n . We do not know for which r is it possible to
rind a sequence a, < . . . <a„ so that there should be exactly r distinct integers of the
fo rm

S r i a ; . a,=0 or I .

It is probably even more difficult to find out for which t > f (n) is there a sequence
a 1 . . . <a„ so that there are exactly t distinct integers of the form (1) .

First we prove Theorem 2 which will not be difficult . Let x be large . The a's are the
integers of the form

170 i ', , p,<(logx) 2,3 , 0<_x:5(108X)' 3

Put
3(log .r) 2 3

(5)

	

[( log x) ' 3 ]=t, m;[(logx) 2 3])=(1+0(1))'l0g
log r

- 1 .



The number of a's is

(6)

All the a's are less than x, thus the'number of the distinct sums is less than x 2 .

i=1

Sums and products of integers

n=(t+ 1)' = exp (I (log x)2 3 / .

Next we have to estimate the number of the distinct product of the form F1 a ,
i=1

E, =0 or 1 . These integers are all composed of the first I primes . The highest exponent of
h

a prime p which can occur in fj a,i is at most to < (t + 1)' - 1 =(t + 1)n . Thus the number
+= l

of the integers of the form ]j a, , e i =0 or 1, is less than
i=l

(7)

	

((t + 1)n)' =(t + 1)''''.

To complete the proof of Theorem 2 we only have to show by (5) and (6) that

(8)

	

n c log n log log n > ( t + 1) "+ '+-)c 2 .

(8) immediately follows from (5) and (6), which completes the proof of Theorem 2 .
Now we prove Theorem 1 . First we prove the right side of (2) . This will be a

standard and comparatively simple estimation. We do not try to obtain the largest

possible value of c 2 since we are not at all sure that the term n- exp

	

c2 log n
-	

is the final truth .

	

log log n

To prove the right side of (2) let 2j be the largest even integer not exceeding
log x

3 log log r , s=rz((log x) 3 ) . The a i are the integers of the form

2 ;

( 9 )

	

11 Pi g+ Pi <(logx)',

	

si =0 or 1 .

These integers are clearly all less than x . Their number clearly equals

t , _ S = X2i3+m11
2j)

R

21 5

The number of distinct integers of the form ai +a i is by (10) and a i <x less than
2x < t 312 ` ,,111 and thus can be neglected. Next we have to estimate the number of
distinct integers of the form a ja k . We split these integers into two classes . In the first
class are the a i ak for which Wn) denotes the number of distinct prime factors of nl

v((ai, ak)) >j
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The number of these integers is by a simple computation less than

2j

	

s \1
t,, log x

J

	

/
< t i log x 2 z '(log X )12 - .4 1 IIÍ

< t rx 1 3 +ol 1 I

Thus the numbers of the first class can be also neglected .
Now if a ;ak is in the second class we can write

a;a k = Q= L

where Q=(a i , ak ) is squarefree and L is the product of two relatively prime squarefree
log x

integers having 2j--v(Q) prime factors, where v(Q)<j, =
log log x

. But then clearly
?)

QZL, can be written in at least

	

ways as the product of two numbers a ;, a k ,
J

Atl i , a k)=Q. Thus the number of integers in the second class is less than

log s

Ix 21 - - log log .

which proves the right side of (2) .
To complete the proof of Theorem 1 we now have to prove the left side of (2), and this

in fact is the main novelty and difficulty of our paper. We make no attempt to get a large
value for c, as stated in the introduction c, > 1 -e for every e>0 and our method

1
cannot even give c,

2
First a few remarks . If a„ <n' our Theorem follows trivially with c, > 1 -e, thus the

only difficulty is if some of the a's are very large . First we prove that we can assume
without loss of generality that all the a ; are in some interval u _< a i <_ 2u .

