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INVERSE EXTREMAL DIGRAPH PROBLEMS
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ABSTRACT

The authors continue their study of extremal problems of Turán type
for directed graphs with multiple edges, now permitting any finite non-
negative integer multiplicity . Having proved earlier (for the case of multi-
plicity at most 1) that there exists, for any family of "sample" digraphs,
a matrix which represents the structure of an "asymptotically extremal
sequence" of digraphs (containing none of the sample digraphs, and having
a total number of arcs asymptotic to the maximum), they address them-
selves to the inverse problem : is every matrix so realized for some finite
family of sample digraphs? They prove that this is indeed true for "dense"
matrices - having certain integer entries, and such that an associated
quadratic form attains its maximum for the standard simplex uniquely at
an interior point .
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1 . INTRODUCTION

In 1941, P a u I T u r á n proved (cf. [ 14], [ 15]) the following theo-
rem : Among (simple) graphs on n vertices not containing a complete
p-graph p there exists exactly one having the maximum number of
edges; this graph (which we shall denote by Td, can be obtained by
partitioning the n vertices into p - I classes Cl , C21 . . . , Cp _ 1 , whose
cardinalities differ by at most 1, and joining two vertices if and only if
they belong to different classes . In the following generalization, considered
extensively by Erdős, Simonovits and others, one replaces Kp in the Turán
problem by an arbitrary (finite or infinite) family of prohibited or sample
subgraphs :

Problem 1 . Given an arbitrary family Y of graphs, to determine the
maximum number of edges a graph G" can have without containing any
L E Y, and to characterize graphs attaining the maximum .

The maximum will be denoted by ex (n, Y), and called the ex-
tremal number; the family of graphs attaining the maximum will be
denoted by EX (n, Y), and its members called extremal graphs. E r d ő s
and Simonovits [6] proved that for p = min X(L) -- I (if n--),

LE Y

ex (n,

	

(2 + o(n 2) .

This implies that the extremal number is "very near" to that of Kp ; it
depends on Y loosely - only on the minimum chromatic number of
members of P .

A next question to be investigated was whether EX (n, Y) is also
very similar to EX (n, {p }) in some sense . The answer was in the affirma-
tive : E r d ő s and S i m o n o v i t s proved independently [7], [8], [12] that
if S" is an extremal graph for Y (that is, S" E EX (n, Y)), then one
can delete from and add to S" , o(n 2 ) edges so that the resulting graph is
the Turán graph T" defined above .

In the above results we have always excluded loops and multiple
edges; for, if two vertices are joined by arbitrarily many edges, there exists
no finite maximum in Problem 1 . However, Brown and Harary [5]
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observed that if parallel edges are permitted, but with an upper bound on
the number connecting any pair of vertices, results analogous to those of
P . Turán hold ; they also investigated digraph versions of Turán's problem .
The (multi-)digraph problems appear to be more difficult than the corre-
sponding multigraph problems : we shall restrict our attention to the
former, apart from the last section, where we explain the consequences
of our results to multigraph problems .

2. THE GENERAL DIGRAPH EXTREMAL PROBLEM

We are concerned in the present work with directed graphs wherein
multiple arcs are permitted in either direction between pairs of vertices ;
these may be referred to as digraphs or occasionally as graphs in the sequel .
Digraphs will always be denoted by capital Latin letters ; a superscript,
where used, will indicate the number of vertices .

Let q be a fixed positive integer . We consider below only digraphs in
which any two vertices are joined by at most q arcs of each orientation .
(Our use of the term digraph differs from that of Harary et al ., who would
permit two vertices to be joined by at most one arc in total .) Dependence
on a will not normally be indicated explicitly . The general problem is

Problem 1* . How many arcs can a digraph G" possess without con-
taining any, prohibited subdigraphs from a given family Y ? This maxi-
mum, and the family of digraphs attaining the maximum, will be denoted
respectively by ex (n, Y) and EX (n, Y) ; members of the latter family
will be called extremal digraphs.

We make no attempt to evaluate the extremal numbers ex (n, Y)
exactly. Rather, we study their asymptotic behavior, up to terms of order
o(n 2 ) . (Some explicit results are, however, known ; cf. [2], [5], [9] .) Ac-
cordingly, we propose the following definition .

Definition 1 . A sequence {S" } of digraphs will be said to be asym-
ptotically extremal for Y if S" contains no prohibited subdigraphs,
and e(S) = ex (n, Y) + o(n 2 ) as n - - .

Remark . Without limiting the generality of our theorems, we usually



find it convenient to restrict applications of the previous definition to
sequences indexed by the number n of vertices .

(Through the use of familiar techniques (cf . [10]) it can be shown

that 12 ex (n, -T) approaches a limit as n ~ ; we call the limit the
n

"extremal density." of Y . Some of our results in the present study are
non-trivial only for the case where that limit is positive : in particular,
whenever none of the members of the family is transitive . In the
corresponding problem for ordinary graphs, the extremal density is positive
precisely when none of the members of the family T is bipartite .)

In our earlier papers [ 1], [2] we studied exclusively the case q = 1,
as did the first author and Harary [5] . Certain of the proofs in [11
generalize to the present case without difficulty, and the reader will be
referred to that paper for explicit details . Our main result in the present
paper (Theorem 1) was announced for q = 1 in [I], but will be proved
here in full generality . The second main result (Theorem 2) appears in
Section 9; there we shall be concerned with the existence of finite sub-
families of a given family of prohibited digraphs, having extremal numbers
"near" to those of the original family .

3 . MATRIX DIGRAPHS, DENSITY

The basic result of [ 1 ] is that for every family Y of prohibited sub-
digraphs, there exists a matrix A and an asymptotically extremal sequence
{S" } of optimal matrix digraphs, obtainable from A in a very simple way .
More precisely, the members of the sequence consist of digraphs whose
verices are partitioned into a finite number of classes with adjacencies
between classes that can be fully described by a matrix .

Definition 2 . Let A = {aii } t i , r be an r X r matrix whose entries
are constrained as follows :

(i) diagonal elements may have any non-negative integer value not
exceeding 2q - 1 ;

(ü) off-diagonal elements may have any non-negative even integer
value not exceeding 2q .
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Let b= (b l , b 2 , . . . , b r ) be an r-vector whose entries are non-
negative integers such that

(iii) b i 5 a ii for all i .

For each vector x = (x 1 , x2 , . . . , xr ) having non-negative integer
coordinates, we define a graph A (b, x) (or more briefly A ( x)) as fol-
lows: the vertices will be divided into r distinct classes Cl , C21 . . . , Cr
containing respectively X 1 , x2 , . . . , x r members; from every vertex of
the i-th class to every vertex of the i-th class there are directed precisely

2 "ii arcs (= directed edges); within the i-th class the vertices are linearly

ordered, with each vertex sending exactly b i arcs to each of its successors,
and receiving a ii - b i arcs from each of its predecessors. It is also con-
venient to define a countable digraph A(b, -) (briefly, A(-)) analo-
gously to A (b, x) : its vertices are the members of r countable classes
Cl , C21 . . . , Cr , each labelled by the natural numbers (and so ordered),
with adjacencies determined from A in the obvious way .

Remark . Replacing in A (b, x) any bi 'by a ii - b i yields a digraph
with the same structure . Therefore we may assume that

(iii') b i ‹_ 2 ait .

