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THE GREATEST ANGLE AMONG n POINTS IN THE
d-DIMENSIONAL EUCLIDEAN SPACE
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Mathematical Institute of the Hungarian Acad . Sci ., 1053 1judapest, Reáltanoda u. 13-15,
Hungary

There exists a pointset

	

of cardinality at least 1 .15" in Ed such that all angles determined
by the triples of Yl are less than 7T12 . This disproves the old conjecture that 1 1 _ 2d -1 .

1 . Introduction

Many decades ago Erdös conjectured that if there are given 2 d + I points in
a d-dimensional Euclidean space at least one of the angles determined by the
points is greater than rr/2 . A very simple and ingenious proof for this conjecture
was given by Danzer and Grünbaum . The following problems remained open :
Determine the largest a d for which 2' + I points in Ed always determine an
angle > ( ,rr/2)+ ad . We can make no contribution to this problem at present .
The second problem states : Denote by f(d) the largest integer for which there
are f(d) points in Ed all the angles of which are < ,rr/2 . f(2) = 3 is trivial and
Croft proved f (3) = 5 . It was often conjectured that f(d) < Cd. We prove that
f(d) tends to infinity exponentially and at the moment cannot prove that
f (d) < (2 - E ) d . As a matter of fact we cannot even prove that f (d) < 2' -1
(d > 2). We prove that for every E > 0 there exists a 5, so that one can have
(I + 5) d points in Ed all the angles of which are < (Tr/3)+ e .
Erdös and Szekeres proved that 2" points in Ez always determine an angle

> 7r(1 -1/n) and Szekeres proved that this result is best possible in the
following sense: One can give, for every E > 0, 2" points in E2 no angle of which
is greater than Tr(1 - (11n)) + E . It does not seem easy to get a result of the same
precision for higher dimension but we will get inequalities giving estimates for
the number of points in Ed which give an angle > Tr - E .

2 . Strictly antipodal polytopes

Let us denote by Ed the d-dimensional Euclidean space . Let 9' C Ed be a
pointset, and let a, b E 91. We shall say that a and b are an antipodal pair of
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provided there exists a pair of parallel (distinct) supporting hyperplanes of 91
such that a belongs to one of them and b to the other . A pointset is said to be
antipodal provided each two of its points forms an antipodal pair of 91 . (Clearly,
in this case is the vertex set of the polytope cony '?, the convex hull of J1.) Let
us denote by G(d) the maximal number of vertices in an antipodal d-polytope .
Danzer and Grünbaum [4] showed the conjecture of Klee [11] that G(d) = 2' .

Theorem 2 .1 [4] . If the pointset J1 C E d is an antipodal, then I OP I < 2' . Equality
holds if and only if

	

consists of the vertices of a d-dimensional parallelotope .

This result implies also that F(d) = 2' is the answer to the following problem
of Erdős [5, 6] : What is the maximal possible number F(d) of points in Ed such
that all angles determined by the triples of them are less than or equal to 90°?

Now let the notion of an antipodal pair be modified by defining a pair a, b E PP
as k-antipodal provided there exist parallel (distinct) supporting hyperplanes of
91, each of which intersects cony Y1 in a set of dimension at most k, such that a
belongs to one of the hyperplanes, and b to the other . In analogy to the above,
we define k-antipodal polytopes and the numbers Gk (d) . Clearly, a d-polytope
is antipodal if and only if it is (d - 1)-antipodal .

A number of interesting problems concern 0-antipodality, which is called strict
antipodality . While it is easy to show that G,(2) = 3, the proof of G„(3) = 5 is
rather involved (Grünbaum [11]) . For d > 4, it is known that G„(d) > 2d - 1,
and it has been conjectured that G,(d) = 2d - I (Danzer-Grünbaum [4],
Grünbaum [11, 12]). In this section we disprove this conjecture, giving a
construction with more than 1 .15' points . (See Theorem 2 .2 .)

As in the case of antipodal pairs, G„(d) may be considered as the affine variant
of the following Euclidean problem due to Erdős [6] : Determine the maximal
possible number f (d) of points in Ed such that all angles determined by triples of
them are acute. Examples show that f (d) , 2d - 1, and clearly G,,(d) -- f (d) . In
contrast to the situation in the case G(d), it is not known whether G„(d)= f(d)
for d , 4 . (Direct proofs of f (3) = 5 were given by Croft [3] and Schütte [15] .)
The following theorem implies that f (d) > 1 .15" .

