Cross-Cuts in the Power Set of an Infinite Set*

I. E. BAUMGARTNER

Department of Mathematics, Dartmouth College, Hanover, NH 03755, U.S.A.

P. ERDÖS

Mathematics Institute, Hungarian Academy of Sciences, 1053 Budapest V, Hungary

and

D. HIGGS

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Communicated by F. Galvin

(Received: 2 August 1983; accepted: 3 March 1984)

Abstract. In the power set P(E) of a set E, the sets of a fixed finite cardinality k form a cross-cut, that is, a maximal unordered set C such that if $X, Y \subseteq E$ satisfy $X \subseteq Y$, $X \subseteq$ some X' in C, and $Y \supseteq$ some Y' in C, then $X \subseteq Z \subseteq Y$ for some Z in C. For $E = \omega, \omega_1$, and ω_2 , it is shown with the aid of the continuum hypothesis that P(E) has cross-cuts consisting of infinite sets with infinite complements, and somewhat stronger results are proved for ω and ω_1 .

AMS (MOS) subject classifications (1980). primary 04A20; secondary 06A10, 04A30.

Key words. Unordered set (antichain), cross-cut, grading.

A cross-cut of a partially ordered set P is a maximal unordered subset C of P satisfying the following interpolation condition: if x and y are elements of P such that $x \leq y$, $x \leq \text{some } x'$ in C, and $y \geq \text{some } y'$ in C then $x \leq z \leq y$ for some z in C. For example, if the power set P(E) of a set E is ordered by inclusion, then the set of all k-element subsets of E is a cross-cut of P(E) for any natural number $k \leq$ the cardinality |E| of E. For E finite such cross-cuts are the only ones, whereas if E is infinite this is no longer the case since the complements of the k-element subsets of E also form a cross-cut. Let us say that a cross-cut of P(E) is trivial if it consists either of all k-element subsets of E or of their complements. Problem 7 in [1] asks whether P(E) has any nontrivial cross-cuts when E is infinite. Assuming the continuum hypothesis (CH), we are able to give a positive answer to this question in the cases $E = \omega, \omega_1, \omega_2$ and prove somewhat stronger results for ω and ω_1 . We note that instead of CH, Martin's Axiom (MA) could be used here (inductions up to ω_1 are then replaced by inductions up to 2^{ω}). Incidentally, it is not difficult to show using the generalized continuum hypothesis that the sets in a crosscut of P(E) all have the same cardinality (see [2]).

^{*} The work reported here has been partially supported by NSERC Grant No. A8054.

It is convenient (though not essential) to define the notions of cross-cut etc. not just for partially ordered sets but for quasi-ordered sets, in which \leq is reflexive and transitive but not necessarily antisymmetric.

Let P be a quasi-ordered set. We write $x \equiv y$ if $x \leq y$ and $y \leq x, x < y$ if $x \leq y$ but $y \notin x, x \geq y$ if $y \leq x$, and x > y if y < x. A subset C of P is unordered if $\forall x, y \in C$ $(x \leq y \rightarrow x = y)$, and a cross-cut of P is a maximal unordered subset C of P such that $\forall x, y \in P, x', y' \in C$ $(x \leq y, x \leq x', y' \leq y \rightarrow \exists z \in C$ $(x \leq z \leq y)$). It is easily verified that a subset C of P is a cross-cut of P iff it is unordered and meets every subset of P of the form $S(a, b) = \{x \in P : x \leq a, \text{ or } a \leq x \leq b, \text{ or } b \leq x\}$, where $a \leq b$ in P. A set \mathcal{G} of subsets of P is acyclic if there do not exist distinct C_0, \ldots, C_n in $\mathcal{G}, n \geq 1$, and elements x_i, y_i of $C_i, i = 0, \ldots, n$, such that $y_i \leq x_{i+1}$ for $i = 0, \ldots, n-1$, and $y_n \leq x_0$. If \mathcal{G} is acyclic then the sets in \mathcal{G} are necessarily pairwise disjoint and \mathcal{G} is partially ordered by the relation \leq defined as follows: $C \leq C'$ iff there exist C_0, \ldots, C_n in \mathcal{G}, x_i in C_i , $i = 0, \ldots, n-1$, such that $C_0 = C, C_n = C'$, and $y_i \leq x_{i+1}$ for $i = 0, \ldots, n-1$. A grading of P is an acyclic set \mathcal{G} consisting entirely of cross-cuts of P such that every element x of P is \equiv some element y of $\cup \mathcal{G}$. Then y and the cross-cut C in \mathcal{G} to which y belongs are uniquely determined by x and we denote C by C(x); also \mathcal{G} is totally ordered under the ordering for acyclic sets just defined.