In particular, for q = 1, we may and shall assume that b = 0. In [ I ] we
considered only the case q= 1, b= 0; we used the symbol A((x)) for
A(x) .

Pairs A, b satisfying the conditions of Definition 2 may be repre-
sented in a natural way by a digraph (while, on the other hand, we
use matrices to represent digraphs!) : namely, by A ( b, 2e ) where e =
_ (1, 1, . . . , 1) . However, it is often sufficient to take A (e) and add
air loops at its i-th vertex (i = 1, 2, . . . , r) ; while no information is given
concerning the vector b, most of our results will prove to be independent
of b. In Figure 1, we provide an example, showing how a digraph could
represent a 4 X 4 matrix for q = 2 . Note that A is related to, but
different from the adjacency matrix of the digraph .



1 2 4 2

A= 2 0 2 0
2 2 1 4
4 4 2 0

A «2, 2, 2, 2) ) _

A(0, 1, 1, 1) )=

Figure 1
Example 1 . A matrix and its representing digraphs (q > 2 )



Remark. Except for several instances in Section 4 (where we recall a

result of [ 1 ] and state a conjecture generalizing it), most of the restrictions

of Definition 2 are inessential . The statement of none of our other results

is dependent on q . The restriction (condition (ü)) of off-diagonal entries

to even values leads to a useful estimate for the total number of arcs in a

matrix digraph, using the quadratic form associated with the matrix ;

had we chosen to represent matrix digraphs by adjacency matrices with the
usual definition, the diagonal entries would have had to be halved - which

would have the same effect as the present. That portion of Definition 2
referring to the acyclic orientation of arcs connecting vertices within any

class is not essential in this paper ; the "unique" matrices used in the charac-
terization (for q = 1) of Theorem A 1 (cf. Section 4 below) do have this

property, however .

Remark* . Later the following (technical?) observation will be of

importance : Let A be an r X r, B a t X t matrices, e and e' be the
corresponding vectors with each coordinate equals 1 . If A (b, x) contains

B (b', (r + 1)e' ), then each B (b', y) is contained in some A (b, z ) .
Indeed, in this case A (b, x) contains a B ( b', 2e') canonically : so that

each class (pair of vertices) of B(b', 2e') is contained wholly in one class
of A ( b, x). Now, if the i-th class of B ( b', 2e') is in the p(i)-th class
of A (b, x), then the corresponding embedding of any B ( b', y) into
A (b, z ) works, assumed that the coordinates of z are sufficiently large .

Definition 3 . Optimal matrix digraphs . Restricting our attention to

vectors x, the sum of whose (non-negative integer) entries is a positive
integer n, we define A(b ; n) to be any A (b, x) for which the number
of arcs is maximal . As e(A(b ; n)) is independent of b, we shall usually
abbreviate the symbol A(b ; n) to A(n) . (When we speak of a digraph as
"containing A(n)", or "containing an A(n)", we intend that it contains

a subdigraph whose structure is isomorphic to any one of the optimal

matrix digraphs A(n) .)

Remark. If A (x ) is optimal, the difference between valencies of ver-

tices in the i-th and i-th classes can be shown not to exceed
2 (aii + air ),

(cf. [1], 2(B)) . Moreover, the number of optimal matrix digraphs A(n)



is O(1) as n

	

we shall not require these two results in the present
paper .

The extremal problems we wish to consider often lead to an optimiza-
tion problem of the following type : a digraph G is given, and one is per-
mitted to replace each of its vertices by an independent set of vertices .
Considering subdigraphs H" of the resulting digraph, what is the maxi-

mum value of the ratio

	

e(H'	)

	

i .e. the maximum propor-
[gv(H")(v(Hn) - I)]

tion of the total number of edges attainable for a given number of vertices?
Since G may be represented by an adjacency matrix, we are led to the fol-
lowing, somewhat more general, concept . Those digraphs G for which the
maximum is attained for no proper subdigraph are of particular interest,
cf. [11] .

Definition 4 . Dense matrices . For any matrix A satisfying condi-
tions (i) through (iii) of Definition 2, we define its density g(A) to be the
maximum value of the quadratic form uAu* on the standard simplex
in Rr :

g(A) = max {uAu * : u Í > 0,

	

. = 1} .

A will be called dense if, for every principal proper submatrix A' of A,
g(A) > g(A') .

We shall be considering cases where the extremal or "almost extremal"
graphs will have the structure A(b ; n) for some fixed A and b. As we
shall see in Section 4, if A has a proper principal submatrix A' with the
same density, then e(A(n)) and e(A'(n)) are asymptotically equal . Hence
without loss of generality mostly we may restrict our study to dense
matrices .

Example 2. Let q = 1, b = 0. Let Dr be an r X r matrix of struc-
ture 2J- 21 (we follow standard usage - J is a square matrix of 1's,
I is an identity matrix) ; e will be a vector of 1's . Then Dr ( x ) is a com-
plete r-partite digraph with x i vertices in the i-th class, C i : for every pair
(i, j), each vertex of Ci is joined to each vertex of Ci by two arcs of
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opposite directions . This digraph has the maximum number of edges if
J x i - xi I < 1 for every i, j satisfying 1 < i < j < r . The matrix is dense,

and g(D r ) = 2--r .

Let the symmetric part of A, A, be defined by

(3 .1)

	

4 = 2
(A + A *),

where A* is the transpose of A . Corresponding principal submatrices
of A, A*, 4 all yield the same associated quadratic form, so either each
of A, A*, A or none of them is dense . The transpose operation corre-
sponds to reversal of orientations in the matrix digraph . It may not be
possible to interpret Á in terms of Definition 2, since some of its off-
diagonal entries can be odd. However, is is possible to develop a theory
analogous to, and simpler than the present for (undirected) multigraphs .
For this purpose A would be taken to be any adjacency matrix of a
multigraph of maximum multiplicity 2q - so the sum of symmetrically
located off-diagonal entries would represent precisely the number of
edges connecting vertices (cf. Section 11) .

Example 3 . The following four 5 X 5 matrices are all dense, with

optimum vector

	

5' S' S' S' S

	

and density 5 they correspond (for

q = 1) to the four distinct orientations of the multigraph obtained by
halving the multiplicities of the edges of one pentagon in a doubled com-
plete 5-graph, i .e. by orienting the arcs of the multigraph M in Figure 2 .

The matrix digraphs for the partition (1, 1, 1, 1, 1) are shown in
Figure 2 .

0 2 2 0 2 0 2 2 2 2 0 2 2 2 2 0 2 2 2 2
2 0 2 2 0 2 0 2 2 0 2 0 2 0 0 2 0 2 2 2
0 2 0 2 2 0 2 0 2 2 0 2 0 2 2 0 2 0 2 2
2 0 2 0 2 0 0 2 0 2 0 2 2 0 2 0 0 2 0 2
2 2 0 2 0 22020, 22020, 20020



M=

d~NILbh
,;fi-ME

Example 4 . Let

(The four orientations of M)

Figure 2

(refer to Example 3)

A=( 0
2

	

(q = 1),



(B r is an r X r matrix whose entries are all zeros and 2's, with the latter

in the following locations : all positions strictly above the main diagonal ;

and in the first column below the first row .) The density of A is 3, with

optimum vector u = ( 3 , 3 ) . The density of Br is 3

	

9r4 6' with

optimum vector v = ( 3r r 2' 3r 2 2' 3r 2 2' 3r2 2 ~'
Br has the

structure of twice an adjacency matrix for A ( (1, r - 1) ) . The digraphs

A 42, 2)) and Br(e) are sketched in Figure 3 . Observe that Br(e) has

the same structure as A ((I, r - 1) ), but that neither realizes the optimum

distribution of vertices proportional to v .

