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ON SOME PROBLEMS IN GRAPH THEORY,
COMBINATORIAL ANALYSIS AND COMBINATORIAL

NUMBER THEORY

Paul Erdös

ABSTRAC-1• In this paper I discuss some old problems, most of them
due to myself and my collaborators . Many of these problems have been
undeservedly neglected, even by myself . I also discuss some new
problems .

I. Graph theory

1. G(n) is a graph of n vertices and G(n ; e) is a graph of n vertices and e
edges. Is it true that if every induced subgraph of a G(10n) of 5n vertices
has more than 2n 2 edges then our G(10n) contains a triangle? It is easy
to show that if true this result is best possible . To see this let A i , i =1,
2, . . . , 5, be sets of 2n vertices, put A, = A 6 and join every vertex of A, to
every vertex of A; + , . This G(10n ; 20n 2) has of course no triangle and
every induced subgraph of 5n vertices contains at least 2n2 edges .
Equality is of course possible : choose A,, A, and half the vertices of A,

Simonovits pointed out to me that a graph of completely different
structure also shows that the conjecture, if true, is best possible . Consider
the Petersen graph, which is a G(10 ; 15) . Replace each vertex by a set of
n vertices and replace every edge of the Petersen graph by the n 2 edges
of a K(n, n) . This gives a G(10n ; 15n 2) and it is easy to see that every
induced subgraph of 5n vertices has at least 2n2 edges .

The fact that two graphs of different structure are extremal perhaps
indicates that the conjecture is either false or difficult to prove . I certainly
hope that the latter is the case .

It is perhaps tempting to conjecture that my graph has the following
extremal property . If a G(10n) has no triangle and every induced
subgraph of 5n vertices has at least 2n2 edges, then our graph can have at
most 20n2 edges. Perhaps the graph of Simonovits has the smallest
number of edges among all extremal graphs; perhaps in fact these two
graphs are the only extremal graphs .

Many generalizations are possible ; the triangle could be replaced by
other graphs . Is it true that every G((4h+2)n), every induced subgraph
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of (2h + 1)n vertices of which has more than 2n 2 edges, contains an odd
circuit of fewer than 2 h + 1 edges?

Let 0 < a < 1 . Determine the smallest c. so that if every induced
subgraph of G(n) of [an] vertices contains more than c~n 2 edges then
G(n) has a triangle . My conjecture was that C112 = só •
Observe that it is not difficult to prove that for n > n o (r) every

G(n ; cn2) contains a K(r), provided that every induced subgraph of n/2
vertices has (1+o(1))(cn2/4) edges .

2 . Is it true that every graph of Sn vertices which contains no triangle can
be made bipartite by the omission of at most n 2 edges? The same graph
as used in paragraph 1 shows that the conjecture, if true, is best possible .
(Replace each vertex of a pentagon by n vertices, etc .)

Is it true that a G(5n) which has no triangle contains at most ns
pentagons? Again the same graph shows that, if true, this is the best
possible. Here also many generalizations are possible .

3 . Let G be a bipartite graph of n white and n2/3 black vertices . Is it true
that if our graph has more than cn edges (where c is a sufficiently large
constant), then it contains a C 6? It is easy to see that it must contain a C g
but does not have to contain a C4. Simonovits strongly disbelieves this
conjecture and I have no real evidence for its truth . It is easy to see that
this conjecture, if true, is best possible. To see this observe that Benson's
graph has cn 4/3 edges and n black and n white vertices, thus a suitable
subgraph has n white and n2í3 black vertices and cn edges .

C. Benson, Minimal regular graphs of girth eight and twelve . Canad. J. Math. 18
(1966), 1091-1094.

4. Several hundred papers have been published on extremal graph theory
and recently Bollobás published an excellent book on the subject . Here I
state only a few problems which have not been thoroughly investigated .
First a recent problem of Simonovits and myself .
Denote by f(n ; H) the smallest integer such that every graph

G(n ; f(n ; H)) contains H as a subgraph. Turán, who started extremal
graph theory, determined f (n ; K(r)) for every r. In particular he proved
that f(n, K(3)) [n2/4] +l .

