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We investigate integer sequences A and B where (A -A 1 rl {B - B } = 0 . We
solve a problem of P . Erdős and R . L. Graham and prove several results on the
behaviour of A(x) B(x)/x, A(x)/V/x and B(x)IV .

Sidon's problems are of central interest in combinatorial number theory
(see, e .g ., [1 ; 2, pp . 48-49 ; 3, Chap . II]) . An infinite sequence A of positive
integers is called a Sidon sequence, if the differences a i - ai (i j) are all
distinct. It was proved by Erdős that for a Sidon sequence

lim inf A (x) = 0,

	

moreover

	

lim inf A (x) - < oo

	

(i)
X ti (b

	

X -co Vx/log x

must hold, where A(x) denotes the number of elements of A up to x.
It is quite natural to ask how much the situation changes if we cut A into

two parts, A' and A ", and demand only that no a i' - a, should coincide with
any a i ' -a,' . This question was proposed by Erdős and Graham in [2], and
it seemed likely that no considerable increase can be achieved in the density
of A . We shall show, however, that the situation changes dramatically, and
we can construct very dense sequences .

Let us see first the precise formulation of the problem [2, p . 50] : "Let
99

0022-314X/84 $3 .00
Copyright Oo 1984 by Academic Press, Inc .

All rights of reproduction in any form reserved .



100

	

ERDŐS AND FREUD

A = la, < a, < . . .} and B = {b, < b 2 < . . .} be sequences of integers
satisfying A(x) > ex'/2 , B(x) > ex" for some e > 0 . Is it true that

a, - = bk - b r

has infinitely many solutions?"
The negative answer is provided, e.g ., by the following A and B : we write

the numbers in binary scale, and select for A those which contain only even
powers of two, and for B those which contain only odd powers of two,

n

A =

	

c zi 2 2 ', c z , = 0 or 1, n = 0, 1, 2, . . . ,
t=o

n

B = V c

	

zt+ cz . = 0 or 1, n = 0, 1, 2, . . .
l

	

zt+1 2
lt=o

Then (1) is possible only in the trivial case, since it is equivalent to

a ; + b, = a; + b k (2)

and every integer can be uniquely written as the sum of different powers of
two. On the other hand

min {A(x), B(x)}
lim inf	- 1/V/2
x- CO

(cf. (i)!), since the "worst" case occurs just before a

B(2 2s-1 - 1) = 2 -- ' - 1

This settles the original question in the negative (for e = 1/\,/2) .
In the following we consider such sequences A and B where (1) (or (2))

has only trivial solutions, and investigate the behaviour of A(x) B(x)/x,
A (x)/VI-x- and B(x)/vlx- .

We introduce some notations :

SP = fim sup
X(x) B(x)

,x

A(x) B(x)
IP =1im inf

min (A (x), B(x) }
SN = lim sup	

2

V

(1)

new digit turns up in B ;

2z.e-1 -1 .
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IN = lim inf min JA (x), B (x)
X- Go

	

x

SX = lim sup
max{A(x), B(x) }

~,n

	

,

-X -W

	

V

max{A (x), B (x) }IX = liminf	
X-Go

	

VfX

SP = 3/2,

	

IP = 1,

SN= V3 / \/~2 ,

	

IN= 1/V/2 ,

SX = \//3 ,

	

IX= 1 .
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(S stands for lim sup, I for lim inf, P for product, N for min and X for max) .
It is easy to check that in our previous example

THEOREM 1 . The largest possible value of SP is 2, moreover the
following more precise estimations hold :

1 .1 . To any function H(x) with lim supx _ H(x) = oo, we can
construct A and B so that

A(x) B(x) > 2x - H(x)

	

(3)

is valid for infinitely many (integer) values of x .
1 .2. The previous result is best possible : for any A and B, A(x) B(x) -

2x - oo (x - oo ) .

THEOREM 2 .

2.1 . 'IP + 2SP < 7, in particular IP < 14/9 .
2.2. IP + ?SP < 4, in particular SP = 2 implies IP < 1 .

Remark . We could not yet decide if IP > 1 is possible at all .

THEOREM 3 .

3 .1 . The largest possible value of SN is 2, that of IX is oo .
3 .2 . IN > 1/r2 - e is attainable for any v > 0 .
3 .3 . To any E > 0 we can construct an A and B with SP > 2 - v and

IN > 0, SX < oo but SP = 2 implies IN = 0 and SX = oo .