B =r

A02, 2) )

0 2 2 2 . . . 2

2 0 2 2 . . . 2

2002 . . .2

2 0 0 0 . . . 2

2 0 0 0 . . . 0

Figure 3

(refer to Example 4)
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In a forthcoming paper [4] we shall present an algorithm for deter-
mining, for q = 1 and for any family Y, a matrix A for which {A(n)}
is asymptotically extremal for Y ; while we are unable, as yet, to com-
pletely characterize dense matrices, we do know certain necessary condi-
tions for a matrix to be dense . One of the simplest is the following, whose
proof for the case q = 1 follows from that of Lemma 1 of [I]. (The
Lemma enunciated there was, however, weaker than the present .)

Lemma 1 . In a dense matrix {a li j, a 1J + aji is never zero; moreover,
if a « = aii , then a ii + ati > 2a« (i * j) .

Proof. Here, as elsewhere in the paper, we shall appeal to results
proved earlier for the case q = 1, where the original proof generalizes
to meet our present needs without surprises . As observed in that paper,
the essence of this lemma has appeared before in the work of M o t z k i n
and Straus [11] and Zykov [16] . 1

The following lemma characterizes the optimum vector of a dense
matrix .

Lemma 2. Let {x n } be a sequence of optimal vectors corresponding

to a sequence {A(n)}, where A is dense. Then the vectors I xn converge

in the Euclidean norm to a vector u which is uniquely determined by the
system of equations

(3 .2)

	

(u, e) = 1,

	

flu = g(A)e .

Proof. The proof on page 84 of [1] generalizes . (3 .2) admits the
following graph-theoretical interpretation . Given a dense matrix A and
vector x, let y = xA = (y l , . . . , y,) . Then y, - a,, is precisely the
valency of vertices in the i-th class of A (x) : a,, is substracted only
because the loops are excluded . Thus (3 .2) asserts that an optimal A (x) _
= A(n) is "almost regular" . This was proved in [1] by showing that the
difference of any two valencies in any A(n) is at most 2q . 1

Remark . The following assertion is equivalent to Lemma 2 :

Any vector u for which uAu* is maximum under the condition
(u, e) = 1 satisfies (3 .2) .
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Indeed, if uAu* (= uflu*) is maximal, then its value is g(A), by
definition. A being dense, u can only be an interior point of the standard
simplex; by the Lagrange method, it can be seen to satisfy (3 .2) . On the
other hand, if a satisfies (3 .2), then uAu* = u,4 u* _ (u, g(A) e) = g(A) .

4 . MATRIX GRAPHS AND QUADRATIC FORMS .
MATRIX COLOURINGS. ENUNCIATION OF THEOREM I

If we adjoin to each vertex in the i-th class of a matrix digraph
A (x ) exactly a« loops (i = 1, 2, . . . , r), we obtain a digraph (possibly
no longer simple) having exactly 2 (xAx*) arcs. It follows that if loops
are excluded - which is our intention in this paper -

(4.1)

	

xAx* - (2q - 1)

	

x~ < 2e(A(x)) < xAx*
l

(cf. [1], (1)) : herein lies the advantage of our convention that twice the
multiplicity of arcs joining Cl to C is taken as a te (i j) . Moreover,

(4.2)

	

(g(A) - o(l))n 2 < 2e(A(n)) < g(A)n 2 .

In fact,

(4.2*)

	

g(A)n 2 - O(n) < 2e(A(n)) < g(A) n 2

	

as n >

(cf. [11, (3), (4)) . Statement (4.2*) follows from (4 .1) using the easily
proven fact that g(A ) can be realized by a vector with rational coordinates .

The preceeding inequalities permit the following version of Lemma 2,
which we state as a corollary :

Corollary to Lemma 2. Let A be a dense matrix . Subject to the
constraint that ue = 1, the maximum of each of the quadratic forms
uAu*, uA*u* and uÁ u* is attained uniquely for a vector u satisfying

Au* = 2g(A)e .

Moreover, if f x n } is a sequence in R r for which A (xn ) is optimal

for n sufficiently large, then, for this unique vector u,
n xn -, as

n - - .



In [ 1 ] the following theorem was proved :

Theorem A I (Theorem I of [I]). Let q = 1 . For any finite or in-
finite family L of simple digraphs there exists a dense matrix A for which
any sequence {A(n)} is asymptotically extremal. (By (iii') of Definition 2,
b may be taken to be 0 when q = 1 .)

We are not yet able to prove the following

Conjecture 1 . Theorem A 1 holds without restrictions on q, with
{A(n, b)} as the asymptotically extremal sequence, for appropriate (dense)
A and b.

Remark. The following theorem is not difficult to prove for any
maximum multiplicity q : For every finite or infinite family Y of
sample digraphs, and for every E > 0, there exists a dense matrix
A = A(Y, e) such that A(n) contains no prohibited subdigraphs L E Y
and

ex (n, -99 ) < e(A(n)) + en 2 .

In this sense we can approximate the solution to any extremal digraph
problem with a sequence {A(n)} ; but, as e -; 0, the size of A need not
remain bounded. The truth of Conjecture 1 would imply that such an
approximation exists within o(n 2 ) rather than en 2 (see [5 * ]) .

In our first paper [ 1 ] we also announced the case q = 1 of the fol-
lowing theorem, which solves the "inverse" problem to Theorem Al .

Theorem 1 . For every dense matrix A and vector b there exists
a finite family P of prohibited subdigraphs such that

(i) optimal matrix digraphs A(n) are extremal digraphs for ~,
and there are no other extremal digraphs for Y ;

(ü) any asymptotically extremal sequence {G" } for Y can be
obtained from a sequence {A(n)} by deleting and/or adjoining o(n 2 )
arcs ;

(iii) if {B(n)} is an asymptotically extremal sequence of optimal



matrix digraphs, where B is dense, then B and A are identical up to the
same permutation of rows and columns.

Theorem 1 shows that Theorem A1 is sharp . (Part (iii) of Theorem 1
was not included in the formulation in [ I ] . It will be seen to be a simple
consequence of Part (ü), cf. Lemma 10 below .)

Our aim in the present paper is to prove Theorem 1 for arbitrary q
and b . The main innovation is the finiteness of Y . We shall first provide,
for motivational purposes, a proof which permits that Y may be infinite .
Before that we indicate similarities with the chromatic theory of graphs .

Definition 5 . Let A = {ail } i 1\r be a dense matrix, and b=
_ (b 1 , b,) , . . . , b r ) an associated vector satisfying the conditions of Defi-
nition 1 . A digraph G is (A, b)-coloured (or simply A-coloured), when
its vertices are partitioned into classes C I , C21 . . . , C corresponding to
the rows of A, and when the vertices of each of these classes are so
ordered that

(i) any vertex in class C i is connected to a successor in that class
by at most bi arcs, and to a predecessor in that class by at most aii - bi
arcs ;

(ü) any vertex in class C i is connected to any vertex in a distinct

class Ci by at most I aid arcs .