Let E be an infinite set and κ an infinite cardinal. Then $P_{\kappa}(E)$ denotes the set of all subsets of E of cardinality less than κ and for X, Y in P(E), $X \leq Y \mod \kappa$ means that $|X \setminus Y| < \kappa$; $\leq \mod \kappa$ is a quasi-order on P(E) and $\equiv \mod \kappa$, $< \mod \kappa$, etc., are defined as above. A cross-cut with respect to the mod κ ordering will be called a mod κ cross-cut, and similarly for the other notions described in the previous paragraph (an S(A, B) in the mod κ sense will be written as $S_{\kappa}(A, B)$). A mod κ cross-cut of P(E) is trivial if it either consists of a single set in $P_{\kappa}(E)$ or of the complement of such a set; cross-cuts etc. without qualification are understood to be with respect to inclusion. A set X will be said to κ -split the sets in a family of sets \mathscr{W} if $|W \cap X| \ge \kappa$ and $|W \setminus X| \ge \kappa$ for all W in \mathscr{W} with $|W| \ge \kappa$. The following weakened form of a result of Sierpiński ([3], p. 113, Théorème 1) is the essential tool used in constructing cross-cuts and gradings.

LEMMA 1 (Sierpiński). If $|\mathcal{W}| \leq \kappa$ then there exists a set X which κ -splits the sets in \mathcal{W} .

LEMMA 2. Assume $2^{\kappa} = \kappa^+$. Then there exists a mod κ grading of $P(\kappa)$.

Proof. Arrange the elements of $P(\kappa)$ in a list of type κ^+ and do the same for the subsets $S_{\kappa}(A, B)$ of $P(\kappa)$ and for the ordinals $\alpha < \kappa^+$, where in the last list each α is required to occur κ^+ times. We define subsets $C_{\alpha}(\beta)$ of $P(\kappa)$ for $\alpha, \beta < \kappa^+$ by induction on β such that for each β the following condition holds:

(*) The $C_{\alpha}(\beta)$'s are mod κ unordered subsets of $P(\kappa)$ of cardinality $\leq \kappa$, at most κ of them are nonempty, and they form a mod κ acyclic set.

Note that then $\{C_{\alpha}(\beta) : \alpha < \kappa^+\}$ will be partially ordered by the \leq relation defined earlier on.

First we put $C_{\alpha}(0) = \phi$ for all α .

Next let β (which remains fixed in what follows) be such that $C_{\alpha}(\beta)$ has been defined

for all α and let the β th ordinal in our list of ordinals $< \kappa^+$ be α_0 . Then we put $C_{\alpha}(\beta+1) = C_{\alpha}(\beta)$ for all $\alpha \neq \alpha_0$ and only have to define $C_{\alpha_0}(\beta+1)$. Write C for $C_{\alpha_0}(\beta)$. If $C = \phi$ and X is the first element of $P(\kappa)$ not $\equiv \mod \kappa$ to any member of any $C_{\alpha}(\beta)$ we put $C_{\alpha_0}(\beta+1) = \{X\}$, and if C meets every $S_{\kappa}(X, Y)$ we put $C_{\alpha_0}(\beta+1) = C$. So suppose that C is nonempty but does not meet every $S_{\kappa}(X, Y)$, and let $S_{\kappa}(A, B)$ be the first such. We wish to find X in $S_{\kappa}(A, B)$ so that (*) will continue to hold when we put $C_{\alpha_0}(\beta+1) = C \cup \{X\}$.

