
Or h,,. I ( 11)84), 139-145 . 0167-809941 4/0012-0139$01 .05 .
c 1984 by D. Reidel Publishing Cumpany .

Cross-Cuts in the Power Set of an Infinite Set*

E BAUMGARTNER
Department of Mathematics, Dartmouth College, Hanover, NH 03755, U.S.A .

p. ERDÖS
Mathematics Institute, Hungarian Academy of Sciences, 1053 Budapest V, Hungary

and

D. HIGGS
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Communicated by F. Galvin

(Received : 2 August 1983 ; accepted : 3 March 1984)

Abstract . In the power set P(E) of a set E, the sets of a fixed finite cardinality k form a cross-cut,
that is, a maximal unordered set C such that if X, Y C E satisfy X c Y, X c some X' in C. and
y : some Y' in C, then X C Z C Y for some Z in C. For E .= w, w, , and w, , it is shown with the
aid of the continuum hypothesis that P(E) has cross-cuts consisting of infinite sets with infinite
complements, and somewhat stronger results are proved for w and w, .
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A cross-cur of a partially ordered set P is a maximal unordered subset C of P satisfying
the following interpolation condition: if x and y are elements of P such that x may,

x < some x' in C, and y > some y' in C then x < z < y for some z in C . For example,

if the power set P(E) of a set E is ordered by inclusion, then the set of all k-element

subsets of E is a cross-cut of P(E) for any natural number k < the cardinality JEJ of E .

For E Finite such cross-cuts are the only ones, whereas if E is infinite this is no longer the

case since the complements of the k-element subsets of E also form a cross-cut . Let us

say that a cross-cut of P(E) is trivial if it consists either of all k-element subsets of E or of
their complements. Problem 7 in [1] asks whether P(E) has any nontrivial cross-cuts

when E is infinite . Assuming the continuum hypothesis (CH), we are able to give a

positive answer to this question in the cases E = w, w t , w2 and prove somewhat stronger

results for w and w t . We note that instead of CH, Martin's Axiom (MA) could be used

here (inductions up to w t are then replaced by inductions up to 2w ) . Incidentally, it is

not difficult to show using the generalized continuum hypothesis that the sets in a cross-
cut ofP(E) all have the same cardinality (see [2]) .

* The work reported here has been partially supported by NSERC Grant No . A8054 .
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It is convenient (though not essential) to define the notions of cross-cut etc . not just
for partially ordered sets but for quasi-ordered sets, in which < is reflexive and transitive
but not necessarily antisymmetric .

Let P be a quasi-ordered set . We writes -=y if x < y and y < x, x < y if x , y but
y ~C x, x > y if y < x, and x > y if y < x . A subset C of P is unordered if Vx, , E C
(.Y < y -+ x = y), and a cross-cut of P is a maximal unordered subset C of P such that
dx, y E P. x', y' E C (x < y, x < x', y' < y -> 3 z E C (x < z < y)) . It is easily verified
that a subset C of P is a cross-cut of P iff it is unordered and meets every subset of P of
the form S(a, b) = {x E P : x < a, or a < x < b, orb < x }, where a < b in P . A set `F/of
subsets of P is acyclic if there do not exist distinct C o , . . ., C„ in ~', n > 1, and elements
x„ y j of C1 , i = 0, . . ., n, such that y ; <x,+i for i = 0, . . ., n- 1, and y„ < x a . If ; 'is
acyclic then the sets in ':~ are necessarily pairwise disjoint and ~''is partially ordered by
the relation < defined as follows : C S C' iff there exist C 0	C, in ', ,r ; in C;,
i=l, . . .,n, and y, in Ci , i = 0, . . ., n - 1, such that C0 =C,C,, =C',and yi<x,+1 for
i = 0, . . . , n - 1 . A grading of P is an acyclic set consisting entirely of cross-cuts of P
such that every element x of P is - some element y of U ~;' . Theny and the cross-cut C
in ''to which y belongs are uniquely determined by x and we denote C by C(x) ; also '
is totally ordered under the ordering for acyclic sets just defined .

Let E be an infinite set and K an infinite cardinal . Then P" (E) denotes the set of all
subsets of E of cardinality less than K and for X, Y in P(E), X < Y mod K means that
IX\YI < K ; < mod K is a quasi-order on P(E) and = mod K, < mod K, etc ., are defined
as above . A cross-cut with respect to the mod K ordering will be called a mod K cross-cut,
and similarly for the other notions described in the previous paragraph (an S(A, B) in
the mod K sense will be written as S" (A, B)) . A mod K cross-cut of P(E) is trivial if it
either consists of a single set in P" (E) or ofthe complement of such a set ; cross-cuts etc .
without qualification are understood to be with respect to inclusion . A set X will be said
to K-split the'sets in a family of sets V if I W (1 X I > K and I W \XI > K for all W in
with I WI > K . The following weakened form of a result of Sierpinski ([31, p. 113,
Théoréme 1) is the essential tool used in constructing cross-cuts and gradings .