Remark. 2.1 and 3.2 imply that the largest possible value of IN lies
between 1/V2 and V14/9, but we have no better estimations yet .
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THEOREM 4 . If IN > 0, then neither A(x)/vl'x- nor B(x)/,,Fx can tend to
a limit.

We shall consider further generalizations in a next paper .

Proofs . We shall frequently use the following generalization of the
example in the Introduction . We write the numbers by the help of a
generalized number system, and put into A those numbers where the even
digits are zero, and into B those ones where the odd digits are zero .
Formally : let k„ kz	k,,,, . . . be arbitrary integers greater than one, and

A = {co +cz k,kz + . . .+czs k,kz . . .kzs1

	

0<c,<k,; +, -1,s=0,1,2, . . . },

(*)
B = ~c, k, + c 3 k, k z k 3 + . . . + czs-, k, k z . . . kzs- i

0<c2i-1<k,-1,s=1,2, . . .} .

Clearly (2) is possible only in the trivial case .
We mention that for any A and B of this type we have IP= 1, since there

are exactly A(x) B(x) numbers of the form a, + b, with a ; < x and b, < x,
and so before a new digit turns up in A or in B, A(x) B(x) = x + 1 (for
x=k,k z

	

kJ - 1) .
The original example is the special case k, = kz =

	

= 2.

Proof of Theorem 1 . We may assume a, = b, = 0, and then a ; # b ; for
i,j> 1 .

A(x) B(x) < 2x is obvious, since for a; < x, b, < x, 0 < a i + b, < 2x - 1,
and all the numbers a i + b, are distinct.

To prove 1 .2, we assume indirectly that for some c, A (x) B(x) > 2x - c
infinitely often . For any such x, there exists a sum a i + b, > 2x - c, where
a i < x, b, < x . Then a i > x - c and b, > x - c must hold as well, and so

I a i - b, I < c .

	

(4)

But (2) is clearly equivalent to

a i -bk =a;-b„

	

(5)

i.e., all the differences a ; - b k are distinct, and so (4) cannot be valid
infinitely often, which is a contradiction .

To show 1 .1 we take the construction (x), and calculate A(x) B(x) for

x = k, k z . . . kzs + (kzs-i - 1) k, k z . . . kzs-z
+(k2s_3-1)k,k, . . .kzs-a+ . . .+(k,

Now all those numbers can be written in the form a; + b, with a, < x, b, < x,



which have 2s + I digits and their first digit is 0 or 1 . Hence
A(x)B(x)=2k,k2 . . . k2S .

On the other hand x - k, k2

	

k2S + k, k2 . . . k2,-1 . Thus if k2s is large
enough then A(x) B(x) is "nearly" 2x, and (3) can be easily guaranteed .

We mention that we can prove 1 .1 also by an alternative version of
construction (x), which is an iterative process. We sketch it briefly as
follows. Assume that we have already constructed A and B till x,,, the largest
value of A and B is x„ and x„ - y,,, respectively, and all numbers up to
2x,-y, can be uniquely expressed as a; + b,j , i .e ., A(x„) B(x„) _
2x„ - y„ + 1 = v. Now we translate A by v, 2v, . . ., (r„ - 1)v and B by r„ v .
Then the largest value of B is x„ + „ that of A is x„+, - y„ + „ where

and

and

DISJOINT SETS OF DIFFERENCES
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x,,+1=r,,(2xn-yn+ 1 )+(xn - yn)

yn+1 - 2x n - 2y n + 1,

and all numbers up to 2x„ +1 -y„ + , can be uniquely written in the form
a; + b ; . Since y„+1 does not depend on r,,, we can easily guarantee (3) .

Proof of Theorem 3 . 3 .1 . SP <_ 2 shows that SN < V"2 . To prove the
possibility of equality we consider the (*) construction used in the proof of
Theorem 1 . For the x there,

A(x) = 2k, -, k2s-a . . . k,

B(x) = k2s k2s-2 . . . k 2

(the ith digit from the right can take k; values with the exception of the
2s + Ist digit, which can be just 0 or 1) .

