On sums and products of integers

by
P. ERDÖS and E. SZEMERÉDI (Budapest)

Let $l \leqq a_{1}<\ldots<a_{n}$ be a sequence of integers Consider the integers of the form

$$
\begin{equation*}
a_{i}+a_{j} . \quad a_{i} a_{j}, \quad 1 \leqq i \leqq j \leqq n . \tag{1}
\end{equation*}
$$

It is tempting to conjecture that for every $\varepsilon>0$ there is an n_{0} so that for every $n>n_{0}$ there are more than $n^{2-\varepsilon}$ distinct integers of the form (1). We are very far from being able to prove this, but we prove the following weaker

Theorem 1. Denote by $f(n)$ the largest integer so that for etery $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ there are at least $f(n)$ distinct integers of the form (1). Then

$$
\begin{equation*}
n^{1+c_{1}}<f(n)<n^{2} \exp \left(-c_{2} \log n \log \log n\right) . \tag{2}
\end{equation*}
$$

We expect that the upper bound in (2) may be close to the "truth".
More generally we conjecture that for every k and $n>n_{0}(k)$ there are more than n^{k-r} distinct integers of the form

$$
a_{i_{t}}+\ldots+a_{i_{k}}, \quad \prod_{j=1}^{k} a_{i_{j}}
$$

At the moment we do not see how to attack this plausible conjecture.
Denote now by $g(n)$ the largest integer so that for every $\left\{a_{1}, \ldots, a_{n}\right\}$ there are at least $g(n)$ distinct integers of the form

$$
\begin{equation*}
\sum_{i=1}^{n} \varepsilon_{i} a_{i}, \quad \prod_{i=1}^{n} a_{i}^{\varepsilon_{i}} \quad\left(\varepsilon_{i}=0 \text { or } 1\right) \tag{3}
\end{equation*}
$$

We conjecture that for $n>n_{0}(k) . g(n)>n^{k}$. Unfortunately we have not been able to prove this and perhaps we overlook a simple idea. We prove

Theorem 2.

$$
g(n)<\exp \left(c_{3} \log ^{2} n / \log \log n\right)
$$

Again we believe (without too much evidence) that Theorem 2 may be close to the final truth. Perhaps our conjectures remain true if the a 's are real or complex numbers.

Some more conjectures: Let $\mathscr{G}(n, k)$ be a graph of n vertices $x_{1}, x_{2}, \ldots, x_{n}$ and k edges. Make correspond a_{i} to x_{i}. Consider the set of $2 k$ integers.

$$
\begin{equation*}
\left\{a_{i}+a_{j}, \quad a_{i} a_{j}\right\} \tag{4}
\end{equation*}
$$

where x_{i} is joined to x_{j}. We conjecture that for every $\varepsilon>0$ and $0<x \leqq 1$ if $k>n^{1+x}$ then there are more than $n^{1+a-\varepsilon}$ distinct integers of the form (4). Our proof of Theorem 1 does not seem to apply here. The conjecture very likely remains true if the a 's can be real numbers. P. Erdós once thought that the conjecture may hold even if we only assume $k>c n$, but A. Rubin showed that this is not true if the a 's can be real numbers and it perhaps fails even if the a 's are restricted to be positive integers.

Finally we state a few related problems. Let $a_{i} b_{i}=T i=1,2, \ldots, n$. Consider the sums

$$
a_{i_{1}}+a_{i_{2}}, \quad b_{i_{1}}+b_{i_{2}}, \quad a_{i_{1}}+b_{i_{2}} \quad 1 \leqq i_{1} \leqq i_{2} \leqq n .
$$

Is it true that all but one of three sets have more than n^{1+c} distinct elements?
Consider the sets $\{k(n-k), 1 \leqq k<n\}$ and $\left\{l(m-), 1 \leqq l<m_{\}}\right.$. Can one estimate the number of integers which are common to both sets?

Let a_{1}, \ldots, a_{n} be such that there are only cn distinct sums of the form $a_{i}+a_{j}$, $1 \leqq i \leqq j \leqq n$. Then there certainly must be more than $n^{2-\varepsilon}$ distinct products of the form $a_{i} a_{j}, 1 \leqq i \leqq j \leqq n$. Perhaps there are more than $n^{2} /(\log n)^{t}$ products of the form $a_{i} a_{j}, 1 \leqq i \leqq j \leqq n$. The deep results of Freiman can possibly be used here [1].