Let U be the union of all $C_{\alpha}(\beta)$'s < C and let V be the union of all $C_{\alpha}(\beta)$'s > C. Then we require that $X \leq Y \mod \kappa$ for no Y in $C \cup U$ and that $Y \leq X \mod \kappa$ for no Y in $C \cup V$. There are three cases to consider.

Case 1. $Y_0 \leq A \mod \kappa$ for some Y_0 in V. Then we must choose $X \leq A \mod \kappa$. Let X be a subset of A which κ -splits the sets $A \cap Y$ and $A \setminus Y$, Y in $C \cup U \cup V$. Suppose that $X \leq Y \mod \kappa$ where Y is in $C \cup U$. Then also $A \leq Y \mod \kappa$ ($|A \setminus Y| \geq \kappa$ implies $|X \setminus Y| = |(A \setminus Y) \cap X| \geq \kappa$). From $Y_0 \leq A \leq Y \mod \kappa$, $Y_0 \in C \cup V$, and $Y \in C \cup U$, it follows that $Y = Y_0 \in C$ and $Y_0 \equiv A \mod \kappa$, so that C meets $S_{\kappa}(A, B)$ contrary to the choice of $S_{\kappa}(A, B)$. Suppose that $Y \leq X \mod \kappa$ where Y is in $C \cup V$. Then $|(A \cap Y) \setminus X| < \kappa$ implies $|A \cap Y| < \kappa$ which with $|Y \setminus A| < \kappa$ gives $|Y| < \kappa$, and Y must be in C. Because $Y \leq A \mod \kappa$, C meets $S_{\kappa}(A, B)$ again.

Case 2. $B \leq Y_0 \mod \kappa$ for some Y_0 in U. Then we must choose $X \geq B \mod \kappa$. This case is dual to the first and may be derived from it by passing to complements in κ .

Case 3. Otherwise. Here we may choose X so that $A \leq X \leq B \mod \kappa$. Let X_0 be a subset of $B \setminus A$ which κ -splits the sets $(B \setminus A) \cap Y$ and $(B \setminus A) \setminus Y$, Y in $C \cup U \cup V$, and put $X = A \cup X_0$. Suppose that $X \leq Y \mod \kappa$ where Y is in $C \cup U$. Then $|((B \setminus A) \setminus Y) \cap X_0| \leq |X \setminus Y| < \kappa$ implies $|(B \setminus A) \setminus Y| < \kappa$ which with $|A \setminus Y| < \kappa$ gives $|B \setminus Y| < \kappa$ so that $B \leq Y \mod \kappa$ and we are in case 2. Suppose that $Y \leq X \mod \kappa$ where Y is in $C \cup V$. Then $|((B \setminus A) \cap Y) \setminus X_0| \leq |Y \setminus X| < \kappa$ implies $|(B \setminus A) \cap Y| < \kappa$ which with $|Y \setminus B| < \kappa$ gives $|Y \setminus A| < \kappa$ so that $Y \leq A$ and we are in Case 1.

This completes the definition of $C_{\alpha}(\beta+1)$. For β a limit ordinal, we put $C_{\alpha}(\beta) = \bigcup_{\alpha \leq \beta} C_{\alpha}(\alpha)$ for each α .

Having defined $C_{\alpha}(\beta)$ for all α and β , we set $C_{\alpha} = \bigcup_{\beta < \kappa^{+}} C_{\alpha}(\beta)$ for each α . Then $\mathscr{G} = \{C_{\alpha} : \alpha < \kappa^{+}\}$ is a mod κ grading of $P(\kappa)$ (every C_{α} meets every $S_{\kappa}(A, B)$ because every α is recycled κ^{+} times during the construction, and every subset of κ is $\equiv \mod \kappa$ to some member of $\bigcup \mathscr{G}$ because at each stage β of the construction, κ^{+} of the $C_{\alpha}(\beta)$'s are still empty).