Thus an A-colouring of G is an embedding in A(-) ; G is A-colour-
able if such as embedding exists . All subdigraphs of an A-colourable di-
graph are A-colourable . Since the sizes of classes of optimal matrix di-
graphs A(n) tend to - with n, a digraph is A-colourable if and only if it
can be embedded in some A(n) . The family of digraphs on at most m
vertices having no A-colouring will be denoted by r,1 m . (The preceding
is a true generalization of vertex-colouring of ordinary graphs . We could
define for any directed graph G, the chromatic number X to be

1
I -min {g(A) : G is A-colourable}'

This number is not altered if orientations of any arcs of G are changed ;
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in particular, it is constant for all orientations of an ordinary graph, and
equal to the usual chromatic number .)

First we sketch a proof of a weakening of the first parts of Theorem
1, where Y is permitted to be infinite . Let A be a dense matrix, and
b a vector, satisfying the conditions of Definition 2, and let a- denote
the family of all non-(A, b)-colourable digraphs . We show that the
weakened version of Theorem 1 holds with Y _ s/- . Indeed, a digraph
Gn contains no prohibited subdigraphs if and only if it is A-colourable .
(The subdigraphs of an A-colourable digraph are A-colourable .) Therefore,
the extremal digraphs for a- must be A-colourable with the maximum
number of arcs, i .e. optimal matrix digraphs A(n) : this proves (i) . Let now
{G n } be any asymptotically extremal sequence . Each Gn must be A-
colourable, i .e . must be a subdigraph of some A ( y), where the sum of the
entries of y is n . (We require a yn for each Gn, but shall not always
show the dependence on n explicitly in our notation .) Since

e(G n ) = e(A(n)) - o(n 2 ) >, e(A (y )) - o(n 2 ) as n - -,

Gn can be obtained from the maximal A-coloured digraph A (y) through

deletion of o(n 2 ) arcs. Let v be a limit point of the vectors 1
n
y
n

.

so vAv* = g(A) . As v realizes the maximum of the form in the standard
simplex, and A is dense, v satisfies equations (3 .2), and is the unique
vector with that property . But then, if x (= xn ) is an optimum vector
for some A(n), the sequences {n xn I and { n yn I both approach v
as n ~ ; it follows that I x - yI = o(n), so the number of edges that
need to be changed to convert A (x) into A (y) is o(n) 2qn = o(n 2) .

Remark . We shall prove that if m is sufficiently large, Theorem 1
holds with ,7/

m
for Y . It is natural to try to prove this, since conclusion

(i) of the Theorem implies that Y must consist solely of non-A-colour-
able digraphs; and any finite collection of such digraphs is a subcollec-

(vAv* + o(1))n 2 = 2e(A (y)) = yA y* + O(n) = by (4 .1)

= 2e(A(n)) + o(n 2 ) = g(A)n 2 + o(n 2) , by (4.2)



tion of some

	

m . If

	

_ dm satisfies Theorem 1 for some m, any
Y _ am , with m'> m will also do. Indeed,

z
ex (n, am ,) ~> g(A)2 + o(n 2 ) as n >

since no A(n) contains subgraphs from am , ; and if for some m the
reverse inequality holds (up to o(n 2 )), the inclusion dm c am, im-
plies its truth for m' as well .

A basic result needed for our proof of Theorem 1 is

Lemma 3 . For every positive integer s and dense matrix A there
exist an integer m = m(s, A) and a positive constant cl = cl (s, A)
such that any digraph Gn containing neither an optimal matrix di-

(g(A ) - c i ) n 2

graph A(s) nor subdigraphs from Vm has fewer than

	

2

arcs.

We shall prove Lemma 4 below, which will be seen to be equivalent
to the preceding .

Lemma 4. For every positive integer s and dense matrix A there
exists an integer m = m(s, A) such that for any sequence {Gn } of di-
graphs which contain no subdigraph from .Vm , and which satisfy

2
(4 .3)

	

e(G") > (g(A) - o(1)) 2 as n 5_ 00

each G" contains, for sufficiently large n, a subdigraph of structure
A (s) .

Proof of the equivalence of Lemma 3 and Lemma 4 . Evidently Lem-
rna 3 implies Lemma 4 . Assume Lemma 4, and fix an m provided by it .
Should Lemma 3 fail for this m, it would follow that there exist for
every k > 0 an integer n > k and a digraph G n' having at least

2 g(A)n 2 - k n 2 arcs containing neither an A(s) nor members of 'gym ,

contradicting Lemma 4 . 1



We first prove a weakened form of Lemma 3, where we permit m to
be infinite .

Lemma 5 . For every positive integer s and dense matrix A there
exists a constant c2 = c2 (s, A) > 0 such that if G" is A-colourable and
does not contain an A(s), then

2
e(G" ) 5 (g(A) - c3 ) 2.

Proof of Lemma 5 . Since A is dense, there exists a positive constant
c3 such that all principal proper submatrices of A have density less than
g(A) - 2c3 . By Lemma 2 the optimum vector of A lies in the interior
of the standard simplex . Continuity of the quadratic form ensures that
there exists a constant c4 > 0 such that if ul + u 2 + . . . + ur = 1 and
some u i < c4 , then

(4.4)

	

uAu* < g(A) - c3 .

Thus, by (4 . 1), when x 1 + x 2 + . . . + xr = n,

2
(4.5)

	

e(A (x)) < (g(A) - c 3 )2
if, for some i, x i c c4 n .

An A-coloured digraph G" has the structure of a subdigraph of

A (x), where

	

x, = n . The lemma wí11 hold with c2 = c3 unless all x i
t

exceed c4 n, which we now assume . The remainder of the proof is
"probabilistic" . Then A (x) contains at least

(4.6)

	

( S i)( S2)

	

( Sr)>c5 n s

copies of A(s), where s l , s 2 , . . . , sr are the sizes of the classes of any
fixed A(s) . Each edge of A (x) not belonging to Gn is contained in at
most c6 n s - 2 copies of A(s) C A (x), hence we would have to delete at

c
least c5 n 2 arcs of A (x) to eliminate all A (s)'s, and

6



C
(4.7)

	

e(G ") < e(A (x» - C5 n 2 .
6

C
It suffices to choose c 2 as the smaller of c 3 and 2cs 1

6

The proof of Lemma 4 appears in Section 7 .

5 . UNIQUE A-COLOURINGS. PSEUDO -A-COLOURINGS

Can a matrix digraph be recoloured in an essentially different way?
We claim not - provided that all classes of the original colouring are
sufficiently large. The following result will be required in our proof of
Theorem 1, to extend a colouring of a "small" matrix subdigraph to a
larger one .

Lemma 6 . Let A be a dense r X r matrix, and A (x) a matrix
digraph, for which x l > r (i = 1, 2, . . . , r) . Then all A-colourings of
A (x) yield the same partition of vertices (into unordered classes) .

Remark . Lemma 6 generalizes properties of complete multipartite
graphs. It is completely trivial when A has zero diagonal ; the vertices of
any class are independent, but, by Lemma l, aij + aji is always positive ;
thus vertices of different classes are always joined by at least one arc,
and the "colour" classes of vertices are simply the maximal independent
sets .

In our proof of Lemma 6 we shall consider the effect of a temporary
suppression of orientation. More precisely, a partition of the vertices of
a digraph is a pseudo-A-colouring if either

(i) it is an A-colouring ; or

(ü) it can be transformed to an A-colouring through reversal of the
orientations of some arcs .

