MINIMAL DECOMPOSITION OF ALL GRAPHS WITH EQUINUMEROUS VERTICES AND EDGES INTO MUTUALLY ISOMORPHIC SUBGRAPHS

F.R.K. CHUNG - P. ERDÖS - R.L. GRAHAM

I. INTRODUCTION

Suppose $\mathbf{G}=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ is a collection of graphs*, all having the same number of edges. By a U-decomposition of G we mean a set of partitions of the edge set $E\left(G_{i}\right)$ of the G_{i}, say $E\left(G_{i}\right)=\sum_{j=1}^{r} E_{i j}$, such that for each j, all the $E_{i, j}(1 \leqslant i \leqslant k)$, are isomorphic as graphs. Define the function $U(\mathrm{G})$ to be the least possible value of r any U-decomposition of G can have. Finally, let $U_{k}(n)$ denote the largest possible value $U(\mathbf{G})$ can assume where G ranges over all sets of k graphs each having n vertices and the same number of edges.

In previous work [3], [4], it was shown that

$$
U_{2}(n)=\frac{2}{3} n+o(n) \quad \text { and } \quad U_{k}(n)=\frac{3}{4} n+o(n)
$$

for any fixed $k \geqslant 3$.

[^0]In this paper we consider the family, denoted by $\mathbf{G}(n, e)$, of all graphs on n vertices and e edges. Let $U(n, e)$ denote $U(\mathbf{G}(n, e)$), and let $U(n)$ denote the maximum value of $U(n, e)$ over all values of e. It is easily seen that $U_{k}(n) \leqslant U(n)$. We will prove that

$$
U(n)=\frac{3}{4} n+O(1) .
$$

In particular,

$$
\left.U(n, e)=o(n) \quad \text { if } \quad e \gg n \quad \text { (i.e., } \frac{n}{e}=o(1)\right) .
$$

II. PRELIMINARIES

Before we study U-decompositions of $\mathbf{G}(n, e)$, we will state some auxiliary facts on unavoidable graphs, which were first investigated by two of the authors in [2]. A graph contained in every graph on n vertices and e edges is called an (n, e)-unavoidable graph. Let $f(n, e)$ denote the largest integer m with the property that there exists an (n, e)-unavoidable graph on m edges. It was proved in [2] that
(i) $f(n, e)=1$ if $e \leqslant\left\lfloor\frac{n}{2}\right\rfloor$;
(ii) $f(n, e)=2$ if $\left\lfloor\frac{n}{2}\right\rfloor<e \leqslant n$;
(iii) $f(n, e)=\left(\frac{e}{n}\right)^{2}+O\left(\frac{e}{n}\right)$ if $n \leqslant e \leqslant n^{\frac{4}{3}}$;
(iv) $c_{1} \frac{\sqrt{e} \log n}{\log \binom{n}{2}-\log e}<f(n, e)<c_{2} \frac{\sqrt{e} \log n}{\log \binom{n}{2}-\log e}$ for $d_{1} n^{2}<e<\binom{n}{2}-n^{1+d_{2}}$
where c_{1} and c_{2} are appropriate constants where d_{1} and d_{2} are any constants satisfying $0<d_{1}<\frac{1}{2}, \quad 0<d_{2}<1$. In particular,
(v) $f(n, e) \geqslant(1+o(1)) \sqrt{2 e}$ for $\frac{n}{e}=o(1)$.

The unavoidable graphs in (i), (ii) and (iii) are disjoint unions of stars.

In (iv) and (v) the unvoidable graphs involved are disjoint unions of complete bipartite graphs.

Let S_{i} denote a star with i edges and let $j S_{i}$ denote the vertex disjoint union of j copies of S_{i}. We need the following useful facts.

Lemma 1. Suppose G has n vertices and e edges, and has maximum degree d. For any two integers t and r, if we have

$$
e \geqslant \frac{r-1}{2} n+(t-1) d+t^{2} r^{2}
$$

then G contains $t S_{r}$.
Proof. Suppose k is the largest integer such that $k S_{r}$ is embedded in G and suppose $k<t$. Let X denote the image of k centers of S_{i} 's. Let Y denote the image of $k r$ leaves. Because of the maximality of k, the induced subgraph of S on $Z=V(G)-X-Y$ does not contain any vertex with degree r or more. At most k vertices in $X \cup Y$ are adjacent to at least $k r$ vertices in Z. The total number of edges in G is then bounded above by

$$
\begin{aligned}
& \binom{(k+1) r}{2}+\frac{(n-(k+1) r)(r-1)}{2}+k d+k^{2} r^{2}< \\
& \quad<\frac{r-1}{2} n+(t-1) d+t^{2} r^{2}
\end{aligned}
$$