Theorem 2 .2 . There exists a pointset

	

in Ed of cardinality 1 .15 4 such that all
angles determined by triples of J1 are acute .

Proof . We select the points of 91 from the vertices of the d-dimensional cube .
As usual, the d-dimensional 0-1 vectors correspond to the subsets of a
d-element set X. More precisely, if a E {0;1} d then let A = A (a) _ {i : a i = 1},
X:={1,2, . . .,d) .



AnBCCCAUB,

The greatest angle among n points

where the sets A, B, C C X are associated with the vertices a, b, c .

(This lemma is a trivial consequence of Pythagoras' Theorem .) As the angles
determined by the triples of the cube are less than or equal to 77/2, the
construction of the desired d' will be completed if we find a set system .1 over X
no three different members of which satisfy (2 .4), and whose cardinality is
greater than 1 .15'. Let h(d) denote the greatest cardinality of such , i .e .,
h (d) := max{ j,1 1 : C 2X, for all A B C E , A n B1'_ C or CO A U B } .

Lemma 2.5 . h(d)>(21V3)d -1 .

Proof. Let us choose independently the coordinates of the d-dimensional 0-1
vectors a,, az , . . ., a z ,„ with probability Prob(aü = 0) = 1/2, Prob(a,, = 1) = 1/2,
1 _- i _- 2m, 1 < j < d and m = [(2/ V 3)` j . Then,

Prob(a, b, c hold for (2.4)) _ (3/4) d .

	

(2 .6)

Indeed, (2 .4) means that for all 1 < i d neither a, = bi = 1, c i = 0 or a; = b i = 0,
c i = 1 hold . The independency of the coordinates yields (2.6) . Hence the
expectation number

E (the number of the triples (a, b, c) satisfying (2 .4)) _

=2m(2m -1) (2m -2)(3/4)d < m .

Hence the expected number of vectors to remain after the omission of the points
which are vertices of a right angle is greater than 2m - m = m, and for that set of
vectors the conditions are already satisfied . El

Finally, since f(d) , max j2d - 1, h (d)}, (2 .2) follows . 0

A bit more complicated random process gives

h (d) > ( - o(1))' 1 .189 . . . d .

	

(2.7)

Instead of Lemma 2 .5, we can use the following theorem due to Frankl and the
authors [9] to prove G,,(d) > f (d) > (1 + c)' .

Theorem 2.8 [9] . There exists a set-system ~ over a d-element underlying set in
which no set is covered by the union of two others and I I > 1 .13 d .
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Lemma 2 .3 . The points a, b, c E {0;1} d determine a right angle at the point c if
and only if

(2 .4)
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We have the following .

Conjecture 2.9 . There exists an absolute constant c > 0 (not depending on d)
such that

f (d) < G,,(d) < (2 - c)' . (?)

The following fact says that it is not possible to choose more than 2'\/3 d points
from the vertices of a cube such that all angles among them are less than 7r/2 .
Even more, denote by G,,(10 ; 11') the greatest cardinality of a strictly antipodal
91 C {0 ;1} d .

Fact 2.10. h (d) < Go({0 ; 1}d ) < -\//-2 (ti/-3 ) d .

Proof. If {a, b], {c, d} C d' are distinct pairs, then a + b X c + d (since
a + b = c + d implies that the points a, c, b, d form a parallelogram which is
contrary to the strict antipodality of 91) . Thus

(
1'z+11=

{a+b : a,bEd1l If0;1 ;2} d l=3d

Finally, we mention some more problems . Slightly generalizing the question
about G (d) one is led to the problem of determining e (d, n), the maximal
number of antipodal pairs among the vertices of a d-polytope with n vertices . It
is not hard to show that e(2, n) _ [3n/2] (Grünbaum [11]), and that

e (3, n ) > [zn ] [z (n + 1)] + [ n ] + [4(3n + 1)] .

Conjecture of Grünbaum [12] . Does the

hold for all d , 2 .