Rademacher was the first to observe that every G(n ; [n2/4J+1) con-
tains at least Ln/2J triangles. This result was generalized and extended by
Bollobás, Lovász, Simonovits and myself . Simonovits and I asked : Is it
true that every G(n ; f(n ; C4)) contains at least (1 +0(1)) • n' /2 C4 s. We
could not even prove that the number of these C 4s tends to infinity .
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Brown, V . T . Sós, Rényi and I proved that f(n ; C4)=(z+o(1))n32 and (p
is a power of a prime) that

f(P 2 +p+1, C4)%iP(P+1)2 .

	

(1)

Is it true that there is equality in (1)? Füredi proved this for p = 2k, and
very recently he proved that there is always equality in (1) . I observed
that for every n,

f (n ; C4) < 1 n 3/ 2
+ ( 1 + 0(1))

4
,

	

( 2)

and conjectured that there is equality in (2) .
Kö dri, V . T . Sós and Turán proved that

f (n ; K(r, r)) < crn2- ~' '~

	

(3)

Very probably (3) is best possible for every r. This problem is still open
for r > 3. Very recently Frankl proved that

f (n ; K(r ; 2r)) > crn 2-(iir)

I conjectured some time ago that for every e > 0 there is a c E such that
every G(n ; [n l"]) contains a non-planar subgraph of at most c£ vertices .

Dirac asked in a conversation : Let m and n be fixed. How many edges
can have a G(n) if it does not contain a saturated planar subgraph of at
least m vertices? Simonovits nearly completely solved this problem .

Denote by f(n, m) the smallest integer such that every G(n ; f(n ; m))
contains all saturated planar graphs of m vertices. The four-colour
theorem easily implies f(n ; m)=(1+0(1))(n'/á), but it might be of inter-
est to get a sharper formula which would also show the dependence on m.

Simonovits and I posed the following problem : Is it true that

lim f(n ; H)/n 3/'=-

	

(4)

holds if and only if H contains a subgraph H', each vertex of which has
degree greater than 2?

This attractive conjecture is very far from being settled . The following
two graphs perhaps could give a counterexample. Define Hk as follows :
The vertices of Hk are x ; y l , . . . , Yk, z i , z2,. . . , z (k. The vertex x is
joined to all the yi s and each z, is joined to two y;s (no two z,s are joined
to the same pair) . Is it true that

f(n ; Hk) < cn 3 z .

	

(5)

I proved (5) for k = 3 but for k > 3 I do not know if (5) holds . The second
graph H was once considered by V . T . Sós, Simonovits and myself . H
has five black and five white vertices, x i , x z , a, x 3 , x 4 and Y i , Yz, b, Y3, Y4
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respectively ; a is joined to every yi and b to every x i ; a and b are not
joined . (x,, x2 ; y,, y2) and (x3 , x4 ; y3 , y4) form a C4 . Is it true that
f(n ; H) < cn ;t2 ?

In a recent interesting paper Faudree and Simonovits obtain several
striking new results in extremal graph theory . They hope that a further
development of their method will lead to the construction of two graphs
H, and H2 for which

lim f(n ; H, ; H2)/min{f(n ; H,), f(n ; H2)}=0 .

Here f(n ; H,, HZ) is the smallest integer for which every
G(n ; f(n ; H,, HZ )) contains either H, or H 2 .

B. Bollobás, Extremal Graph Theory, London Mathematical Society Monographs
no. 11, Academic Press, London, 1978 .

P. Erdős, On a theorem of Rademacher and Turán . Illinois J. Math. 6 (1962),
122-127 .

B. Bollobás, Relations between sets of complete subgraphs. In Fifth British
Combinatorial Conference, Utilitas Mathematicae, Winnipeg, 1976, pp. 161-
170 .

L. Lovász and M . Simonovits, On the number of complete subgraphs of a graph .
In Fifth British Combinatorial Conference, Utilitas Mathematicae, Winnipeg,
1976, pp . 431-441 .