Finally a problem of different kind. Let $2 n-1 \leqq t \leqq \frac{n^{2}+n}{2}$. It is easy to see that one can find a sequence of integers $a_{1}<\ldots<a_{n}$ so that there should be exactly t distinct integers in the sequence $a_{i}+a_{j}, l \leqq i \leqq j \leqq n$. We do not know for which t is it possible to find a sequence $a_{1}<\ldots<a_{n}$ so that there should be exactly t distinct integers of the form

$$
\sum_{i=1}^{n} f_{i} a_{i}, \quad \varepsilon_{i}=0 \text { or } 1
$$

It is probably even more difficult to find out for which $t>f(n)$ is there a sequence $a_{1} \ldots<a_{n}$ so that there are exactly t distinct integers of the form (1).

First we prove Theorem 2 which will not be difficult. Let x be large. The a 's are the integers of the form

$$
\Pi \rho_{i}^{x}, \quad \rho_{i}<(\log x)^{2 / 3}, \quad 0 \leqq x_{i} \leqq(\log x)^{1 / 3}
$$

Put

$$
\begin{equation*}
\left[(\log x)^{1 / 3}\right]=t, \quad \pi\left(\left[(\log x)^{2 / 3}\right]\right)=(1+o(1)) \frac{3(\log x)^{23}}{2 \log \log x}=l \tag{5}
\end{equation*}
$$

The number of a 's is

$$
\begin{equation*}
n=(t+1)^{t}=\exp \left(\frac{1}{2}(\log x)^{2 / 3}\right) \tag{6}
\end{equation*}
$$

All the a 's are less than x, thus the number of the distinct sums is less than x^{2}.
Next we have to estimate the number of the distinct product of the form $\prod_{i=1}^{n} a_{i}^{z_{i}}$, $\varepsilon_{\mathrm{i}}=0$ or 1 . These integers are all composed of the first l primes. The highest exponent of a prime p which can occur in $\prod_{i=1}^{n} a_{i}^{e_{i}}$ is at most $t n<(t+1)^{t-1}=(t+1) n$. Thus the number of the integers of the form $\prod_{i=1}^{n} a_{i}^{\varepsilon_{i}} \quad \varepsilon_{i}=0$ or 1 , is less than

$$
\begin{equation*}
((t+1) n)^{t}=(t+1)^{t^{2}+1} \tag{7}
\end{equation*}
$$

To complete the proof of Theorem 2 we only have to show by (5) and (6) that

$$
\begin{equation*}
n^{c \log n \log \log n}>(t+1)^{1^{2}+1}+x^{2} . \tag{8}
\end{equation*}
$$

(8) immediately follows from (5) and (6), which completes the proof of Theorem 2.

Now we prove Theorem 1. First we prove the right side of (2). This will be a standard and comparatively simple estimation. We do not try to obtain the largest possible value of c_{2} since we are not at all sure that the term $n^{2} \exp \left(-\frac{c_{2} \log n}{\log \log n}\right)$ is the final truth.

To prove the right side of (2) let $2 j$ be the largest even integer not exceeding $\frac{\log x}{3 \log \log x}, s=\pi\left((\log x)^{3}\right)$. The a_{i} are the integers of the form

$$
\begin{equation*}
\prod_{i=1}^{2 j} p_{i}^{\varepsilon_{i}}, \quad p_{i}<(\log x)^{3}, \quad \varepsilon_{i}=0 \text { or } 1 \tag{9}
\end{equation*}
$$

These integers are clearly all less than x. Their number clearly equals

$$
\begin{equation*}
t_{x}=\binom{s}{2 j}=x^{2 / 3+o(1)} \tag{10}
\end{equation*}
$$

The number of distinct integers of the form $a_{i}+a_{j}$ is by (10) and $a_{i}<x$ less than $2 x<t_{x}^{3 / 2+o(1)}$ and thus can be neglected. Next we have to estimate the number of distinct integers of the form $a_{i} a_{k}$. We split these integers into two classes. In the first class are the $a_{i} a_{k}$ for which ($v(n)$ denotes the number of distinct prime factors of n)

$$
v\left(\left(a_{i}, a_{k}\right)\right)>j .
$$

The number of these integers is by a simple computation less than

$$
t_{x} \log x\binom{2 j}{j}\binom{s}{j}<t_{x} \log x 2^{2 j}(\log x)^{(2+a(1) 1)}<t_{x} x^{1 / 3+o(1)} .
$$