In analogy to the above, we define ek (d, n), the maximal number of k-
antipodal pairs . Regarding e,,(d, n), it is easy to prove that e,,(2, n) = n
(Grünbaum [11]), but even the 3-dimensional case seems to be very complicated .
Clearly, e,,(d, n) -- d (d, n), the maximal number of diameters of an n-element
set in Ed . It is known that d(2, n) = n (Erdős [7]), d(3, n) = 2n - 2 (Grünbaum
[10], Heppes [13] ano Straszewicz [16]), but for d > 4

lim d (d, n)/n 2 = z - 1/(2 [d12])

(Erdős [7]) .

lim e (n'2n) = 2
- 2` (?)

relation

(2.11)
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Theorem 2.2 yields a new lower bound of the following problem : What is the
order of the number c, defined as follows : For a d-dimensional convex body K,
denote by c (K) the minimal number of translates of K the union of which covers
K. Then c d is defined as the maximum of c (K) for all d-dimensional convex
bodies K . It is easily seen that c d > Go(d), but it is not known whether
c d = G„(d) for d > 3 .

Corollary 2.12 . c d % 1 .15 d .

The following conjecture would extend Theorem 2 .1 .

Conjecture 2.13 . There exists a positive constant e (e independent of d) for which
the following is true : If the pointset 6P C Ed and I , 2 d + 1, then contains an
angle greater than Tr/2 + e.

3 . Pointsets with all angles small

Denote by a (,OP) the greatest angle determined by the triples of the pointset 91,
and ad (n)= :inf{a(,"P) : 191 1 = n, 91 C E d } . We can write Theorems 2 .1 and 2 .2
and Conjecture 2 .9 as follows :

We were not able to establish an even weaker version of (3 .4) .

Conjecture 3.5 . For each e > 0 there exists a c (e ) > 0 with

ad ((2 - c )d ) > Tr/2 - e .

But for e large enough we can prove the following .

Theorem 3 .6 . If 0 < c < 1 then

ad ((1 + c) ' ) > 7r/3 + c /4 - 0(1) .

	

(3.6a)

Further, there exists a construction showing that

ad ((1 + c )d ) < 7r/3 + V c .

	

(3.6b)

ad (2d + 1) > Tr/2, ad (2 d) _ Tr/2

	

(cf . 2.1), (3 .1)

ad (1 .154) < rr/2 (cf . 2 .2), (3 .2)

a 3 (5) < ,rr/2, a3(6)=7r/2 (Croft [3] and Schütte [15]), (3 .3)

3 c > 0 : ad ((2 - c ) d ) = ar/2 (?)

	

(cf . 2.9) . (3 .4)
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Clearly I PP I , 3 implies a (-IP) , 7r/3 . What Theorem 3.6 says is that there are
exponentially many (1 + c)d points in Ed with all angles less than 61°, but that
1 .4' points always determine an angle larger than 72° .

Proof. We start with the construction .

Lemma 3.7 . There exists a k-uniform set system 9 over d elements such that
F, n Fz I < ek for each distinct F,, Fz E 9 and 191>(1+0.48 2 )d .

Proof . We choose F,, Fz , . . . , F,, . . . recursively. Suppose F	F, are already
chosen. Let .'i = : {FCX : IF I = k, I F n F; I , x } for all I --j < i. We can select
an F,+, 0- i if I JW; I < (k) . Thus this process can be continued for at least as many
as

`k J/\x)\k-x/

steps . Putting k = d8 /4 and x = k8 we prove (3 .7) using Stirling's
formula . (]

Returning to the proof of (3.6b), put 8 = V2 .5c, and let be the set system
defined in (3.7) . For the distances of the two vertices f,, fz corresponding to
F,, Fz E we have

'\/2k(l-8)<If,-f2I--V2k,

i .e ., the distances defined by

	

are almost equal . Now a simple calculation gives
(3.6b) .

To prove (3.6a) let _ {P,, Pz , . . . , Pm } C Ed be a pointset with every angle
less than 7T/3 + x . Hence the ratio of the smallest and largest sides of a triangle
P;P;Pk is greater than sin(7r/3 - 2x)/sin(ar/3 + x) > 1- 2x . So if the largest
distance in 91 is l, then the smallest is at least (l -2x )'` > 1 -4x (x , 1/4) .

Let S be the smallest ball containin g J1 with center 0 . By the Yung theorem
[12], the radius of S is less than 1/V2 + (2/d) < 1/N/2 . Project the points of JP
from 0 to the surface of S. The image of Pi is Q, . It is easily seen that
P;P; I < 1/V"2- implies I Q;Q; I > I P;P; 1 . So if x is small enough (x < 0 .07) then any
two point Q;Q; have a distance at least 1 - 4x. So we can apply Böröczki's
quite sharp estimation [1] about the density of a packing of the d-dimensional
sphere by congruent balls, to get 1,91 1 _ 19- ( < (1- 4x)-d 2d. However we can give
a simple straightforward proof of this last step .