LEMMA 1(Sierpinski) . If I~V1 < K then there exists a set X which K-splits the sets in W-.

LEMMA 2. Assume 2" = K+ . Then there exists a mod K grading ofP(K).
Proof Arrange the elements of P(K) in a list of type K+ and do the same for the sub-

sets S" (A, B) of P(K) and for the ordinals a < K+, where in the last list each a is required
to occur K + times . We define subsets Ca(p) ofP(K) for a, Q< K+ by induction on R such
that for each Q the following condition holds :

(*) The C,(R)'s are mod K unordered subsets of P(K) of cardinality < K, at most K

of them are, nonempty, and they form a mod K acyclic set .

Note that then {C, ((3) : a < K + } will be partially ordered by the < relation defined
earlier on .

First we put C,,,(0)

	

for all ot .
Next let 0 (which remains fixed in what follows) be such that C a (0) has been defined
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for all a and let the (3th ordinal in our list of ordinals <K + be ao . Then we put C,,(#+ 1) _
Ca ((3) for all a i- ao and only have to define Cao ((3 + 1) . Write C for Cao (0) . If C = 0 and
X is the first element of P(K) not =- mod x to any member of any Ca(O) we put Cao ((3 + 1) _
{X}, and if C meets every SK(X, Y) we put C,,,((3+1) = C . So suppose that C is non-
empty but does not meet every SK(X, Y), and let SK(A, B) be the first such . We wish to
find X in SK(A, B) so that (*) will continue to hold when we put C,,,,(6+ 1) = CU {X}.

Let U be the union of all Ca((3)'s < C and let V be the union of all Ca(6)'s > C . Then
we require that X < Y mod K for no Y in CU U and that Y < X mod K for no Y in CU V .
There are three cases to consider.

Case 1. Yo < .4 mod x for some Yo in V. Then we must choose X < A mod K . Let X
be a subset of A which K-splits the sets A n Y and A\Y, Y in CU UU V . Suppose that
X < Y mod K where Y is in CU U. Then also A < Y mod K (IA\YI > K implies jX\Yj =
I(A\Y) n x I > K) . From Yo < A < Y mod K, Yo E CU V, and Y E CU U, it follows that
Y = Yo E C and Yo = A mod K, so that C meets SK(A, B) contrary to the choice of
SK(A, B) . Suppose that Y < X mod K where Y is in CU V . Then I (A n Y)\X I < K implies
IA n YI < K which with I Y\A I < K gives I Yj < K, and Y must be in C . Because Y < A
mod K, C meets SK (A, B) again .

Case 2. B < Yo mod K for some Yo in U. Then we must choose X ;;i-- B mod K . This
case is dual to the first and may be derived from it by passing to complements in K .

Case 3. Otherwise. Here we may choose X so that A < X < B mod K . Let X0 be a sub-
set of B\A which K-splits the sets (B\A) n Y and (B\A)\Y, Y in CU UU V, and put
X = A U Xo . Suppose that X < Y mod K where Y is in CU U . Then I ((B\A)\Y) n Xo I <
IX\YI <g implies I(B\A)\YI <K which with IA\YI <K gives IB\YI <K so that B< Y
mod K and we are in case 2 . Suppose that Y < X mod K where Y is in CU V. Then
1((B\A) n Y)\Xo I< I Y\X I< K implies I (B\A) n Y1 < K which with I Y\BI < K gives
I Y\,41 < K so that Y < A and we are in Case l .

This completes the definition of C,,,((3+ l) . For (3 a limit ordinal, we put Ca((3) _
Uy < p Ca(y) for each a .

Having defined Ca(O) for all a and 3, we set Ca = Up < K+ Ca(f3) for each a. Then ,P=
{Ca : a < K+} is a mod x grading of P(K) (every Ca meets every SK(A, B) because every a
is recycled K+ times during the construction, and every subset of K is =- mod K to some
member of UW because at each stage 0 of the construction, K+ of the Ca((3)'s are still
empty) .

LEMMA 3. Let E be an infinite set. Then each mod w grading 'Wof P(E) gives rise to a
grading XofP(E).