P. Erdős, A . Rényi and V . T. Sós, On a problem of graph theory . Studio Sci .
Math. Hungar. 1 (1966), 215-235 .

W. Brown, On graphs that do not contain a Thomsen graph . Canad. Math. Bull. 9
(1966), 281-285 .

Z. Füredi, Graphs without quadrilaterals . J. Combinat . Theory 34 (1983), 187-
190 .

T . Kővári, V. T . Sós and P. Turán, On a problem of K . Zarankiewicz . Colloq .
Math. 3 (1959), 50-57 .

M. Simonovits, On graphs not containing large saturated planar graphs . In Infinite
and Finite Sets, Coll . Math. Soc . J . Bolyai no. 10, North-Holland, Amsterdam,
1975, pp . 1365-1386 .

P. Erdős, On some extremal problems in graph theory . Israel J. Math. 3 (1965),
113-116 .

R. Faudree and M . Simonovits, On a class of degenerate extremal graph prob-
lems . Combinatorica 3 (1983), 83-94 .

P. Erdős and M. Simonovits, Supersaturated graphs . Combinatorica 3 (1983), in
press .

5 . Many papers and the excellent book of Graham, Rothschild and
Spencer have recently been published on Ramsey theory. Here I only
want to say a few words and mention a new problem of Hajnal and
myself . Let G, and GZ be two graphs, and denote by r(G,, G2) the
smallest integer m for which, if we colour the edges of K(m) by two
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colours, I and II, then either there is a G, all of whose edges have colour
I or a G2 all of whose edges have colour II . Graver and Yackel, Ajtai,
Komlós and Szemerédi and I myself proved that

c2n2/(log n) 2 < r(K(n), K(3)) < c, n 2/log n .

I always conjectured that
r(K(n), Q < n2- E .

	

(6)
Many colleagues doubt whether (6) holds . As far as I know everybody

believes that

r(K(n), CQ)/r(K(n), K(3))

	

0 .

	

(7)
Szemerédi recently observed that

r(K(n), CQ) < cn/(log n) 2 < cr(K(n), K(3)) .
Denote by R(G,, G2) the smallest integer m for which there is a G(m)

with the property that if we colour the edges of G with two colours I and
II in an arbitrary way, then either there is an induced subgraph G, of G,
all of whose edges have colour I, or an induced subgraph G2 , all of whose
edges have colour IL The existence of R(G1 , G2) is not at all obvious . As
far as I know this was first conjectured by Hansen and proved simultane-
ously by Deuber, Rödl, and Erdös, Hajnal and Pósa . Hajnal and I
observed that if G, and G2 have at most n vertices then

R(G,, G2 ) = m <22 °'

	

(8)

We have never published the not entirely trivial proof of (8) since Hajnal
and I thought that perhaps

max R(G1 , G2 ) = r(K(n), K(n)) .

	

(9)
Conjecture (9) is perhaps a little too optimistic, but we have no

counterexample. Perhaps there is a better chance to prove R(G,, G2) <
2"" .

R. L. Graham, B . L. Rothschild and J. H. Spencer, Ramsey Theory, John Wiley,
New York, 1980 .

W. Deuber, A generalization of Ramsey's theorem . In Infinite and Finite Sets,
Coll . Math. Soc . J . Bolyai no. 10, North-Holland, Amsterdam, 1975, pp . 323-
332 .

P. Erdös, A . Hajnal and L . Pósa, Strong embeddings of graphs into coloured
graphs . In Infinite and Finite Sets, Coll . Math. Soc. J . Bolyai no. 10, North-
Holland, Amsterdam, 1975, pp . 585-596 .

V. Rödl, A generalization of Ramsey's theorem . In Hypergraphs and Block
Systems, Zielona Gora, 1976, pp . 211-220 .

P. Erdös, Graph theory and probability 11 . Canad. J. Math. 13 (1961), 364-352 .
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J. E. Graver and 1 . Yackel, Some graph theoretic results associated with Ramsey's
theorem . J. Combinat. Theory 4 (1968), 125-175 .

M . Ajtai, J . Komlós and E . Szemerédi, A note on Ramsey numbers . J. Combinat .
Theory A 29 (1980), 354-360 .