For a matrix A, pseudo-A-colourability depends, like the property
of being dense (cf . (3 .1)), only on "symmetric part" of A, i.e .

2(A+A*)=A .



Proof of Lemma 6 .

(A) Let A (x) satisfy the stated conditions, with colour classes
Cl , C2 , . . . , Cr . The second colouring results from a second embedding
into A(-) ; the classes of this A(-) will be denoted by Cl*, C2* , . . . , Cr* :
Since I C=I > r, there exists for each i an integer p(i) such that Cpl= )
contains two or more vertices of C= (i = 1, 2, . . . , r) .

(B) We propose to show that the integers p(1), p(2), . . . , p(r) are
distinct. By assuming the contrary we shall argue that the colouring may
be transformed into a pseudo -A-colouring for which the classes C= will be
each contained entirely in one of the classes CJ*, and in at least one case
two C='s will together belong to the same CI-* . This will imply that a
submatrix of A has density equal to g(A), a contradiction .

(C) We first observe that if a vertex of Ci is contained in C*PUP
then there exists another pseudo-A-colouring in which all of CZ U Ci is
concentrated in one colour class . For the following inequalities must surely
hold :

ai< < ap(=),P( =)

1
2 (a ii + ai =) < ap(i),P(i)

aii < ap(i),P(,)

and one of

(5 .1)

	

aii < aP(=),P(=)

(5 .2)

	

aii > aP(=),P(=)'

When (5 .1) holds (in particular, when i

	

we may absorb
into Cp*( = ) . Otherwise (5 .2) entails that

a== < ap(i),P(i)
1
2 (a =i +

ai =) < apP(i)

and so the union may be absorbed into Cp(i)*

all of C= U Ci



(D) Through repetitions of the procedure of paragraph (C), we
obtain a pseudo-A-colouring in which each CpW contains all vertices
of Cj. Moreover, the integers p(i) are not distinct. Consequently, some
class CS contains no vertices of A ( x ) . If A ' is the principal submatrix
of A obtained through deletion of a corresponding row and column, then
every A(n) admits a pseudo-A'-colouring . A pseudo-A'-colouring of the

digraph G n cannot have more than 2 g(A') n 2 arcs. Thus

g(A) = lim 2e(A2(n)) < g(A')
n -->

contradicting the assumption that A is dense . (Note that, while every
A(n) admits a pseudo-A'-colouring, we have not proved that it admits an
A'-colouring!) 1

6. AUGMENTATION OF MATRICES

To prove Lemma 4 we require the notion of augmentation of matri-
ces, developed in [I] . Lemma 7 and Lemma 9 below are generalized re-
statements of Lemmas 2 and 4 of that paper, to which the reader is referred
for proofs for the case q = 1 (which generalize to meet present needs
without difficulty .)

Let A be an r X r dense matrix, m an integer and x =
_ (x 1 , x 2 , . . . , x r ) an r-vector for which some optimum A(m)=A(x) .
We construct a new graph by taking Xr+ I

new vertices to form a new class

Cr+ I , and then joining every vertex of the new class to every vertex of the
i-th class in exactly the same way (i .e . the same numbers of arcs in each
direction (i = 1, 2, . . . , r) ; the valencies of the vertices in the new class
will have to be "sufficiently large" . Then we change the proportions of
vertices allotted to the various r + 1 classes so that the digraph obtained is
an optimum digraph A(m + xr + I )) : even the relative proportions of the
numbers of vertices in the original classes may change under this operation .
This construction motivates the following definition :

Definition 6 . Let B = {a ii } be an (r + 1) X (r + 1) matrix and A
the submatrix obtained by deleting the last row and column . Suppose,



moreover, that A is dense, with the optimum vector u . If y is any
constant such that

(6.1)

	

1

	

r+1,1 u1 +

	

l,r+lu11 > y>g(A)

we say that B is a -y-augmentation of A, obtained from A by augmen-
tation by y . The entry ar+ 1,r+ 1

is not restricted. (In this paper, how-
ever, it suffices to take it to be zero in all cases .)

Remark . In the graph construction given to motivate Definition 6,
the inequality

(6 .2)

1
ar+1,ix1 +

	

a1,r+1x1) > yn> g(A)n

means that each of the new vertices are joined to A(m) by more arcs than
the average valency of the vertices of A(m) .

Lemma 7 . If B is obtained from A by augmentation by y, then

g(B) - g(A) > (y - g(A)) 2 > 0 .
2y - g(A)

Proof. See the proof of Lemma 2 of [ I] . 1

The symbol D(B) will be used to denote any fixed minimal principal
submatrix of B of density g(B) . Clearly D(B) is dense ; it may coincide
with B .

Given a dense matrix A, and a constant y > g(A), we can find first
all the possible augmentations of A by this constant . Then, whenever an
augmentation B is not dense, we replace it by some D(B). We then
augment all the matrices obtained with densities less than y again by y,
taking D(B) where necessary. In this way we obtain a directed graph
which, in our forthcoming papers, will be called an augmentation scheme
of A by y. The vertices of this scheme are the dense matrices obtained
through this procedure : we direct an edge from A to B whenever B =
= D(B#), where B' is an augmentation of A by y. By imposing addi-
tional conditions, we can specialize an augmentation arborescence in this
scheme .
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Remark . Whenever we speak of iterative augmentation we always

permit that each augmentation may be followed by restriction to a

maximal dense submatrix . As this restriction may involve the deletion of

rows and columns, it may well happen that not all (or indeed any) of the

original rows and columns are present after sufficiently many iterations

(cf. however Lemma 3 of [ 11) .

Example 5 . Let A be the matrix 0 2 2

2 0 2

0 2 0

(i) Its optimum vector is ( j , 7 , i ), giving density 87 . This matrix

admits (up to isomorphism) the following dense augmentations (under

augmentation by any y > 8 ) :

All other augmentations are not dense, but have density = 3 and contain

a 3 X 3 matrix of structure 2(J - I) .

Cases (ü) are examples where restriction to a maximal dense submatrix

entails the deletion of rows and columns . For example, in the augmentation

0 2 2 2 0 2 2 2

2 0 2 2 2 0 2 2

0 2 0 2 0 2 0 2
having densities respectively 5 and 4 ;

2 2 2 0 2 0 2 0

0 2 2 2 0 2 2 2 0 2 2 2 0 2 2 0

2 0 2 2 2 0 2 0 2 0 2 0 2 0 2 0

0 2 0 2 0 2 0 0 0 2 0 2 0 2 0 2

2 0 0 o- 2 2 2 0 2 2 0 0 2 2 2 0

all of density

0 2 2

6,

2 ' 0 2 2 0

2 0 2 2 2 0 2 2

0 2 0 2 0 2 0 2 6
both of density

0 2 0 0 2 2 0 0 5'



022
202
020
2 2 0

are suppressed, although the optimum vector then has equal entries .

Sketches of the complements (for q = 1) of the associated digraphs
are provided in Figure 4 .

A«1, 1, 1) )

2
2
0
0

	

density is not changed if the third row and third column

augmentation of

density 75

augmentation of

density 54

four augmentations of density 66

two augmentations of' density 65



The following lemma is not stated explicitly in [I] ; however, it is an

immediate consequence of Lemma 2 of that paper, or of Lemma 7 of the

present .

Lemma 8 . For every y > 0 and e > 0, there exists an integer
K = K(-y, e) such that if B is obtained from A by a sequence of at least
K iterative augmentations by y, then

(6 .3)

	

g(B) > y - e .