LEMMA 3. Let E be an infinite set. Then each mod ω grading \mathcal{H} of P(E) gives rise to a grading \mathcal{H} of P(E).

Proof. For X, Y in P(E) write $X \sim Y$ if $X \equiv Y \mod \omega$ and $|X \setminus Y| = |Y \setminus X|$. Then \sim is an equivalence relation on P(E) and for every mod ω equivalence class $\mathscr{A} \neq [\phi]$ or [E], the mod \sim equivalence classes contained in \mathscr{A} form a grading $\mathscr{G}_{\mathscr{A}}$ of \mathscr{A} of order type $\omega^* + \omega$; for each such \mathscr{A} fix an order isomorphism $\theta_{\mathscr{A}} : \omega^* + \omega \rightarrow \mathscr{G}_{\mathscr{A}}$. Then for each nontrivial D in \mathscr{H} and each n in $\omega^* + \omega$, $\overline{D}(n) = \bigcup \{\theta_{\mathscr{A}}(n): \mathscr{A} \text{ meets } D\}$ is a cross-cut of P(E). Define \mathscr{H} to consist of all these cross-cuts together with the cross-cuts in the unique gradings of $[\phi]$ and [E]; then \mathscr{H} is a grading of P(E). The

detailed verification of the above statements is straightforward.

It can be shown in exactly the same way that each mod ω grading \mathcal{H} of $P_{\kappa}(E)$ gives rise to a grading \mathcal{H} of $P_{\kappa}(E)$ such that if the mod ω cross-cuts in \mathcal{H} are actually mod ω cross-cuts of P(E) then the cross-cuts in \mathcal{H} are cross-cuts of P(E).

Taking κ and E in Lemmas 2 and 3 respectively to be ω , we obtain

THEOREM 1. Assume CH (or MA). Then there exists a grading of $P(\omega)$.

In Theorem 3 below we assert the existence of a cross-cut of $P(\omega_1)$ consisting of uncountable sets whose complements are also uncountable. To construct such a cross-cut we extend a nontrivial mod ω_1 cross-cut of $P(\omega_1)$ using a suitable grading of $P_{\omega_1}(\omega_1)$ (shown to exist in Theorem 2) in a manner similar to that in which we used the unique grading of $P_{\omega}(E)$ in the proof of Lemma 3. It is convenient to describe this procedure here.

LEMMA 4. Let E be an infinite set, κ an infinite cardinal, \mathcal{G} a grading of $P_{\kappa}(E)$ in which the cross-cuts are cross-cuts of P(E), and D a mod κ cross-cut of P(E). Define \overline{D} to consist of the sets $(X \setminus Y_1) \cup Y_2$ where X is in D, Y_1 and Y_2 are in $P_{\kappa}(E)$, $Y_1 \subseteq X$, $X \cap Y_2 = \phi$, and $C(Y_1) = C(Y_2)$ (C(Y) denotes the unique cross-cut in \mathcal{G} containing Y). Then \overline{D} is a cross-cut of P(E).

Proof. To see that \overline{D} is unordered, suppose that $(X \setminus Y_1) \cup Y_2 \subseteq (X' \setminus Y'_1) \cup Y'_2$ where $X, X', Y_1, Y'_1, Y_2, Y'_2$ are as in the definition of \overline{D} . Then X = X' since D is unordered mod κ and hence $Y'_1 \subseteq Y_1$ and $Y_2 \subseteq Y'_2$. By the acyclicity of \mathscr{G} , we must have $C(Y_1) = C(Y'_1)$ from which it follows that $Y_1 = Y'_1$ and $Y_2 = Y'_2$. To see that \overline{D} is a cross-cut, let $A \subseteq B$ in P(E) and fix X in $D \cap S_{\kappa}(A, B)$. There are four possibilities, as follows:

(i) Either $X < A \mod \kappa$, or $A \equiv X \leq B \mod \kappa$ and $C(X \setminus A) < C(A \setminus X)$. Let $Y_1 = X \setminus A$ and let $Y_2 \subseteq A \setminus X$ be such that $C(Y_1) = C(Y_2)$. Then $(X \setminus Y_1) \cup Y_2$ is in \overline{D} and is $\subset A$.