This is a contradiction and Lemma 1 is proved.
Lemma 2. Suppose G has n vertices and e edges with

$$
o\left(n^{\frac{4}{3}}\right)=e=m n+s \quad(n>s \geqslant 0) .
$$

Then G has the following properties:
(i) If $s>\frac{n}{2}, G$ contains $\left\lfloor\frac{n-s-m^{2}}{2}\right\rfloor$ (edge-disjoint) copies of $m S_{2}$. After removing $\left\lfloor\frac{n-s-m^{2}}{2}\right\rfloor$ copies of $m S_{2}$, the remaining graph G^{\prime} has maximum degree $s+m^{2} . G^{\prime}$ contains $\left\lfloor\frac{s}{2}-\frac{n}{4}-m^{2}\right\rfloor$ copies of
$(m+1) S_{2}$. After removing $\left\lfloor\frac{s}{2}-\frac{n}{4}-m^{2}\right\rfloor$ copies of $(m+1) S_{2}$ from G^{\prime} the remaining graph $G^{\prime \prime}$ has maximum degree at most $\frac{n}{2}+2 m^{2}$. $G^{\prime \prime}$ contains $\left\lfloor\frac{n}{2}-m^{2}\right\rfloor$ copies of $(m+1) S_{1}$. After removing these $(m+1) S_{1}$ from $G^{\prime \prime}$ the remaining graph has maximum degree $4(m+1)^{2}$ and has at most $20(m+1)^{3}$ edges.
(ii) If $s \leqslant \frac{n}{2}, G$ contains $\left\lfloor\frac{n}{4}-m^{2}\right\rfloor$ copies of $m S_{2}$. After removing $\left\lfloor\frac{n}{4}-m^{2}\right\rfloor$ copies of $m S_{2}$, the remaining graph \bar{G}^{\prime} contains $\left\lfloor\frac{n}{2}-s-m^{2}\right\rfloor$ copies of $m S_{1}$. After removing $\left\lfloor\frac{n}{2}-s-m^{2}\right\rfloor$ copies of $m S_{1}$, the remaining graph $\bar{G}^{\prime \prime}$ contains $s-m^{2}$ copies of $(m+1) S_{1}$. After removing $s-m^{2}$ copies of $(m+1) S_{1}$, the remaining graph has maximum degree $4(m+1)$ and $20(m+1)^{2}$ edges.

Proof. The proof proceeds by using Lemma 1 iteratively. We first prove (i) by proving the following stronger statement.

By removing i copies of $m S_{2}$ from $G, i<\left\lceil\frac{n-s-m^{2}}{2}\right\rceil$, the remaining graph G_{i} contains $m S_{2}$ and G_{i} has maximum degree $\leqslant n-2 i+2$.

It is clearly true for $i=1$ by Lemma 1 (we may assume $m \geqslant 1$ in (i)). Suppose it is true for $j<i$. We note that

$$
\left|E\left(G_{i}\right)\right| \geqslant e-2 i m \geqslant \frac{n}{2}+(m-i)(n-2 i+4)+4 m^{2} .
$$

Thus by Lemma 1, G_{i} contains $m S_{2}$. We now embed $m S_{2}$ into G_{i} such that centers are mapped into vertices with highest degrees if possible. If there are more than m vertices with degree $n-2 i+3$ or more, the total number of edges in G_{i-1} is then at least $(n-2 i+3)(m+1)-\binom{m+1}{2}$. Since G_{i-1} has $e-2(i-1) m$ edges, we then have

$$
e-2(i-1) m \geqslant(n-2 i+3)(m+1)-\binom{m+1}{2}
$$

i.e. $s \geqslant n-2 i+3-\binom{m+1}{2}$.

This yields a contradiction. The rest of (1) can be proved by using Lemma 1 repeatedly. (ii) can be proved in a similar fashion.

Lemma 3. Suppose G has n vertices and e edges with $e=$ $=m n+s=o\left(n^{\frac{4}{3}}\right)$ and $m>c$ for some constant $c . G$ contains $\frac{4 n}{c}-c m$ copies of $\left\lfloor\frac{m}{2}\right\rfloor S_{\left\lceil\frac{c}{2}\right\rceil}$. After removing $\frac{4 n}{c}-c m$ copies of $\left\lfloor\frac{m}{2}\right\rfloor S_{\left\lceil\frac{c}{2}\right\rceil}$, the remaining graph has at most cm^{3} edges.