Thus the numbers of the first class can be also neglected.
Now if $a_{i} a_{k}$ is in the second class we can write

$$
a_{i} a_{k}=Q^{2} L
$$

where $Q=\left(a_{i}, a_{k}\right)$ is squarefree and L is the product of two relatively prime squarefree integers having $2 j-v(Q)$ prime factors, where $v(Q)<j=\frac{\log x}{6 \log \log x}$. But then clearly $Q^{2} L$. can be written in at least $\binom{2 j}{j}$ ways as the product of two numbers a_{i}, a_{k}, $v\left(a_{i}, a_{k}\right)=Q$. Thus the number of integers in the second class is less than

$$
t_{x}^{2} 2^{-\frac{\log x}{3 \log \log x}} .
$$

which proves the right side of (2).
To complete the proof of Theorem 1 we now have to prove the left side of (2), and this in fact is the main novelty and difficulty of our paper. We make no attempt to get a large value for c_{1} as stated in the introduction $c_{1}>1-\varepsilon$ for every $\varepsilon>0$ and our method cannot even give $c_{1}=\frac{1}{2}$.

First a few remarks. If $a_{n}<n^{k}$ our Theorem follows trivially with $c_{1}>1-\varepsilon$, thus the only difficulty is if some of the a 's are very large. First we prove that we can assume without loss of generality that all the a_{i} are in some interval $u \leqq a_{i} \leqq 2 u$.

Denote by S_{i} the set of $a^{\prime} s$ satisfying $2^{i}<a_{j} \leqq 2^{i+1}$. First observe that we can assume without loss of generality that

$$
\begin{equation*}
\left|S_{i}\right|=0 \quad \text { or } \quad\left|S_{i}\right| \geqq n^{14} . \tag{11}
\end{equation*}
$$

Assume that (11) does not hold. Let $S_{i, \ldots} \ldots S_{i 4}$ satisfy

$$
\begin{equation*}
0<\left|S_{i}\right|<n^{1+} . \quad 1 \leqq j \leqq k . \tag{12}
\end{equation*}
$$

If $\bigcup_{j=1}^{k}\left|S_{i,}\right|<\frac{n}{2}$ we simply omit all the a 's satisfying (12) and we only work with the remaining a 's and since their number is greater than $\frac{n}{2}$ this clearly can be done. If $\bigcup_{j=1}^{k}\left|S_{i, j}\right| \geqq \frac{n}{2}$ then by (12) clearly $k \geqq n^{3 / 4} / 2$. Let $a_{i,}$, be an arbitrary element of
$S_{i}, j=1.2, \ldots k, k \geqq n^{3 / 4} / 2$. Clearly $a_{i_{2}, 2}>2 a_{i_{2}}$, and thus the sums

$$
a_{i 2 i_{1}}+a_{i i_{2}}, \quad 2 \leqq j_{1}<j_{2} \leqq k .
$$

are all distinct, so there are at least $\frac{n^{\frac{3}{2}}}{\delta}$ distinct sums of the form $a_{u}+a_{\mathrm{t}}$, $1 \leqq u<v \leqq n$, which proves Theorem 1 if (11) does not hold.

Thus we can now assume that (11) holds.
Now we state the crucial
Lemma. Let $m<b_{1}<\ldots<b_{t} \leqq 2 m$. Then the number of distinct integers of the form

$$
b_{i}+b_{j}, \quad b_{i} b_{j}, \quad 1 \leqq i<j \leqq t
$$

is greater than εt^{1+x} for some $x>0$ and $\varepsilon>0$.
Suppose that our Lemma has already been proved. Then by (11) and our Lemma the number of distinct integers of the form $a_{i}+a_{j}, a_{i} a_{j}$ is at least

$$
\begin{equation*}
\sum^{\prime} \varepsilon\left|S_{i}\right|^{1+x}>c n^{1+x+} \tag{13}
\end{equation*}
$$

(where the dash indicates that the summation is extended over the i satisfying $\left.\left|S_{i}\right| \geqq n^{14}\right)(13)$ of course gives the left side of (2) and hence proves Theorem 1.