With the suitable choice of the k,'s we can clearly assure both A (x) = B(x)
and the "very big" value of kzs (the latter is necessary for A(x) B(x) - 2x) .
To make IX large, we choose the kzi 1 values to be greater than the k2,

values, and so A(x) will "dominate" B(x) .
We can also determine the extremal order of magnitude of A(x). The

previous argument shows the possibility of A(x)/x tending to 0 arbitrarily
slowly. On the other hand it is obvious that lim a - A (x)/x = 0, if B is
infinite : using A(x) B(x) < 2x we obtain

A(x)

	

2
X

	 <
B(x)
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3 .2 . Let p/q be a rational number, 1/V1 - e < p/q < 1/V/'2- . Put
k, = p, k 2 -q, k 3 = k 4 = . . . = 2 . Then for

x=k,k2 . . . k 2s -1=pq • 22 s-2 -1 9

A(x) = k, k 3 . . . k2s_, = p • 2s - '

B(x) = k2 k4 . . . k2s = q . 2s- ',

thus

Similarly, for

and on the other hand

i .e .,

or

min{A(x), B(x)}

ERDŐS AND FREUD

A (x) = A (2x) > (c - e) \12x,

A(x) < x <
1

IIIX-
,

B(x) c-e

1
->c
c

1

- S .

x = k, k 2 . .— k2s+ 1 -
1 =2p • q . 22s-2 - 1

A(x) = k, k 3 . . . k2s+ 1 = 2p . 2s- ',

B(x) =k 2 k4 . . . k2s = q . 2`

so

min{A(x), B(x)} N / q

	

1

U2p>
4 2

Since these values of x are the "worst" ones from the point of view of IN, we
obtain the statement .

We can easily check that this is the best possible value for IN using the
(*) construction . We know that for x = k, k 2 . . . k s - 1, A (x) B(x) = x + 1 .
Further, between k, • • • ks and k, k2 • • • ks+ , > 2k, k 2 • • • ks either A or B has
no elements, say, A . Then denoting IN by c, we have on the one hand
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3 .3 . Put k, = k2 = k 3 =

	

= k with a big k. Then similarly to the
previous calculations

SP = 2(k+ 2 ) ,

	

IN =		and obviously SX • IN < SP,
k

i .e., SP > 2 - e, IN > 0, and SX < oo .
Assume now SP = 2 . First we prove IN = 0 . Assume indirectly, that for

some positive c,

and also

always hold . Then also

A(x) > c

	

and

	

B(x) > c

	

(6)

B(x) < 2x1A(x) <
2

	

and

	

A(x) < 2x1B(x) <

	

(7)

are valid . Let e be very small. We take an x, for which

A(2x) B(2x) > (4 - e)x

is true. This means that with the exception of at most ex numbers all
numbers in [0, 4x] can be written in the form a, + b,, with a; < 2x and
b,,<_ 2x . Clearly we can use only a; < x and b, < x for the numbers in 10, x l

and only a, > x and b, > x for those in (3x, 4x] .
Denote the elements of A and B in [0, x] and in (x, 2x] by A„ B„ A z and

Bz , respectively . Hence

A IB, +A,B, > (2-e)x

	

(8)

A z Bz > (1 - s)x,

	

A, B, > (1 - e)x .

	

(9)

On the other hand consider now differences a ; - b, . Since these must all be
distinct, there are at most 2x of them with

Ia,-b,1 <x.

	

(10)

If a ; and b t are both in [0, x] or both in (x, 2x], then (10) holds, thus

A I B, +AzBz < 2x .

	

(11)

Moreover, using (8), we obtain that there are at most ex other pairs of a - s
and b - s which satisfy (10).
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Put d = c 4 / 16. Denote by A', B', A * and B * the elements of A and B in
[dx, x] and (x, (1 A- d)x 1, respectively . We show that

which is a contradiction, since this means a too large number of further
differences satisfying (10).

Using (7) for dx we obtain

and similarly

Combining this with (6) we have

On the other hand

We show that

A'B* +A *BI > cx,

	

(12)

A (dx) < 	dx = 2

B(dx) < c

A' > 2

	

and

	

B' > c

	

(13)

A{(1 + d)xf B~(1 + d)x ; > (1 + d - c)x,

	

(14)

since we know that nearly all numbers also in 10, (1 + d)x] can be written in
the form a; + b„ and here obviously ai G (1 + d)x and b, < (1 + d)x .
Further, combining (9) and (11) we obtain

A,B, < (1 +E)x .

	

(15)

Using (14) and (15) we infer

(A, + A *)(B, + B *) > (1 + d - E)x = ( 1 + e)x + (d - 2E)x

> A, B, + (d- 2e)x .