Proof. It can again be proved by induction that after removing $2 i$ copies of $\left\lfloor\frac{m}{2}\right\rfloor S_{\left\lceil\frac{c}{2}\right\rceil}$ the remaining graph has degree at most $n-\frac{i c}{2}$.

III. ESTIMATING $U(n)$

We are now ready to tackle the problem of determining $U(n)$. In [4] it is proved that $U_{3}(n) \geqslant \frac{3}{4} n-\sqrt{n}-1$. Thus, $U(n) \geqslant U_{3}(n) \geqslant$ $\geqslant \frac{3}{4} n-\sqrt{n}-1$. We will first prove the following:

Theorem 1. $U(n, e)<\alpha n$ if $e>\frac{10 n}{\alpha}$.
Proof. We consider all graphs on n vertices and e_{0} edges. We will remove an (n, e)-unavoidable graph from each graph of edges currently remaining in each of the graphs. We consider the following cases.

Case 1. $n^{2-\epsilon}<e \leqslant\binom{ n}{2}$, where $\epsilon=\frac{\alpha}{10}$.
In this case, we remove a common subgraph having at least $\frac{1}{\epsilon} \sqrt{e}$ edges. Thus, if e_{i} denotes the number of edges remaining in each graph after i repetitions have been performed then

$$
e_{i+1} \leqslant e_{i}-\frac{1}{\epsilon} \sqrt{e_{i}} .
$$

It can then be proved by induction that $e_{i} \leqslant\left(\sqrt{e_{0}}-\frac{i}{2 \epsilon}\right)^{2}$ since

$$
\begin{aligned}
e_{i+1} & \leqslant e_{i}-\frac{1}{\epsilon} \sqrt{e_{i}} \leqslant\left(\sqrt{e_{0}}-\frac{i}{2 \epsilon}\right)^{2}-\frac{1}{\epsilon}\left(\sqrt{e_{0}}-\frac{i}{2 \epsilon}\right) \leqslant \\
& \leqslant\left(\sqrt{e_{0}}-\frac{i+1}{2 \epsilon}\right)^{2} .
\end{aligned}
$$

We apply this process as long as $e_{i}>n^{2-\epsilon}$ so that at most $2 \epsilon n$ subgraphs are removed from each graph.

Case 2. $n^{\frac{4}{3}}<e<n^{2-\epsilon}$.
In this range, the unavoidable graph has at least $c_{1} \sqrt{e}$ edges (see [2]). Let e_{i} denote the number of edges remaining in each graph after i subgraphs are removed. We have

$$
e_{i+1} \leqslant e_{i}-c_{1} \sqrt{e_{i}} .
$$

It can be proved by induction that

$$
e_{i} \leqslant\left(n^{1-\frac{\epsilon}{2}}-\frac{2 i}{c_{1}}\right)^{2}
$$

We apply this process as long as $e_{i}>n^{\frac{4}{3}}$ so that at most $c_{1} n^{1-\frac{\epsilon}{2}}$ subgraphs are removed.

Case 3. $\frac{n}{\epsilon}<e \leqslant n^{\frac{4}{3}}$.
In this step, we repeatedly remove unavoidable graphs with $(1-\epsilon)\left(\frac{e}{n}\right)^{2}$ edges. Then

$$
e_{i+1} \leqslant e_{i}-\left(\frac{e_{i}}{n}\right)^{2} .
$$

It can be proved by induction that

$$
\frac{e_{i}}{n^{2}} \leqslant \frac{1}{i} .
$$

Hence, to reach $e \leqslant \frac{n}{\epsilon}$ requires the removal of at most ϵn subgraphs.

Case 4. $\frac{n}{2 \epsilon}<e<\frac{n}{\epsilon}$.
We now use Lemma 3 by choosing $c=\left\lceil\frac{1}{2 \epsilon}\right\rceil$. After removing at most $3 \epsilon n$ graphs, at most c^{2} edges are left. We then remove one edge at a time.

Since $e_{0} \gg n$, then $e>\frac{n}{\epsilon}$ and $c^{2}<\epsilon n$. Therefore we require at most $\alpha n=\frac{10 n}{\epsilon}$ steps in the U-decomposition of $\mathbf{G}\left(n, e_{0}\right)$. Theorem 1 is proved.

