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1 . Introduction
In a previous paper [2] the senior authors proved the

following theorem: Let G, = GI (n ;cn 2 ) be a graph of n ver-
tices and cn 2 edges, c a positive constant . Then for n
sufficiently large there is always a subgraph G 2 =
G2 (m ;f(c)n 2 ) of G, every two edges of which lie together on
a cycle of length at most. 6 in G 2 , and if two edges of G 2
have a common vertex they are on a cycle of length 4 in G 2 .
In that paper, we did not determine f(c) explicitly although
the arguments used would yield something of the form f(c) _
01c

3 . Here we replace c by
n-e

for e small and to some
extent determine f(n ') . That is, we consider G 1 =
G

	

2-1 (n ;n £ ) and try to find the subgraph G 2 having the
largest number of edges with each pair of these edges on a
short cycle . This problem leads to surprising and perhaps
unexpected complications . Ode remark that in our previous
paper we also discussed hypergraphs . In this paper, we do
not do this but hope to return to that problem in the

future (for the SENIOR author of course there may not be a
future) .

Here we prove the following theorem : For sufficiently
large n each G 1 = G 1 (n ;n2-L ) contains a G 2 = G 2 (m ;cn2-3c ),

where c does not depend on m, n, or c, in which every two
edges are on a cycle of length at most 6 in G 2 , and that
apart from the value of c this result is the best possible,
i .e ., 3e cannot be replaced by any smaller value . If we
further insist that any two edges of G 2 which have a common
vertex are on a cycle of length 4 in G 2 then we can only
show that there exists a G 2 = G 2 (m,cn 2-5c ), but here we do
not know if 5c is best possible, and we cannot exclude the
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possibility that 5e could be replaced by 3s .
We further prove that there is a G 2 (m;cn2-2 `) every two

edges of which are on a cycle of length at most 12 . Here
2E is of course best possible since our G 1 (n ;n

2_e )
could be

the union of n E complete bipartite graphs each with n2-2E

edges, but 12 could perhaps be replaced by 8 .

2 . The Function f k (n,E)
We will always use G 1 = G 1 (n ;Q) to denote a graph

having n vertices and R edges and G 2 for a subgraph of G 1 .
By Cm we mean a cycle of length m . Let fk(n,E) be the lar-
gest integer such that each G 1 = G 1 (n ;n2-E ) for sufficiently
large n contains a subgraph G 2 = G 2 (m ;fk(n,E)) each pair of
edges of which lie together on a cycle of length at most
2k in G 2 . As mentioned above, there exists a positive
constant c such that f k (n,E) < on 2-2c .

It follows from Theorem 1** of [3] (or by the counting
used in the proof of Theorem 1 in [2]) that for 0 < E < 1/2

and n sufficiently large there exists a positive constant
c such that each G 1 = G 1 (n ;n2-E ) contains on 4-4c copies of
C . In this case G has an edge which is contained in at
least on 2 3e copies of C 4 . A subgraph of G 1 whose edges
are those of on 2-3c C 4 's all having a common edge has the
property that each pair of its edges lie together on a cycle
of length at most 6 . Thus f 3 (n,e) > cn2-3e . Our first

result states that, apart from the value of the constant,
this bound is the best possible .

Theorem 1 . For 0 < e < 1/2 there exist positive
constants c 1 and c 2 such that cln2-3E < f 3 (n,e) < c2 n2-3e

Proof . It remains only to establish the upper bound .
For this we use a probabilistic argument to show that there
exists G1 = G 1 (n ;n2-E ) which is such that any subgraph G 2 of

G1 in which each pair of edges are on a cycle of length at

most 6 in G 2 has at most c 2 n2-3F edges .
Let B be a complete bipartite graph with vertices X 1 ,

X2 , . . .,X, and Yl,Y,2, . . .,YD, R = 2n '-E , where each X i is
joined to every Y ., 1 < i,j < Q. Also suppose that the
4n 2-2E edges of B have been colored in some fashion with the

296



colors 1,2, . . .,t, t = 4 nE .
Now let G, = G l (n ;n 2 ) be a bipartite graph with ver-

tices x(i,j), y(i,j), 1 < i < 9, 1 < j < t, where x(i,j) is
joined by an edge to y(i',j') if and only if the edge
joining X i to Yi , in B has color j-j'I mod t . Each vertex
of G I has valence 2nNote also that if j = j', then
neither the pair of vertices x(i,j) and x(i,j') nor the
pair y(i,j) and y(i,j') have a common neighbor in G 1 for any
value of i, 1 < i < . .

Now suppose that G 2 is a subgraph of G 1 in which each
pair of edges lie together on a cycle of G 2 of length 4 or 6 .

For each i, 1 < i < 9, the vertex x(i,j) is incident with an

edge of G 2 for at most one value of j and the same is true
for each y(i,j) (this follows from the lack of common
neighbors) . Thus each choice of such a subgraph G 2 yields
a coloring of (some of) the vertices of B with t colors in
which X i (Y i ) receives color j if x(i,j) (y(i,j)) has
valence at least one in G 2 . Now x(i,j) and y(í',j') are
joined by an edge in G 2 only if X i has color j, Y i , has
color j', and the edge XiY i , has color j-j', mod t . For
any choice of a vertex-coloring and an edge-coloring of B

call an edge whose color is related to the colors of its end-
points in this fashion a "good" edge . We wish to estimate

the number of these good edges when one of the colorings is
selected at random .