Proof. Define a real function f by

f(x)=x+

	

x)2

	

2
	 = y

2y-x

	

2y-x'
(6 .4)

We define a sequence {x k } recursively by

(6 .5)

	

xa = 0, xk = f(xk _ i )

	

( k > 0) .

The sequence is monotonely increasing, and converges to

0 '40
WANI

0
four augmentations of density 43

Figure 4

(cf. Example 5)

(Note that the figure shows complements .)

y ; let K be the
first integer k for which x k is within e of y . Lemma 7 ensures that

g(B) >, xK > y - e . 1

The theorems we wish to prove are concerned with ensuring the
existence of subdigraphs in digraphs having sufficiently many arcs. The

following lemma, numbered 4 in 11], describes a connection between

(abstract) augmentation of matrices (considered until now) and the sub-



digraphs of a digraph having more than 2 g(A)n 2 arcs .

Lemma 9 . For every dense matrix A, positive integer m, and e > 0,
there exists an integer m l = m l (A, e, m) such that the conditions

(i) G" contains A(mt);

(ü) all (total) valencies in G" exceed (g(A) + e)n

ensure, for n sufficiently large, that there exists a matrix B obtained
from A by augmentation, containing a maximal dense submatrix A # _
= D(B) such that G" contains A#(m) .

Proof. The proof of Lemma 4 of [ 1 ] generalizes without significant
change, beyond the replacement of several constants . I

7 . PROOF OF LEMMA 4

Let A be an r X r dense matrix, s be a positive integer, and set

e = I cz where c z = cz (s, A) is the constant of Lemma 5 ; let K =

= K(g(A) - e, e) is the constant of Lemma 8 and m = (r + I )K . Let
{G" } be a sequence of digraphs each containing no member of 'VM ,
and which satisfy (4 .3) . Define the graphs al successively by G" = G"
and by deleting a vertex of valence < (g(A) - e)1 from a l if G 1 has
such a vertex. Stop if such a vertices do not exist . Clearly,

e(G ") - (g(A) - e)

	

i < e(G1) < 1 qlz
i= l 1

	

2

which, together with (4 .3), implies that the process will terminate for
l > c 7 n, c 7 > 0. We propose to apply Lemma 9 iteratively to G i K =
= K(g(A) - e, c) of fewer times : in the first application we take the matrix
(0) and m(1) = 1 . In the k-th application we have already defined a dense
A k and know that G" ? G 1 Ak (Mk ) for an arbitrarily fixed Mk , if
1 (that is, n) is sufficiently large . Using Lemma 9 we infer that an D
G 1 ? Ak + 1 (mk + 1)) for an arbitrary mk + 1 and some A k 1 = D(A'),

where A' is an augmentation of A k by > g(A) - e . By Lemma 8 for
the dense matrix B := AK



(7 .1)

	

g(B) > (g(A) - e) - e > g(A) - 3 cz .

This B may depend on n, but, since its size is K, and each of its entry

can be chosen in at most (q + 1) ways, there are only O(1) possibilities

for this B. For each possible B, the optimum vector u of Lemma 2

has strictly positive coordinates . Since m = MK can be chosen arbitrarily,

we may assume that it tends to -, as n ~ . For n sufficiently large

G n G 1 B(m) D B ((r + 1) e). We have assumed that G n contains no
subgraphs from .4m . In other words, all the subdigraphs of Gn of at
most m = (r + 1) K vertices are A-colourable . Thus B ((r + 1) e) is also
A-colourable . By Remark* (preceding Definition 3) every B(m) is A-
colourable (cf. Remarks, preceding Example 1) . Now, by (4.2) and (7 .1),

e(B(m)) = g(B)
2?

+ o(m 2 ) > ( g(A) - 3 cz - 0(1))
22

.

For sufficiently large m this implies that

2
(7 .2)

	

e(B(m)) > (g(A) - e
~
2

from which Lemma 5 enables us to conclude that B(m) contains an A(s) .

On two occasions above we have required m to be "sufficiently large" :

Lemma 9 will ensure this if n is sufficiently large, i .e . if we confine our-

selves to sufficiently advanced members of the sequence {G n } . 1

8 . PROOF OF THEOREM 1

Let u = (u i , u 2 , . . . , ud be the optimum vector of A, i .e. satisfying
(3 .2) ; u must have rational positive coordinates . We choose an integer t
such that to has integer coordinates, each exceeding r . Lemma 2 ensures
the existence of an integer s such that, for every n > s, any A(n) con-
tains A (tu ) . Fix an integer m > t + 3 for which Lemma 4 holds for s .
We shall prove that Y _ dm has the desired properties .

(A) First we show that the digraphs A(n) (not uniquely determined
by n), are the only extremal digraphs for this W M . The method applied
here will be one we call "progressive induction", introduced by the third
author in [ 121 . (This method can be applied to prove statements which are
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seem to be hereditary for large n, but where - perhaps the statement may
not even be valid for small values of n - one cannot use induction . We
forego a detailed description of the technique, but describe below its
application to our problem in such a way that the method should be under-
standable in itself .)

(B) Let fSn } be a sequence of extremal digraphs for 4m . Since
no A(n) contains prohibited subdigraphs, e(A(n)) is a lower bound for
ex (n, 4m ) = e(S" ) . Define d(n) to be the excess of e(Sn) over
e(A(n)) :

d(n) = e(S ") - e(A(n)) .

We recall that this last number is independent of the particular optimum
digraph chosen . We wish to prove that d(n) = 0 for n sufficiently large .
For n sufficiently large Lemma 4 and (4 .2) ensure that S n must contain
an A(s), and hence a digraph H of structure A ( to ) ; by our definition
of s, any A(n) must also contain a subdigraph of the same struct6t-e
A (tu ) . We denote this also by H. Let H', H" respectively denote the
digraphs obtained from some fixed A(n) and from Sn by deleting all
vertices in H and all incident arcs - i .e ., H' = A(n) - H, H" = Sn - H;
H' has the structure of a matrix digraph .

(C) If H is contained in a matrix graph A ( x) (which, by Lemma 6,
can happen only in the obvious way if ~xl is sufficiently large!) then

t
a vertex p of A (x) - H belonging, say, to the i-th class of A ( x ), is
adjacent with vertices of H by exactly

1
1

i t
(aii

+ a,,) tu1 + a,, tu, = tg(A)

by (3 .2). More generally, if H is contained in any A-colourable digraph
G, and p is a vertex of G - H, then p is adjacent with H by at most
tg(A) arcs .

(D) Thus any vertex of H' is adjacent to or from vertices of H by
a total of exactly tg(A) arcs. It follows that the partition of vertices into
classes in H' is optimal -- otherwise a rearrangement of its vertices could
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increase the number of arcs in A(n), without altering the numbers of arcs
connecting it to H; i .e . H' is of structure A(n - t) . To simplify the fol-
lowing calculations, we shall make comparisons between A(n) and S" .
The difference

(8.2)

d(n) - d(n - t) _

_ {e(S ") - e(A(n))} - {e(S" - i ) - e(A(n - t))} _

_ {e(S ") -- e(S" - r)} - {e(A(n)) - e(H')}

< (e(S" ) - e(H ")) - g(A) t(n - t) - e(A ( tu ))

since S" - r is extremal =

_ {e(S" ) - e(H ") - e(H)} - g(A) t(n - t)} .