Theorem 2. $U\left(n, c n^{2}\right) \leqslant n \log n$ for some constant c.
Proof. The proof is similar to that in Theorem 1 except for taking ϵ to be $\frac{1}{100 \log n}$ in the proof of Theorem 1. I

Theorem 3. $U(n)<\frac{3}{4} n+O(1)$.
Proof. We consider graphs on n vertices and e edges. From Theorem 1 we only have to consider the case that $e<15 n$. We now use Lemma 2. Let c be equal to 225 and $e=m n+r$. We consider the following cases.

Case 1. $s>\frac{n}{2}$.
Each G in $\mathbf{G}(n, e)$ can be decomposed into $\left\lfloor\frac{n-s-c}{2}\right\rfloor$ copies of $m S_{2},\left\lfloor\frac{s}{2}-\frac{n}{4}-c\right\rfloor$ copies of $(m+1) S_{2}$ and $\left\lfloor\frac{n}{2}-c\right\rfloor$ copies of $(m+1) S_{1}$. After removing these star-forests, only $4 c^{2}$ edges are left. Thus we have

$$
\begin{aligned}
U(n, e) & \leqslant\left\lfloor\frac{n-s-c}{2}\right\rceil+\left\lfloor\frac{s}{2}-\frac{n}{4}-c\right\rfloor+\left\lfloor\frac{n}{2}-c\right\rfloor+4 c^{2} \leqslant \\
& \leqslant \frac{3 n}{4}+4 c^{2} .
\end{aligned}
$$

Case 2. $s \leqslant \frac{n}{2}$.
Each G in $G(n, e)$ can be decomposed into $\left\lfloor\frac{n}{4}-c\right\rfloor$ copies of $m S_{2},\left\lfloor\frac{n}{2}-s-c\right\rfloor$ copies of $m S_{1}$ and $s-c$ copies of $(m+1) S_{1}$. After removing these star-forests, only $4 c^{2}$ edges are left. Thus we have

$$
U(n, e) \leqslant\left\lfloor\frac{n}{4}-c\right\rfloor+\left\lfloor\frac{n}{2}-s-c\right\rfloor+s-c^{\prime}+4 c^{2} \leqslant \frac{3 n}{4}+4 c^{2}
$$

Therefore $U(n) \leqslant \frac{3 n}{4}+4 c^{2}$ and the proof of Theorem 3 is completed.

IV. CONCLUDING REMARKS

Let c_{i} denote some appropriate constants. From Theorem 2 we know that $U\left(n, c_{1} n^{2}\right) \leqslant c_{1} n \log n$. If we insist that only unavoidable graphs can be used in the U-decomposition, then $\frac{c_{3}}{\log n}$ subgraphs are required since an ($n, c_{1} n^{2}$)-unavoidable graph can have at most $c_{4} n \log n$ edges. Is it true that $U\left(n, c_{1} n^{2}\right)=c_{5} n \log n$? Can we do better by using graphs other than unavoidable graphs in finding minimal U-decompositions of $\mathbf{G}(n, e)$?

In this paper we actually prove that

$$
\frac{3}{4} n-\sqrt{n-1}<U(n)<\frac{3}{4} n+c_{6} .
$$

There is still room for improvement.
For $U_{2}(n)$, it can be shown in a similar manner that

$$
\frac{2}{3} n-\frac{1}{3}<U_{2}(n)<\frac{2}{3} n+c_{7} .
$$

It would be of interest to get the exact value for $U_{2}(n)$ (and $U(n)$, for that matter).

REFERENCES

[1] M. Behzad - G. Chartrand, Introduction to the theory of graphs, Allyn and Bacon, Inc., Boston, 1971.
[2] F.R.K. Chung - P. Erdős, On unavoidable graphs, to appear.
[3] F.R.K. Chung - P. Erdős - R.L. Graham - S.M. Ulam - F.F. Yao, Minimal decompositions of two graphs into pairwise isomorphic subgraphs, Proc. 10th Southeastern Conf. on Comb., Graph Theory and Comp., 1979, 3-18.
[4] F.R.K. Chung - P. Erdős - R.L. Graham, Minimal decompositions of graphs into mutually isomorphic subgraphs, Combinatorica, 1 (1981), 13-24.
[5] F.R.K. Chung - P. Erdős - R.L. Graham, Minimal decompositions of hypergraphs into mutually isomorphic subhypergraphs, J. Comb. Theory (A), 32 (1982), 241-251.
F.R.K. Chung - R.L. Graham

Bell Laboratories, Murray Hill, New Jersey 07974, USA.
P. Erdôs

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Reáltanoda u. 13-15, H-1053, Hungary.

[^0]: *In general, we follow the terminology of [1].