For a fixed t-coloring of the vertices and a random t-
coloring of the edges B the expected number of good edges
is (2n1-E ) 2t-1 = lent-3E . By an inequality of Chernoff

(see Chapter 3 of [4]) the probability that such colorings

result in at least 32n 2-3E good edges is at most

exp(-cn2-3c ), where c is a positive constant . Since there

are exp(4En 1-E log 1 n ) possible t-colorings of the vertices

of B, the probability that for a given t-coloring of the
edges of B there exists a t-coloring of the vertices which
yields at least 32n 2-3 ` good edges is at most
p = exp[4En 1 E(log 4 n) - on 2-3E ] . For 0 < E < 1/2 and n
sufficiently large we have p < 1 . It follows that there
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exists a constant c 2 and a t-coloring of the edges of B
which yields at most c 2n

2-3s
good edges for any t-coloring

of the vertices of B. Hence there is a graph G1 = G1 (n ;n2-E )

such that each subgraph G 2 of G 1 having the required short
cycles has at most c2 n2-3E edges .

Although c,n2-3E < f 3 (n,E)

< 0
2 n 2-3F , our next result

shows that for k > 6 the bound fk (n,E) < on2-2c is essen-
tially the correct one . (Perhaps this remains so for a
smaller value of k > 3 .)

Theorem 2 . There exists a positive constant c such
that f 6 (n,F) > on2-2 " .

Proof . By standard results (see [1]) we may assume
that our graph G, = G 1 (n ;n 2 ) is bipartite and that each
vertex has valence at least n1-F . In this case there exist

two vertices x l and x 2 and vertices y l ,y 2 , - y, , k= on1-2E

c a positive constant, such that each y i , 1 < i < R, is
joined to both x l and x 2 . Let zl,z2, . . .,zt be the set of
all vertices of G 1 which are joined to at least one of the
y's. Since each y i has valence at least n 1-E , we have
t > n1- `

	

Now let w l , . . .,w s denote the set of all vertices
(other than the y's) which are joined to at least two of the
z's . The subgraph of G, spanned by x l ,x 2 , and all of the
y's, z's, and w's is our desired subgraph G 2 . The number of

edges joining the w's and the z's is at least c'n2-2E for

a positive constant c' since by omitting those w's which
are joined to only one of the z's we lose at most n edges .

Thus G 2 has at least c'n2-2 " edges . To check that each pair
of edges of G 2 is on a cycle of length at most 12 a number
of cases must be considered . We note only that edges y i z i ,
and yj z j „ i

	

j, i' # j', are on a cycle of length 12 of
the form

	

Yi , zi „ wa , zb , Y c , x l , Yd , z e , w f , z j „ Yj , x 2 ,
y i , while for many pairs of edges shorter cycles exist .

It may be that Theorem 2 remains true for k = 5 or even

for k = 4 . About this we know only that f 5 (n,E) < on 2-5E:/2

which can be seen by letting xy be an edge of G 1 (n ;cn2-c )
which is contained in at least on 2-3F copies of C 4 (as for
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Theorem 1) and taking as G 2 the subgraph spanned by the ver-
tices of these C 4 's as well as all of the vertices which are
adjacent to at least two vertices each a neighbor of x on
one of the C 4 's .

In the earlier paper concerning G(n ;cn 2) we found a
subgraph G2 = G 2 (m ;f(c)n 2 ) with the additional property that
each pair of edges having a common vertex are on a cycle of
length 4 in G 2 . Here we have only the following result .

Theorem 3 • Given s, 0 < e < 1/2, and n sufficiently
large, there exists a positive constant c such that each
G1 = G l (n ;n 2-F ) contains a subgraph G 2 with on2 5F edges
with the property that each pair of edges of G 2 are on a
cycle of length at most 6 in G 2 and any two of these edges
with a common vertex are on a C 4 in G 2 .

Proof . As for Theorem 2 we may assume that GI is
bipartite with each vertex of valence at least n l-E , and
that there exist vertices x x

	

1-2_
1' 2'Yl' •

	

'y,' ' = n

	

where
each y i , 1 < i < is joined to both x l and x 2 . Let the

vertices joined to one or more of the y's be z 1'z2 . . z t
(t < n) . Since each y i has valence nl_ - there are n2-3e

edges joining the y's and z's and (by omitting some of the
z's) we may assume that each z is joined to at least nl-3 ,:~

y's. Thus there exist constants c l and c 2 such that there
are c ln2-4 ' pairs of y's and each z is joined to at least
c 2n2-6E of these pairs . It follows that there exist two of
the y's, say y l and y 2 , and vertices zl,z2	z s , s

c2nl-2e, among the z's, such that z i is joined to both y l
and Y2 for each i, 1 < i < s . Now x 1 and x 2 are each joined
to all of the y's, while yl and y2 are each joined to every

z i for 1 < i < s, as well as to xl and x2 . The number of
edges joining the y's and the z's is c 3 n2-5- and every pair
of edges joining y's to vertices among xl ,x 2 ,z 1 , . . , and z t
is on a cycle of length at most 6 with any pair of edges
which have a vertex in common being on a cycle of length 4 •

3 . Further Problems
Questions remain concerning the exact values of the

2 9 9



constants in all of our theorems and of course about the
correct bounds for f 4 (n,E) and f 5 (n,E) . It would be more
interesting however to determine whether Theorem 3 can be
improved, and in particular whether 5E can be replaced by 3E
in that result . More generally is it true that the value
of fk (n,E) remains unchanged for all k > 3 (except possibly
for the constant c) if we insist that a pair of edges of the
subgraph having a common vertex be on a cycle of the sub-
graph of length at most 2k-2?
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