(ii) Either $B < X \mod \kappa$, or $A \leq X \equiv B \mod \kappa$ and $C(B \setminus X) < C(X \setminus B)$. This is similar to (i) but with $(X \setminus Y_1) \cup Y_2 \supset B$.

(iii) $A \leq X \leq B \mod \kappa$, $C(A \setminus X) \leq C(X \setminus B)$, and either $X \leq B \mod \kappa$ or $X \equiv B \mod \kappa$ and $C(X \setminus B) \leq C(B \setminus X)$. Let $Y_1 = X \setminus B$ and let Y_2 be such that $A \setminus X \subseteq Y_2 \subseteq B \setminus X$, $C(Y_1) = C(Y_2)$. Then $(X \setminus Y_1) \cup Y_2$ is in \overline{D} and lies between A and B.

(iv) $A \leq X \leq B \mod \kappa$, $C(X \setminus B) < C(A \setminus X)$, and either $A < X \mod \kappa$ or $A \equiv X \mod \kappa$ and $C(A \setminus X) \leq C(X \setminus A)$. Let $Y_2 = A \setminus X$ and let Y_1 be such that $X \setminus B \subseteq Y_1 \subseteq X \setminus A$, $C(Y_1) = C(Y_2)$. Then again $(X \setminus Y_1) \cup Y_2$ is in \overline{D} and lies between A and B.

It is natural to ask whether there is a common generalization of Lemmas 3 and 4 in which from a mod κ grading \mathscr{H} of P(E) one constructs a grading \mathscr{H} of P(E) via a suitable grading \mathscr{G} of $P_{\kappa}(E)$. Suppose that \mathscr{G} satisfies not only the condition (a) that the cross-cuts in it are cross-cuts of P(E) but also the following additivity condition (b): $C(X \cup Z) = C(Y \cup Z)$ whenever X, Y, Z are pairwise disjoint sets in $P_{\kappa}(E)$ for which C(X) = C(Y). Then such a common generalization can be proved by essentially the same argument as outlined for Lemma 3 (the details are similar to those for Lemma 4). However we do not know if there exist any gradings of $P_{\kappa}(E)$ satisfying both (a) and (b) (other than in the trivial case $\kappa = \omega$). We can construct a grading of $P_{\omega_1}(\omega_1)$ satisfying (a) and the proof is similar to that of Lemma 2 except that we need to keep control of the order type of the sets in our cross-cuts in order to secure (a) (an idea used by Hajnal for a similar purpose).

In what follows, tp S denotes the order type of a well-ordered set S, ω^{δ} denotes ordinal exponentiation, and cf δ is the cofinality of δ .

LEMMA 5. If S is any well-ordered set of type $\geq \omega^{\delta}$ and \mathscr{Y} is a countable set of subsets Y of S, each of type $< \omega^{\delta}$, then S has a subset X of type ω such that $X \cap Y$ is finite for all Y in \mathscr{Y} . If tp S ends in ω^{δ} and cf $\delta \leq \omega$ then X may be chosen to be cofinal in S.

Proof. Write $\mathscr{Y} = \{Y_n : n \in \omega\}$ and let $X = \{x_n : n \in \omega\}$ where the x_n 's are chosen inductively so that $x_n > x_{n-1}$ and $x_n \notin Y_0 \cup \ldots \cup Y_n$; if tp S ends in ω^{δ} and cf $\delta \leq \omega$ let $\{s_n : n \in \omega\}$ be cofinal in S and take $x_n \geq s_n$ also (note that $Y_0 \cup \ldots \cup Y_n$ has type $< \omega^{\delta}$ and thus its complement will be cofinal in S).