Proof For X, Y in P(E) write X ^- Y if X=_ Y mod w and IX\Yj = I Y\X j . Then
is an equivalence relation on P(E) and for every mod w equivalence class _V$

[0] or [E], the mod - equivalence classes contained in .sI form a grading %,, ofszl
of order type w* +w ; for each such V fix an order isomorphism B : W* +W .
Then for each nontrivial D in and each n in w*+w, D(n) = U{B,,l (n) : _~/ meets
D} is a cross-cut of P(E) . Define c°to consist of all these cross-cuts together with the
cross-cuts in the unique gradings of [0] and [E] ; then ?' is a grading of P(E) . The
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detailed verification of the above statements is straightforward .
It can be shown in exactly the same way that each mod w grading of PK (E) gives

rise to a grading J°of P, (E) such that if the mod w cross-cuts in or are actually mod w
cross-cuts of P(E) then the cross-cuts in

	

are cross-cuts of P(E) .
Taking K and E in Lemmas 2 and 3 respectively to be w, we obtain

THEOREM 1. Assume CH (or MA) . Then there exists a grading of P(w) .

In Theorem 3 below we assert the existence of a cross-cut of P(w,) consisting of un-
countable sets whose complements are also uncountable . To construct such a cross-cut we
extend a nontrivial mod w, cross-cut of P(w,) using a suitable grading of P41 ,(w,)
(shown to exist in Theorem 2) in a manner similar to that in which we used the unique
grading of P,(E) in the proof of Lemma 3 . It is convenient to describe this procedure
here .

LEMMA 4 . Let E be an infinite set, K an infinite cardinal, `,-F a grading of PK(E) in
which the cross-cuts are cross-cuts of P(E), and D a mod K cross-cut of P(E) . Define D to
consist of the sets (X\Y 1)U Y2 where X is in D, Y, and Y2 are in PK (E), Y, S X,
X n Y2 and C(Y,) = C(Y2 ) (C(Y) denotes the unique cross-cut in F containing Y) .
Then b is a cross-cut of P(E) .

Proof To see that D is unordered, suppose that (Y\ Y,) U Y 2 S (X'\Y1')U Y,' where
X, X', Y, , Yi , Y 2 , Y, are as in the definition of D . Then X = X' since D is unordered
mod K and hence Y, 9 Y, and Y, S Y, . By the acyclicity of SK,, , we must have C(Y,) _
C(Y,') from which it follows that Y, = Yi and Y2 = Y2 . To see that D is a cross-cut, let
A S B in P(E) and fix X in D 0 S, (A, B) . There are four possibilities, as follows :

(i) Either X < A mod K, or A _= X < B mod m and C(X\A) < C(A\X) . Let Y, = X \A
and let Y2 C A\,Y be such that C(Y,) = C(Y2 ) . Then (X \Y,) U Y2 is in b and is C A .

(ii) Either B < X mod K, or A < X =B mod K and C(B\X) < C(X\B) . This is similar
to (1) but with (.Y\Y,) U YZ D B .

(iii) A < X < B mod K, C(A\,Y) < C(X\B), and either X < B mod K or X =_ B mod K

and C(X\B) < C(B\X) . Let Y, = X\B and let Y2 be such that .4\X S Y2 S B\X,
C(Y) =C(Y2 ) . Then (X\Y,)U Y, is in b and lies between A and B .

(iv) A < X < B mod K, C(X\B) < C(A\X), and either A < X mod K or A =- X mod K

and C(A\X) < C(X\A) . Let Y, = A\X and let Y, be such that X\B S Y, C X\A .
C(Y,) =C(Y2 ) . Then again (X\ Y,) U Y2 is in D and lies between A and B .

It is natural to ask whether there is a common generalization of Lemmas 3 and 4 in
which from a mod K grading °of P(E) one constructs a grading Fof P(E) via a
suitable grading ofP,(E) . Suppose that ~ satisfies not only the condition (a) that the
cross-cuts in it are cross-cuts of P(E) but also the following additivity condition (b) :
C(XUZ) = C(YUZ) whenever X, Y, Z are pairwise disjoint sets in P,(E) for which
C(X) = C(Y) . Then such a common generalization can be proved by essentially the same
argument as outlined for Lemma 3 (the details are similar to those for Lemma 4) . How-
ever we do not know if there exist any gradings of PK(E) satisfying both (a) and (b)
(other than in the trivial case K = w). We can construct a grading of P, t (w,) satisfying (a)
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and the proof is siinilar to that of Lemma 2 except that we need to keep control of the
order type of the sets in our cross-cuts in order to secure (a) (an idea used by Hajnal for a
similar purpose) .