Thus we only have to prove our Lemma. Put $\left[t^{18}\right]=s$. Denote by B_{i} the set of b 's $\left.\left\{b_{i i-1}\right)_{s+1}, \ldots, b_{i s}\right\}$. In other words we divided the index set of the b 's into $\left[t^{7,8}\right]$ sets of size $\left[t^{1 / 8}\right]$. Denote by $B=B_{r}$ the B_{j} of smallest diameter (i.e. $b_{(j-1) s+1}-b_{j s}$ is minimal). Observe now that if $u-v \geqq 10$ and $(u \neq r, v \neq r) b_{1} \in B, b_{2} \in B, b_{3} \in B_{u}, b_{4} \in B_{c}$ then $b_{1}+b_{3} \neq b_{2}+b_{4}$ and $b_{1} b_{3} \neq b_{2} b_{4}$. This is obvious for the sum and nearly obvious for the product. Put $b_{2}=b_{1}+x, b_{4}=b_{3}-y$. Then if $b_{1} b_{3}=b_{2} b_{4}$ we would have $b_{1} b_{3}=$ $=\left(b_{1}+x\right)\left(b_{3}-y\right)$ or $x y=b_{3} x-b_{1} y$ and this easily leads to a contradiction since $y>10 x$ by the minimality property of $B=B_{r}$ and $u-v \geqq 10$. Further $1 / 2<b_{3} / b_{1}<2$. Thus $b_{3} x-b_{1} y<0<x y$ which is impossible.

Consider now the $s^{7} / 10 B_{j}$'s, $j \equiv 1(\bmod 10)$. We divide the indices j into two classes. In the first class are the indices j for which the number of distinct integers of the form

$$
b_{i}+b_{1}, \quad b_{i} b_{1}, \quad b_{i} \in B, \quad b_{l} \in B_{j}
$$

is greater than $s^{1+8 x}$. If at least half of the indices belong to the first class then our Lemma immediately follows since the number of distinct integers of the form $b_{i}+b_{j}$, $b_{i} b_{j}$ is greater than $\frac{1}{10} \cdot \frac{1}{2} \cdot s^{7} s^{1+8 x}=\frac{1}{20} t^{1+x}$ which proves the Lemma in this case.

Let now j be an index of the second class. We remind the reader that in this case the number of distinct integers of the form $b_{u}+b_{v}, b_{u} b_{v}, b_{u} \in B, b_{v} \in B_{j}$ is less than $s^{1+8 x}$.

We want to find six integers $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{i} \in B_{j}(i=1,2), b_{i} \in B(3 \leqq i \leqq 6)$, satisfying

$$
\begin{equation*}
b_{1}+b_{3}=b_{2}+b_{4} \quad \text { and } \quad b_{1} b_{5}=b_{2} b_{6} \tag{14}
\end{equation*}
$$

Consider the s^{2} products $b_{u} b_{r}, b_{u} \in B, b_{v} \in B_{j}$. Since B_{j} is in the second class there are fewer than $s^{1+8 x}$ distinct integers of this form. Therefore there is a T so that $T=b_{u} b_{v}$ has at least $s^{1-8 x}$ solutions. Put

$$
T=b_{u} b_{r,}, \quad b_{\mathrm{u},} \in B \quad b_{r,} \in B_{j}, \quad 1 \leqq r \leqq s^{1-8 x}
$$

Consider now the $s^{2-16 x}$ sums of the form $b_{u_{*}}+b_{r_{j}}$. For sufficiently small x these sums clearly cannot all be different.

Thus there are indices $u_{w}, r_{1}, u_{p}, r_{q}$ so that $b_{u_{\gamma}}+b_{r_{r}}=b_{u_{q}}+b_{c_{q}}$. But $b_{u_{1}} b_{v_{v}}=b_{u_{q}} b_{r_{q}}$. Thus $b_{u_{v}}, b_{u_{s}}, b_{u_{i}}, b_{u_{q}} \in B, b_{v_{i}}, b_{r_{s}} \in B_{j}$ are our required six integers. Observe that if $b_{3}, b_{4}, b_{5}, b_{6}$ are fixed there is at most one b_{1}, b_{2} pair which solves (14).

We have at least $\frac{1}{2} \cdot \frac{1}{10} \cdot s^{7} B_{j}$ s in the second class and the number of different $b_{3}, b_{4}, b_{5}, b_{6}$ quadrouples is at most s^{4}. This contradicts our observation, and this contradiction completes the proof of Theorem 1 .

Reference

[1] Freiman. G. A., Foundations of a structural theory of set addition. Translations of Math. Monographs, Amer. Math. Soc., Vol. 37. Providence R.I. 1973.