For $\gamma < \omega_1$, let $Q(\gamma)$ be the set of all subsets A of ω_1 such that $\omega^{\gamma} \le \operatorname{tp} A < \omega^{\gamma+1}$.

LEMMA 6. Assume CH (or MA). Then there exists a grading of $Q(\gamma)$ consisting of crosscuts of $P(\omega_1)$.

Proof. By Lemma 3 and the remark following it, we need only prove this mod ω ; also, on account of the upper bound $\omega^{\gamma+1}$ on the order type of the sets involved, it is enough that the cross-cuts we produce are cross-cuts of $P_{\omega_1}(\omega_1)$. The proof is similar to that of Lemma 2 and we just indicate the modifications required. Since we are working mod ω throughout, we will write \leq for \leq mod ω , splits for ω -splits, etc.

We arrange the sets in $Q(\gamma)$ in a list of type ω_1 , likewise the subsets S(A, B) (understood in the mod ω sense) of $P_{\omega_1}(\omega_1)$ and the ordinals $\alpha < \omega_1$ (each repeated ω_1 times). The $C_{\alpha}(\beta)$'s are countable mod ω unordered subsets of $Q(\gamma)$, at most countably many of them are nonempty, and they form a mod ω acyclic set. Again we wish to find X in S(A, B) by which to extend $C = C_{\alpha_0}(\beta)$ but now also require X to be in $Q(\gamma)$. Defining U and V as before, we require specifically that $X \leq Y$ for no Y in $C \cup U$, that $Y \leq X$ for no Y in $C \cup V$, and that X is in $Q(\gamma)$. Again we have three cases to consider.

Case 1. $Y_0 \leq A$ for some Y_0 in V, or tp $A \geq \omega^{\gamma+1}$. Then we must choose $X \leq A$.

First suppose that $Y_0 \leq A$ where Y_0 is in V and that tp $A < \omega^{\gamma+1}$. Let X be a subset of A which splits the sets $A \cap Y$ and $A \setminus Y$, Y in $C \cup U \cup V$. The argument given for Case 1 in the proof of Lemma 3 shows that X is as desired, except that tp X may be $< \omega^{\gamma}$. To avoid this, let $\cup_{\xi < \delta} A_{\xi}$ be a subset of A in $Q(\gamma)$, where each A_{ξ} is of type ω and $\eta < \eta'$ for $\eta \in X_{\xi}, \eta' \in X_{\xi'}, \xi < \xi'$, and choose X to split the A_{ξ} 's also.

Now suppose that tp $A \ge \omega^{\gamma+1}$ and let A_0 consist of the first ω^{γ} elements of A. If $Y_0 \le A_0$ for some Y_0 in V then we proceed as above with A_0 in place of A. If not, we use Lemma 5 to find a subset X_0 of A of type ω such that $X_0 \cap Y$ is finite for all Y in $C \cup U \cup V$ and put $X = A_0 \cup X_0$. Then $X \le Y$ for no Y in $C \cup U$ since this is already true for X_0 , and $Y \le X$ for no Y in $C \cup V$ since otherwise $Y \le A_0 - j$ ust ruled out for Y in V and impossible for Y in C because C does not meet S(A, B).

Case 2. $B \le Y_0$ for some Y_0 in U, or tp $B < \omega^{\gamma}$. We have to choose $X \ge B$. By Lemma 5, there is a set $X_0 \subseteq \omega_1$ of type ω such that $X_0 \cap Y$ is finite for all Y in $C \cup U \cup V$. If tp $B \ge \omega^{\gamma}$ let $X = B \cup X_0$. Then $X \le Y$ for no Y in $C \cup U$ since this is already true for X_0 , and $Y \leq X$ for no Y in $C \cup V$ since otherwise $Y \leq B \leq Y_0$ which is contrary to the way U and V were defined. So suppose tp $B < \omega^{\gamma}$. Fix B_1 in $Q(\gamma)$ and let X_1 be a subset of $B_1 \setminus B$ splitting the sets $(B_1 \setminus B) \cap Y$, Y in $C \cup V$; since $B_1 \setminus B$ is in $Q(\gamma)$, we may also choose X_1 to be in $Q(\gamma)$ by the device used in Case 1. Now let X = $B \cup X_0 \cup X_1$. Then X is in $Q(\gamma)$ and as before $X \leq Y$ for no Y in $C \cup U$. Suppose that $Y \leq X$ where Y is in $C \cup V$. Then $Y \leq B \cup X_1$ so that $((B_1 \setminus B) \cap Y) \setminus X_1$ is finite and hence so also is $(B_1 \setminus B) \cap Y$. But this is impossible since $Y \leq B \cup ((B_1 \setminus B) \cap Y)$, tp $Y \geq \omega^{\gamma}$.