Hence

A*B, +A,B* +A*B* > (d- 2E)x .

	

(16)

z
max(A*,B*)> (1-dc6) . dc

	

deu

	

(17)



If this were not true, then

DISJOINT SETS OF DIFFERENCES
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c2d 2uzA*B* < 16

\
A,B* +A *B, < 2 • c • dcu • x= (1 - d6

z
I dx,

i .e ., A *B * + A, B * + A *B, < dx(I - u'), which is a contradiction to (16)
for e small enough .

Finally, (17) and (13) imply (12) and this completes the proof of IN= 0 .
To show SX = oo we can use the previous proof. We saw that if

A(2x) B(2x) > (4 - e)x, then

A(x) B(x) > (1 - e)x,

	

(18)

and not all of the following four inequalities can hold simultaneously, for a
fixed positive c, d= c 4/16 and for e small enough :

A (x) > c -~íx,

B(x) > c V~x,

A (dx) <
2
c

B(dx) <
2
c

If, e .g ., the third inequality is violated, this means directly that A(dx)lVdx
is large .

If, e .g ., the first inequality is false, then (18) implies that B(x) >
((1 -e)/c) Vx- , i .e ., B(x)/\lx- is large .

Thus in any case SX = oo .

Proof of Theorem 2 . 2 .1 . We take an x for which

A (4x) B(4x) > 4x(SP - e) . (19)

By assumption

A(2x) B(2x) > 2x(IP - e) (20)

and

A(3x) B(3x) > 3x(IP - e) . (21)
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We denote the number of elments of A and B in the intervals ((i - 1)x, ix{
by A i and Bi , respectively, i= 1, 2, 3, 4 .

Consider the sums a i + bj , where a i < 3x and b, < 3x . The number of
these sums is A(3x) B(3x), and at least A (3x) B(3x) - 4x of them are greater
than 4x, and for these ones both a i and bj are greater than x, and not both
are less than 2x . This means that

A zB3+A 3 B z +A,B3 >,A(3x)B(3x)-4x>-3x(IP-e)-4x. (22)

Repeating the argument for ai + b; > 6x, where a i < 4x, b i < 4x, we obtain

A 3 B4+A4B3 +A 4 B4 >A(4x)B(4x)-6x,4x(SP-e)-6x . (23)

On the other hand there are at most 4x differences a i - b, where

ja i - b,j < 2x,

i .e ., the sum of the left-hand sides of (20), (22) and (23) is at most 4x . So
taking the sum of (20), (22) and (23) we obtain

4x >- 2x(IP - e) + 3x(IP - r) - 4x + 4x(SP - F) - 6x,

and since r can be arbitrarily small, this completes the proof .
2.2 . We now take an x for which

A(3x) B(3x) >- 3x(SP - r)

	

(24)

and using (20) and (24) we argue similarly as before .

Proof of Theorem 4 . Assume indirectly that lim r

	

A(x)/ V~x = c, > 0,
and lim infx

	

B(x)/Vl'x = C z > 0 .
Take a large but fixed k, and a very large x . We denote the number of

elements of A and B in the intervals (i - 1)x, ix] by A i and Bi , respectively,
i = l, 2, . . ., k, and put Si = B(ix) = B, + B 2 + • . . + Bi .

Since there are at most 2x differences where a i - b'j < x, therefore

k

:, A iB i < 2x .
i=1

On the other hand we shall show that this is false .
If x is large enough, then

Ai=A(ix)-A{(i-1)x}^c, ix-c i ~,1(i-1)x-c,Vx/2

	

.



Hence
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k

	

1

	

k s i,
Si		^v

3~2
2

	

i' 1

	

\li+1

	

4

	

i=1 i

c 2 lx - c,C2x
k 1

	

C 1 C 2 x
3i

	

-	 log k,
i=1

	

i

	

4

	

i=1 i

	

4
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which shows the contradiction if we take k large enough .
We can prove by similar methods that if lim inf, ~, B(x)/V~x > 0, then for

every v > 0 there is a c > 0 such that for infinitely many x

A(x(1 +c))-A(x) < E V'x- .

	

(25)

Perhaps (25) can be replaced by

A{A(x(1 +c))-A(x)} + {B (x(1 +c))-B(x)}=a(f) .

	

(26)

At present we cannot prove (26) .
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