In what follows, tp S denotes the order type of a well-ordered set S, w s denotes
ordinal exponentiation, and cf S is the cofinality of 5 .

LEMMA 5 . If S is an v well-ordered set of type _> w s and J is a countable set of subsets
Y of S, each of type < w 5 , then S has a subset X of type w such that X n Y is finite for
all Y in ' . Iftp S ends in w s and cf S < w then X may be chosen to be cofinal in S .

Proof. Write " = { Y„ : n E w } and let X = {x„ : n E w } where the x„'s are chosen
inductively so that x, > x„ _ 1 and x„ (~ Yo U . . . U Y„ ; if tp S ends in w s and cf 6 < w
let {s„ : n E w} be cofinal in S and take x„ > s„ also (note that Y o U . . . U Y, has type
< w b and thus its complement will be cofinal in S) .

For y < w, , let Q(y) be the set of all subsets A of w 1 such that wy < tp A < wy+ 1 .

LEMMA 6 . Assume CH (or MA) . Then there exists a grading of'Q(y) consisting of cross-
cuts of'P(w 1 ) .

Proof By Lemma 3 and the remark following it, we need only prove this mod w ;
also, on account of the upper bound wy+1 on the order type of the sets involved, it is
enough that the cross-cuts we produce are cross-cuts of P,,, (w1) .The proof is similar
to that of Lemma 2 and we just indicate the modifications required . Since we are working
mod w throughout, we will write < for < mod w, splits for w-splits, etc .

We arrange the sets in Q(y) in a list of type w, , likewise the subsets S(A, B) (under-
stood in the mod w sense) ofP,1 (w 1 ) and the ordinals a < w 1 (each repeated w 1 times) .
The C«(Q)'s are countable mod w unordered subsets of Q(-y), at most countably many of
them are nonempty, and they form a mod w acyclic set . Again we wish to find X in
S(A, B) by which to extend C = C 0(J3) but now also require X to be in Q(y) . Defining
U and V as before, we require specifically that X < Y for no Y in CU U, that Y < X for
no Y in C U V, and that X is in Q(y) . Again we have three cases to consider .

Case 1. Yo < A for some Yo in V, or tp A > wy+ 1 . Then we must choose X < A .
First suppose that Yo < A where Yo is in V and that tp A < wy + 1 . Let X be a subset

ofA which splits the sets A n Y and A\Y, Y in C U U U V. The argument given for Case 1
in the proof of Lemma 3 shows that X is as desired, except that tp X may be < wy . To
avoid this, let U t < s At be a subset of A in Q(y), where each A t is of type w and rl < rl'
for rr E Xt , r' ' E X t, , ~ < ~', and choose X to split the A t 's also .

Now suppose that tp A _> w ' and let A 0 consist of the first wy elements of A . If
Yo < A0 for some Yo in V then we proceed as above with A 0 in place of A . If not, we
use Lemma 5 to find a subset X 0 ofA of type w such that Xo n Y is finite for all Y in
C U U U V and put X =Ao U Xo . Then X < Y for no Y in C U U since this is already true
for X0 , and Y < X for no Y in C U V since otherwise Y <A 0 - just ruled out for Y in V
and impossible for Y in C because C does not meet S(A, B) .

Case 2. B < Yo for some Yo in U, or tp B < w ' . We have to choose X > B. By
Lemma 5, there is a set X o S w1 of type w such that X0 n Y is finite for all Y in
CU U U V . If tp B > w-Y let X = B U Xo . Then X < Y for no Yin C U U since this is
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already true for X11 , and Y < X for no Y in C U V since otherwise Y < B < Yo which is
contrary to the way U and V were defined . So suppose tp B < wy . Fix B 1 in Q(y) and let
X l be a subset of B,\B splitting the sets (B 1\B) n Y, Y in C U V; since B 1\B is in Q(y),
we may also choose X l to be in Q(y) by the device used in Case 1 . Now let X =
B UX0 UX1 . Then X is in Q(y) and as before X < Y for no Y in CU U. Suppose that
Y < X where Y is in C U V . Then Y < B U X1 so that ((B 1\B) n Y)\Xl is finite and
hence so also is (B 1\B) n Y. But this is impossible since Y < B U((B 1\B) n Y), tp Y > wy .

Case 3 . Otherwise - then Y < A for no Y in C U V, B < Y for no Y in C U U, and
tp A < wy + 1 , tp B > cwy . If tp B < wy + 1 we construct X in exactly the same way as for
Case 3 in the proof of Lemma 3 . If tp B > wy +1 let Xo be a subset of B of type w such
that Xo n Y is finite for all Y in C U U U V and put X = A U X0 ; the argument used in
the last part of Case I shows that X is as required .