Case 3. Otherwise – then $Y \le A$ for no Y in $C \cup V$, $B \le Y$ for no Y in $C \cup U$, and tp $A < \omega^{\gamma+1}$, tp $B \ge \omega^{\gamma}$. If tp $B < \omega^{\gamma+1}$ we construct X in exactly the same way as for Case 3 in the proof of Lemma 3. If tp $B \ge \omega^{\gamma+1}$ let X_0 be a subset of B of type ω such that $X_0 \cap Y$ is finite for all Y in $C \cup U \cup V$ and put $X = A \cup X_0$; the argument used in the last part of Case 1 shows that X is as required.

As an immediate consequence of Lemma 6 we have:

THEOREM 2. Assume CH (or MA). Then there exists a grading of $P_{\omega_1}(\omega_1)$ consisting of cross-cuts of $P(\omega_1)$.

Together with Lemmas 2 and 4, this theorem gives:

THEOREM 3. Assume CH (or MA) and $2^{\omega_1} = \omega_2$. Then there exists a cross-cut of $P(\omega_1)$ consisting of uncountable sets whose complements are also uncountable.

We now come to the one result we have for ω_2 .

THEOREM 4. Assume CH (or MA). Then there exists a cross-cut of $P(\omega_2)$ consisting of countably infinite sets.

Proof. The argument is similar to that used for Lemma 2 and again for Lemma 6. We construct, by induction on $\alpha < \omega_2$ with cf $\alpha = \omega$, families F_{α} of cofinal subsets X of α of type $< \omega^2$ such that for each α , $\cup \{F_{\beta} : \beta \leq \alpha, \text{ cf } \beta = \omega\}$ is a mod ω cross-cut of $P_{\omega_1}(\alpha)$. Then $\cup \{F_{\alpha} : \alpha < \omega_2, \text{ cf } \alpha = \omega\}$ will be a mod ω cross-cut of $P_{\omega_1}(\omega_2)$ and will give rise, as before, to a true cross-cut of $P_{\omega_1}(\omega_2)$ and, indeed, of $P(\omega_2)$ by virtue of the tp $X < \omega^2$ requirement. As in the proof of Lemma 6, we write \leq for $\leq \mod \omega$, etc.

Suppose that F_{β} has been defined for all $\beta < \alpha$, cf $\beta = \omega$, where $\alpha < \omega_2$ and cf $\alpha = \omega$. The construction of F_{α} is by an induction over ω_1 : we first list all the S(A, B)'s with B a countable cofinal subset of α (if B is not cofinal in α then because we are working mod ω we will have handled S(A, B) at an earlier stage) and then define progressively longer countable pieces F of F_{α} by adjoining to the current F a set X in the first S(A, B) not meeting $F \cup \bigcup_{\beta < \alpha} F_{\beta}$. (As stated, this is the same approach as used before except that now we are only constructing a single cross-cut so there is no recycling of cross-cuts, and the sets U and V in the proofs of Lemmas 2 and 6 do not arise.)

In choosing X, we again consider three cases (not quite analogous to those considered earlier however).