To estimate the first expression we observe that any vertex p in H" spans
together with H an A-colourable digraph, since t + I < m. By the
argument of paragraph (C) above, p is joined to H by at most g(A)t
arcs, thus e(S) - e(H") - e(H) - which is precisely the number of arcs
between H and H" in S" - is bounded above by g(A)t(n - t) ; from
which follows that

d(n) < d(n - t) .

Of course, we cannot claim that this holds for small n : earlier we applied
Lemma 2, and required that n > s . Nevertheless, it follows that there
exists within each congruence class of integers modulo t an integer beyond
which all integers n satisfy

(8 .3)

	

d(n) = d(n - t) ;

the number of such congruence classes being finite, (8 .3) must hold for all
sufficiently large n . Returning to (8 .2), we see that this implies that
e(S") - e(H") - e(H) = g(A) t(n - t), so the average number of arcs con-
necting a vertex of H" to H is g(A) t . Again by the argument of para-
graph (C), this number can never be exceeded, and all vertices of H" are
joined to H by exactly g(A)t arcs. Moreover, the digraph spanned by H
and each vertex of H" is A-colourable . The strict lower bound of r im-



posed earlier on the size of the classes of H (of structure A ( to )) ensures
that Lemma 6 is applicable . Thus the vertices of H" are partitioned into
classes Ci , CZ , . . . , CI' respectively associated with the colour-classes
Cl , C 2 , . . . , Cr of H. We prove now that this partition is an A-colouring,
using the assumption that all "small" subdigraphs of S n are A-colourable .
All subdigraphs consisting of H and 2 vertices of H" in distinct classes
Ci% Cl' are surely A-colourable - so there can be no violations to A-
colourability caused by arcs between classes ; also, subdigraphs spanned by
H and up to 3 vertices from the same class C ." are A-colourable . This
last observation ensures that an ordering of all vertices in the class of H"
in question, together with those of the associated class C. of H, induced
by the out-valencies (which must all be within the bounds imposed by the
diagonal elements of the matrix A and the associated vector b) within
the united classes, must be transitive . Since S n is an A-colourable ex-
tremal digraph, it must be maximal with respect to A-colouring ; indeed,
it must bean A(n).

(E) Let u, t, n be defined as above, and {Sn } now be an asym-
ptotically extremal sequence for .gy m ; let g = g(A) . We shall prove a
statement slightly stronger than (ü) : namely, that deletion of o(n)
vertices from Sn renders the digraph A-colourable . Fix e > 0, and
define h = h(n, e) to be the number of vertices of valency at most
(g - e) n . By deleting h' of those h vertices and their incident arcs
(at most h'(g - e)n in number), we obtain a subdigraph having at
most ex (n - h', .u rn ) arcs; but Sn has ex (n, .gym ) + o(n 2 ) arcs ;
h' will be further restricted below . Combining, and applying (4 .2), we
obtain the inequality

(8 .4)

	

2gn 2 - (g - e)nh' < 2 g(n - h') 2 + o(n 2 )

implying

and

(8 .s)

enh' < gh'2 + o(n 2 )

g ) 2
` (h

	

g
) 2 + o(n 2 ) .
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Suppose that h(n, e) > en for infinitely many n ; for sufficiently large n,

we could choose h' to be 1 S ], and then (8 .5) would yield

~ )
2<O(1)+o(n2) as ng

	

~~.

a contradiction . We conclude that h(n, e) < en for n > N(e) . Denote by
G' = G'(n, e) the digraph on n - h vertices obtaind by deleting from S"
all h vertices of valency less than (g - e)n : this deletion reduces the
valencies of some remaining vertices, but only by at most 2gen each: thus
no valency is less than (g - e(l + 2q))n >, g(n - h) - EO(n - h) as n - - .
These subdigraphs G'n - h of S n contain no member of 4 m , For each
n define l(n) = Max {j : n > N(2 - t)} ; the sequence {G'(n, 2- 1(n))} n
satisfies (4.3) . Our initial selection of s and m is now rewarded - Lem-
ma 4 provides that each contains a subdigraph of structure A (s), which,
in turn, must contain a subdigraph H of structure A (tu ) (= A(t), since
in this case the optimal digraph is unique) ; and all valencies are at least
(g - o(1))(n - h) . Define H" as in (B) to be Sn - H. This last fact
implies that H" is connected to H by at least (g - o(l))(n - h)t arcs .
The choice of m > t ensures that no outside vertex is connected with H
by more than gt arcs (cf . paragraph (C) above) . The number of vertices
of H" connected by fewer than gt - 1 arcs is o(n), by a simple computa-
tion . Deleting those vertices, we obtain an A-colourable subdigraph on
n o(n) vertices, all valencies of which are at least (g - o(l ))n . We have
thus proved slightly more than claimed in the theorem : the o(n 2 ) arcs to
be deleted can all be taken incident with a fixed o(n) vertices!

(F) Part (iii) of the theorem follows immediately from Part (ii) via
the following lemma .

Lemma 10. Let A, B be dense matrices such that, for infinitely
many n, some A(n) can be transformed into some B(n) through addi-
tion and deletion of o(n 2 ) arcs. Then A can be transformed into B
through like permutations of rows and columns .

Proof. By (4 .2), g(A) = g(B) . By Lemma 2, we may choose an
integer s so large that every class of every A(s) and of every B(s) con-
tains at least r + i vertices, where r denotes the maximum number of
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rows of A and of B . If an A(n) can be transformed into some B(n)
through the addition and deletion of o(n 2 ) arcs, then the deletion of
o(n 2 ) arcs (without additions) yields a digraph G n which is both A- and
B-colourable. For infinitely many n, (4.2) and Lemma 5 ensure that each
A(n) contains a B(s), and hence it also contains a B (2e) such that each
class of B(2e) is contained in once class of A(n) . This implies for arbi-
trary n that B(n) is contained in A(-) canonically : so that each class
of B(n) meets at most one class of A(-) . Further, each class of A(-)
must contain some class of B(n), otherwise for some principal submatrix
A' of A A'(-) would also contain B(n) . This would imply that
g(B) < g(A) < g(A), a contradiction . Thus we obtained a permutation p
mapping the classes of B(n) onto the classes of A(-) and mapping the
rows of B onto the rows of A so that b4 < aPW PW' Here p must be
a 1-1 mapping, that is, a permutation, indeed, since (exchanging A and
B we get that) A(n) can also be embedded canonically into B(-), and
each class of B(-) must be used : A and B have the same size . Finally,
if at least once we have strict inequality in b ii = aP(i) Pí ' then we have
g(B) < g(A), a contradiction, again . This proves the lemma . i

9 . THE SET OF ATTAINED DENSITIES .
A CONTINUITY THEOREM

Our early research (unpublished, [3]) into multigraph extremal
problems included an extensive cataloguing for q = 1 of matrices of
density less than 2 . The attained densities not exceeding 3 were found
to be

0,2,3, . . .,1- 1

	

,1,8,á, . . .,3r4+ 1 , . .,3 .

From this, and more abundant evidence in the interval from 3 to 2 ,
we were led to formulate the following conjecture .

Conjecture 2 .

(a) The set D Q = {g(A) : A dense} is well ordered for all q .