As an immediate consequence of Lemma 6 we have :

THEOREM 2 . Assume CH (or MA) . Then there exists a grading of P,,,, 1 (c.) consisting
of cross-cuts of P(w 1 ) .

Together with Lemmas 2 and 4, this theorem gives :

THEOREM 3 . Assume CH (or MA) and 2" 1 = w :z . Then there exists a cross-cut of P( . 1 )
consisting ofuncountable sets whose complements are also uncountable .

We now come to the one result we have for w, .

THEOREM 4 . Assume CH (or MA). Then there exists a cross-cut ofP(w2) consisting of
countable infinite sets .

Proof The argument is similar to that used for Lemma 2 and again for Lemma 6 . We
construct, by induction on a < w 2 with cf a = w, families Fa of cofinal subsets X of a
of type < w 2 such that for each a, U {F0 : Q < a, cf Q = w} is a mod w cross-cut of
P , (a) . Then U{Fa : a < w .2 , cf a = w} will be a mod w cross-cut of P,,, (w2 ) and will
give rise, as before, to a true cross-cut of P,,, 1 (w2 ) and, indeed, of P(w 2 ) by virtue of the
tp X < w 2 requirement . As in the proof of Lemma 6, we write < for < mod w, etc .

Suppose that Fg has been defined for all 13 < a, cf 0 = w, where a < w 2 and cf a = w .
The construction of Fa is by an induction over w l : we first list all the S(A, B)'s with B a
countable cofinal subset of a (if B is not cofinal in a then because we are working mod w
we will have handled S(A, B) at an earlier stage) and then define progressively longer
countable pieces F of Fa by adjoining to the current F a set X in the first S(A;B) not
meeting F U U0< a Fg . (As stated, this is the same approach as used before except that
now we are only constructing a single cross-cut so there is no recycling of cross-cuts,
and the sets U and V in the proofs of Lemmas 2 and 6 do not arise .)

In choosing ,Y, we again consider three cases (not quite analogous to those considered
earlier however) .

Case 1 . tp A > w2 . Then we must choose X <A. If the sup of the first w 2 elements
of A is R and (3 < a then by the inductive hypothesis there exists Y in FQ such that Y <A,
contrary to the choice of S(A, B) . Thus (3 = a and we take X to be a cofinal subset of A
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of type w such that X n Y is finite for all Y in F (such an X exists by Lemma 5) .
We suppose from now on that tp A < w2 and find that we can then always choose X

so that A < X < B . Since tp B is a limit ordinal, it ends in w s for some S > 1 .
Case 2. S > 2 . By Lemma 5, there exists a cofinal subset X0 of B of type w such that

Xo n Y is finite for all Y in F and we put X = A U Xo (note that if Y in F U Up< aFg is
5 X then Y < A) .

Case 3. S = 1 . Let ao < a be such that cfao = w and tp (B\ao) = w . By the inductive
hypothesis, B n ao is comparable with some element Zo of Up < 'Fp .

Suppose first that B n ao < Zo . Let Xo S B\A split the sets (B\A) n Y and (B\A)\Y,
Y in F U {ao }, and put X = A U Xo . Then, as before, X is incomparable with all the sets

in F. Moreover, X is cofinal in a : this is clearly the case if A is cofinal in a, and if B\A is
cofinal in a then Xo is cofinal in a since it splits (B\A)\ao (which will be of type w
here) . To see that X is incomparable with all the sets Z in Up <a Fp, note first that the

cofinality ofX in a makes X < Z impossible . On the other hand if Z < X where Z is in
Fp, a < a, then Z < B and hence Z < B n ao (clearly Z < B n ao and if Z =- B n as then
B n ao < X whence Z =- B n as < A since X0 splits (B\A) n ao ) . This contradicts
B n ao <Z0 .

Finally suppose that Z o < B n ao . Now S(A nao , B n a o ) contains an element Z 1
Of Up < a Fp and because Zo < B n a o we must have A n ao < Z 1 < B n ao . Let BI =
Z1 U (B\a o) and consider S(A, B 1 ) instead of S(A, B) . Since S(A, B) does not meet

F U U#< a Fp, the same also holds for S(A, B1 ) ( since A < B 1 <B, we need only check

that B1 < Y E F U Up< aFp cannot occur, and Z 1 < B 1 gives this) . Also tp (B 1\ao )= w and
B1 n ao < Z 1 so we are in the situation already dealt with . Since A < X < B 1 implies
A < X < B, the proof is complete .
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