Case 1. tp $A \ge \omega^2$. Then we must choose $X \le A$. If the sup of the first ω^2 elements of A is β and $\beta \le \alpha$ then by the inductive hypothesis there exists Y in F_{β} such that $Y \le A$, contrary to the choice of S(A, B). Thus $\beta = \alpha$ and we take X to be a cofinal subset of A

CROSS-CUTS IN THE POWER SET OF AN INFINITE SET

of type ω such that $X \cap Y$ is finite for all Y in F (such an X exists by Lemma 5).

We suppose from now on that tp $A < \omega^2$ and find that we can then always choose X so that $A \leq X \leq B$. Since tp B is a limit ordinal, it ends in ω^{δ} for some $\delta \ge 1$.

Case 2. $\delta \ge 2$. By Lemma 5, there exists a cofinal subset X_0 of B of type ω such that $X_0 \cap Y$ is finite for all Y in F and we put $X = A \cup X_0$ (note that if Y in $F \cup \bigcup_{\beta < \alpha} F_{\beta}$ is $\leq X$ then $Y \leq A$).

Case 3. $\delta = 1$. Let $\alpha_0 < \alpha$ be such that of $\alpha_0 = \omega$ and tp $(B \setminus \alpha_0) = \omega$. By the inductive hypothesis, $B \cap \alpha_0$ is comparable with some element Z_0 of $\bigcup_{\beta < \alpha} F_{\beta}$.

Suppose first that $B \cap \alpha_0 \leq Z_0$. Let $X_0 \subseteq B \setminus A$ split the sets $(B \setminus A) \cap Y$ and $(B \setminus A) \setminus Y$, Y in $F \cup \{\alpha_0\}$, and put $X = A \cup X_0$. Then, as before, X is incomparable with all the sets in F. Moreover, X is cofinal in α : this is clearly the case if A is cofinal in α , and if $B \setminus A$ is cofinal in α then X_0 is cofinal in α since it splits $(B \setminus A) \setminus \alpha_0$ (which will be of type ω here). To see that X is incomparable with all the sets Z in $\bigcup_{\beta < \alpha} F_{\beta}$, note first that the cofinality of X in α makes $X \leq Z$ impossible. On the other hand if Z < X where Z is in $F_{\beta}, \beta < \alpha$, then Z < B and hence $Z < B \cap \alpha_0$ (clearly $Z \leq B \cap \alpha_0$ and if $Z \equiv B \cap \alpha_0$ then $B \cap \alpha_0 \leq X$ whence $Z \equiv B \cap \alpha_0 \leq A$ since X_0 splits $(B \setminus A) \cap \alpha_0$). This contradicts $B \cap \alpha_0 \leq Z_0$.

Finally suppose that $Z_0 < B \cap \alpha_0$. Now $S(A \cap \alpha_0, B \cap \alpha_0)$ contains an element Z_1 of $\bigcup_{\beta < \alpha} F_{\beta}$ and because $Z_0 < B \cap \alpha_0$ we must have $A \cap \alpha_0 < Z_1 < B \cap \alpha_0$. Let $B_1 = Z_1 \cup (B \setminus \alpha_0)$ and consider $S(A, B_1)$ instead of S(A, B). Since S(A, B) does not meet $F \cup \bigcup_{\beta < \alpha} F_{\beta}$, the same also holds for $S(A, B_1)$ (since $A < B_1 \leq B$, we need only check that $B_1 \leq Y \in F \cup \bigcup_{\beta < \alpha} F_{\beta}$ cannot occur, and $Z_1 < B_1$ gives this). Also tp $(B_1 \setminus \alpha_0) = \omega$ and $B_1 \cap \alpha_0 \leq Z_1$ so we are in the situation already dealt with. Since $A \leq X \leq B_1$ implies $A \leq X \leq B$, the proof is complete.

References

Recent Progress in Combinatorics, Proceedings of the Third Waterloo Conference on Combinatorics, May 1968, Academic Press, New York, 1969, pp. 343-344.

^{2.} D. Higgs (1969) Equicardinality of bases in B-matroids, Canad. Math. Bull. 12, 861-862.

^{3.} W. Sierpiński (1956) Hypothèse du Continu, 2nd edn., Chelsea, New York.