(b) No density is realized by an infinite number of dense matrices .
1 5 0 -



The truth of this conjecture would imply that of

Conjecture 2* . For every indinite family Y of prohibited di-
graphs there exists a finite family -'*c Y such that ex (n, Y) _
= ex (n, Y*) - o(n 2 ) as n -> -, and for which two families the dense
matrices A for which A(n) is asymptotically extremal are precisely the
same .

We have provided in Section 4 a simple proof of a weakening of The-
orem 1 -- permitting an infinite family Y . Thus Theorem 1 would also be
a consequence of either conjecture . For the case q = l, we are able to
prove Conjecture 2 . The proof will be included in our forthcoming paper
[4] where we deal primarily with q = l . In Section 10 of the present
paper we shall prove a somewhat weaker result, for general q :

Theorem 2 (Continuity theorem) . For every family Y of prohib-
ited digraphs and every e > 0, there exists a finite subfamily Y * c Y for
which

(9.1)

	

ex (n, Y) 5 ex (n, Y*) < ex (n, Y) + en 2

for n sufficiently large .

10 . PROOF OF THE CONTINUITY THEOREM

(A) The left inequality of (9 .1) is trivial, since deletions from a
family of forbidden subdigraphs cannot decrease the extremal number .

(B) Suppose that the right inequality fails for some e > 0 . Then, for
every finite subfamily Y* of Y, there exist infinitely many n such that

(10.1)

	

ex (n, Y*) > ex (n, Y) + en 2 .

Let

y = 2 lim sup ex (n, Y)

	

as n ~ .
n

We shall eventually derive a contradiction from (10 . 1), via Lemma 9 . In
preparation for this we study the effect of iterative augmentations by



y + 2 of the 1 X 1 matrix (0) (cf. Section 6) .

(C) For non-negative integers k we define recursively a family .Ilk
of dense matrices . ~-Il 0 = {(0)} . Each member of "Il k is obtained from

llk 1 through augmentation of a matrix of the latter by at least y + 2
to obtain a matrix B, then taking A = D(B), a dense principal submatrix
of B having density g(B) ; this construction to be carried out in all
possible ways. However, we do not include in Ilk any A for which A(-)
contains a prohibited digraph L in Y . Define .,II = U -Ilk . No matrix
A in Il can have density exceeding y: for that would imply, by (4.2),
that e(A(n)) exceeds ex (n, Y) infinitely often, and so A(-) contains
a member of Y . Consequently, Lemma 8 implies that, as each matrix

has only finitely many (y + 2)-augmentations, we are considering only

a finite set of dense matrices in . il . We define a finite subfamily Y * of
Y as follows: wherever a matrix in -IZ possesses a dense augmentation B

for which B(-) contains as a subdigraph a member L of Y, select one
such prohibited subdigraph L ; P* is to be the set of prohibited digraphs
so selected, and satisfies (10.1) for infinitely many n ; hence

2

	

ex(n,	
2

	 21*)lim sup

	

> y + e as n
n

Let now {Sn } be any asymptotically extremal sequence for P*.
Through the use of familiar methods (cf . above, either Section B(E), or the
proof of Lemma 4 in Section 7) we can show that there exists an infinite
sequence {n'} of integers and {G'n } of digraphs such that G'n C Sn
and

(i) n' > n -- o(n) ;

(ü) all valencies exceed y +
2) n' .

Every abstract augmentation A contained in .ill has associated with it
a sequence of integers {h(n, A)} defined by h(n, A) = max {m' : A(m') C

C G'n } . Among those matrices A for which the sequence is unbounded
- the matrix (0) is certainly one matrix in Il having this property --
select one having maximum density . This matrix A has only finitely many
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y + 2) -augmentations . By Lemma 9, one of these, B, has a maximal

dense submatrix A * of density greater than g(A), having the following
property : that there exists an optimal matrix graph of structure A *(m)

in infinitely many S" where m is unbounded as n - - . Since A was
chosen to have maximum density with precisely this property, A * must
be one of the dense matrices excluded from W, because A *(-) contains
a prohibited subdigraph L selected from _T* . Thus S" contains, for
sufficiently large n, a prohibited subdigraphs - a contradiction.

Added in proof. The above proof is included here partly for the
sake of completeness, partly, to illustrate the methods used here . We
describe in [4] some schemes of dense matrices called augmentation

schemes. As a matter of fact, above we have built up one of these augmen-
tation schemes, see [4] for the details . Later we have found a simpler proof
of the Continuity Theorem using only the methods of [10] and yielding
a much more general result, see Brown and Simonovits [5*] .

11 . INVERSE EXTREMAL MULTIGRAPH PROBLEMS

In this section we explore consequences and analogues of our digraph
theorems for multigraphs whose edges are of multiplicity not exceeding
a fixed positive integer q ; loops are excluded .

Definition 7. Let A = fd,,j be a fixed non-negative symmetric r X r

matrix, with integer entries : off-diagonal entries not exceeding q, main
diagonal entries not exceeding q - 1 . Let x be a vector with non-
negative integer coordinates . A matrix multigraph 4(x) is defined as
follows (cf. Definition 2) : the vertices are divided into r distinct classes,
Ci , C 2 , . . . , Cr containing respectively x i , X21 . . . . x r members; con-
necting each vertex of Ci with each vertex of Ci there are exactly

iii parallel (undirected) edges . Pairs of vertices of the i-th class are
connected by edges of multiplicity iii .

Remark . When the off-diagonal entries of A are all even, A (x)
may be viewed as the result of suppression of all orientations in a matrix
digraph A ( x) . More generally, we may certainly find even integers ait



such that 2 (a il + a . i ) = dii .

Analogous to (4 .1) we have

(11 .1)

	

2e(~ (x» = xf x* + 0

	

xj
t

We may define optimal matrix graphs (we prefer to suppress the prefix
"multi"), dense matrices (now symmetric), the extremal (multi-)graph
problem, and functions ex (n, Y), EX (n, Y) analogously : the theory
carries over without surprises . We use a circumflex to denote the multi-
graph analogue . For example, the following theorem holds :

Theorem 3 . For every dense (symmetric) matrix A there exists a
finite family

	

of prohibited multigraphs such that

(i) each optimal matrix graph Á(n) is extremal for _!~, and there
are no other extremal multigraphs for _!~ ;

(ü) any asymptotically extremal sequence {G n } for `8 can be
obtained from a sequence {A(n)} by deleting and/or adjoining On e )
edges ;

(iii) If' {B(n)} is an asymptotically extremal sequence of optimal
matrix graphs, where h is dense, then h and A are identical up to the
same permutation of rows and columns .

Sketch of proof . (Parts (i) and (ü) were announced as Theorem 2 of
[I].) A proof can be constructed by reproving successively all the lemmas
leading up to Theorem 1, with orientations suppressed . 1

Remark. Lest the reader jump to conclusions concerning the sup-
pression of orientations, we hasten to observe that this operation can
change the value of the extremal number, i .e . it is not necessary that
ex (n, _,~) = ex (n, Y). As an example, we propose, for q = 1, the single
digraph obtained from the digraph DQ1, 1, 1, 1)) of Example 2 by
deleting the three edges of a cyclic triangle (shown in Figure 4, with density
5) . The extremal numbers for this digraph are 4 + 0(1))n as n

while those of the multigraph obtained by suppressing all orientation are
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4 + 0(1)) n 2 as n

	

the other orientation of this multigraph (also

shown in Figure 4) does indeed have extremal numbers (3 + 0(1)) n 2 .

Theorem 2 also admits a multigraph generalization .
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