Lemma 3 .8 . If - is a pointset on the surface of the sphere S of radius 1/V2, and
for all Q,, Q z C 9- we have I Q, Q, I > 1-y then 19 J< d -2d(1- y )- d .
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Proof. Any ball with radius (1- y)/V-2 contains at most d + 1 points of 9 .
Taking averages,

surface area of S	
(d + 1) maximal surface area of the intersection of S

with a sphere of radius (I - y)/N/~2

< (d + 1) (1- y) -dd .

	

0

4. The greatest angle among n points

Erdős and Szekeres proved [8] that 2" points in the plane always determine an
angle > Tr(1 - (1/n)) and Szekeres [17] proved that this result is best possible in
the following sense : One can give, for every E > 0, 2° points in Ez no angle of
which is greater than Tr(1- (1/n)) + E . Le .,

a2(2")=Tr (1-n)

	

(4.1)

([8] and [17]) . So in general,

a2(n) =Tr (1- to t
n )+O(

(log1 n)2) .

	

(4.2)

In this section we are concerned with the d-dimensional version of this fact .

Theorem 4.3 . We have

Tr(1- d 4	) <ad(n)<Tr(1-	d
	 1	) .

~'log 2 n

	

~/log2 n
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The proof shows that one cannot hope to get an essentially better result
without a new estimation for the sphere-packing problem in d-dimension, which
is far better than the existing ones . The proof used adapted the proofs in [8] and
[17] . We need two facts .

(4 .4) . In the d-dimensional space there exist more than (1/p)'-1 lines going
through the point 0, such that any two of them determine an angle greater than
P •

(4 .5) . In the d-dimensional space there exist fewer than (41p)d-1 lines going
through 0, such that any other line going through 0 determines an angle less than
p/2 with some of them .
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The facts (4.4) and (4.5) are in fact equivalent to the well-known sphere-
packing and sphere-covering problems . There are much better estimations, but
(4.4) and (4 .5) are very easy to check, and the better known estimations would
not eliminate the difference between the constants in (4 .3) .

The proof of the upper bound. Let e,, e2 , . . . , e,„, with m > (1/p)", be a system
of lines determined by (4 .4). We are going to construct 2m points recursively such
that every angle in the triples is less than w - p .

Let d', _ {A, B} where A, B E e, . Translating ~?, in the direction e 2 we get A',
B' and if A' and B' are far enough then AB' and A'B are almost parallel to e 2 .
Then translate the parallelogram AA'BB' in the direction e3 far enough . . . and
so on. After m -1 translations we get a construction showing ad (2m) < Tr - p.

The proof of the lower bound . Let f	fm , with m < (4/p)", be a set system
of lines determined by (4.5), and let 31 C Ed be a pointset with more than 2`"
points . Consider the complete graph with vertex set 9) and colour its edges in the
following way . For U, V E the edge UV gets colour i, 1 -- i , m, provided the
angle between UV and f, is less than p/2 .

Lemma 4.6 (see [8]) . If the edges of the complete graph with more than 2' vertices
are coloured with m colours then there exists an odd circuit whose edges are of the
same colour.

Lemma 4.6 implies that there are U, V, W E d' and an f, such that the angles
(UV, f), (VW, f) and (WU, f) are less than p/2 . But then the greater angle in the
triangle UVW is at least Tr - p . El

One more open problem :
Let 91 be a pointset in Ed and 0 < a <7r. Define f (91, < a) (resp . f (,OP, > a))

as the number of angles in 91 smaller (resp . greater) than a . Put

fd (n, < a) :=min{f (91, < a) : I _'~P I = n, ~ C Ed },

and

fd (<a) : =fim fd(n,<a)/2n(n-1)(n-2) .

fd (< a) and fd ( >a) show at least what percent of the angles are smaller (or
greater) than a for a pointset 91 in Ed . Convay, Croft, Erdős and Guy in [2]
investigate f2 and f3. They show, for instance, that

5 - f2( > 2~r)
< 27



([2]) . In higher dimensions no estimation is known for fd . Even for d < 3,
f, ( < a) is known for only a finite number of a .
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