Denote by S; the set of aj satisfying 2' <aÍ _-<

	

1 . First observe that we can assume
without loss of generality that

I,11)

	

jS;j-=0 or

	

IS ; ;>__r'

Assume that (11) does not hold . Let S_ , S i , satisfy

(12)

	

0<!Si <n' -,

	

1 5 . i < k .

k

	

n
if U IS !<' we simply omit all the a's satisfying (12) and we only work with

17

the remaining as and since their number is greater than ~ this clearly can be
k

	

n

	

_'
done. If U

	

then by (12) clearly k _> n'' 4 2. Let a be an arbitrary element of
i=,



Sums and products of integers

S;

	

1. 2, . . . k, k >n`/2 . Clearly a i _ . . > 2a,_ and thus the sums

a,.+a-

	

2<.Í,<j,<k.

3
n2

are all distinct, so there are at least - distinct sums of the form a„-a, .,
d

1<uu < v :5 n, which proves Theorem 1 if (11) does not hold .
Thus we can now assume that (11) holds .
Now we state the crucial

Lemma Let m <b, < . . . <b,!:-2m.

	

_Then the number of distinct integers of the form

b,+b j , bib j , I<i< .j5r

is greater than et' `' for some x > 0 and e > 0 .

Suppose that our Lemma has already been proved . Then by (11) and our Lemma
the number of distinct integers of the form a i +aj, aiaj is at least

113)

	

~:' EjS i j' ">en' ` 4

(where the dash indicates that the summation is extended over the i satisfying
Si j?n'') (13) of course gives the left side of (2) and hence proves Theorem 1 .

Thus we only have to prove our Lemma . Put [t' e]=s . Denote by B, the set of b's
`b,, _ . . . , b,, ; . In other words we divided the index set of the b's into [t' s] sets of
size [t''' e ] . Denote by B= B, the Bj of smallest diameter (i .e. b,j _,,,+, -b j, is minimal) .
Observe now that if u - v > 10 and (u r, v r) b, a B, b2 e B, b 3 e B,,, b, a B r then
b, +b 3 fib, +b, and b ib j =b i b, . This is obvious for the sum and nearly obvious for
the. product. Put b 2 =b,+x, b,=b3 -y . Then if b, b 3 =bib, we would have b, b 3 =
_ (b, +x) (b 3 -y) or xy =b 3x-b,y and this easily leads to a contradiction since y > IOx
by the minimality property of B=B, and u-v?10. Further 1/2<b3/b,<2. Thus
b3-"C -b i t•< 0<xy which is impossible .

Consider now the s'j10 B j 's, j-1 (mod 10) . We divide the indices j into two classes .
In the first class are the indices j for which the number of distinct integers of the form

bi +b,, bib, . bi cB, b,EBj

is greater than s' +e ' . If at least half of the indices belong to the first class then our
Lemma immediately follows since the number of distinct integers of the form b i --bj ,

bib, is greater than 10 . __ . S'S' a ' = -
t' +' which proves the Lemma in this case .

20
Let now j be an index of the second class . We remind the reader that in this case

the number of distinct integers of the form b„+b,,, b i b,,, b„cB, b,EBj is less
than s' ' a ' .

217
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We want to find six integers b, , b 2 , b 3 , b,, b 5 , bh , b ; a B; (i = 1, 2), b ; e B (3<i!5_

	

6),
satisfying

(14)

	

b,+b3=b,+b, and b, b 5 =b,b t, .

Consider the s 2 products b,b,,, b. E B, b,. E B; . Since B; is in the second class there
are fewer than s""' distinct integers of this form . Therefore there is a T so that
T =b,b,, has at least s' -" solutions . Put

T=b,b,

	

hu e B

	

b EB

	

1 <r<s' - "

Consider now the sz-11' sums of the form b,_+b,. . For sufficiently small x these
sums clearly cannot all be different .

Thus there are indices u„., r,, u p„ r 4 so that b,_+b,.,=b,,+b,. . But bib, .,=6,,b, ., .
Thus b, b~ , b, b,,e B, b,.,, b,,, E B ; are our required six integers . Observe that if
b 3 , b,, b 5 , b 6 are fixed there is at most one b,, b, pair which solves (14),

1

	

1
We have at least

2
. 10 • s' Bjs in the second class and the number of different

b3 , b,, b 5 , b, quadrouples is at most s'r . This contradicts our observation, and
this contradiction completes the proof of Theorem 1 .
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