6 . During a recent visit to Prague, I learned of the following surprising
result of Frankl and Rödl which settled an old conjecture of mine . Let
Gi(nj ; ei ) be a sequence of r-graphs . I say that their density is a if a is the
largest number for which there is a sequence of induced subgraphs
G ' )(m„ ei) of G;' ) (ni ; ei ) with mi ~ ~ and

e,'=(a+o(1))( r) as i---> - .

In a slightly imprecise but more illuminating way we can say that a
large r-graph G( ' ) (n ; e) has density a is a is the largest number for which
there is a large subgraph G(m i ; e i ) (of mi vertices and e j edges) for which

e, - (a +o(1))(m` ) .

A well known theorem of Stone and myself asserts that for r = 2 the
only possible values of the densities of an ordinary graph are 1-1/r, 1
r < - . (See also some papers of Bollobás, Chvátal, Simonovits, Szemerédi
and myself .)

I conjectured that for r>2 the set of possible densities forms a well
ordered set. This was disproved by Frankl and Rödl . At this moment it is
not yet clear what are the possible values of the densities of r-graphs for
r>2. The results of Frankl and Rödl will be soon published in Com-
binatorica .

P . Erdős and A. H . Stone, On the structure of linear graphs . Bull. Amer. Math.
Soc. 52 (1946), 1087-1091 .

P . Erdős and M. Simonovits, A limit theorem in graph theory . Studio Sci. Math.
Hungar. Acad. 1 (1966), 51-57 .

B. Bollobás and P . Erdős, On the structure of edge graphs . Bull. London Math.
Soc. 5 (1973), 317-321 .

B. Bollobás, P . Erdős and M. Simonovits, On the structure of edge graphs 11 . J.
London Math. Soc . 12 (1976), 219-224 .

V . Chvátal and E. Szemerédi, On the Erdős-Stone theorem . J. London Math . Soc.
23 (1981), 193-384 .

P. Erdős, On extremal problems of graphs and generalized graphs . Israel J. Math.
2 (1965), 183-190 .

7 . Frankl and Rödl also settled a very recent question of Nesetiil and
myself. At the recent meeting at Poznan on random graphs Nesetiil and I
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conjectured that for every E >0 there is a graph G(n ; e) which contains
no K(4) but every subgraph of (2+E)e edges of it contains a triangle . This
conjecture was settled by Frankl and Rödl by the probability method
early in September 1983 . Many generalizations are possible which are not
yet completely cleared up .

The graph of Frankl and Rödl has n vertices and n3iz-F edges. Frankl
and Rödl also proved that there is no c > 0 such that for every e > 0 there
is such a graph with at least cn 2 edges. Their method at present does not
seem to work if K(3) is replaced by K(r), K(4) by K(r+1) and (z+E) by
1-(1/r)+E.

8 . With Nesetfil we posed the following problem : Is there a G whose
every edge is contained in at most three triangles and for which G --->
(K(3), K(3)) holds? (In other words, if we colour the edges of G by two
colours then is there always a monochromatic triangle?) Observe that
since K(6) -~ (K(3), K(3)) "three" cannot be replaced by "four" . Let
G(n) -~ (K(3), K(3)) critically (i .e . if we omit any edge of G(n) then this
property no longer holds) . Nesetfil and Rödl proved that such graphs
G(n) exist. We thought that for every k there is an nk so that if n > n k
and G(n) --> (K(3), K(3)) critically then there is an edge of G(n) which is
contained in at least k triangles . Nesetfil has just proved that this is not
so .

J . Nesetfil and V . Rödl, The structure of critical Ramsey graphs . Acta Math .
Acad. Sci . Hungar. 32 (1978), 295-300 .

9 . Let G(n) be a connected graph of n vertices . Denoted by f(G) the
smallest integer for which the vertices of G can be covered by f (G)
cliques and let h(G) be the largest integer for which there are h(G) edges
no two of which belong to the same clique. Parthasaraty and Choudum
conjectured that h(G) > f(G) . By probabilistic methods I disproved this
conjecture . In fact I showed that there is a G(n) for which

c i n
f(G(n))>(log n)3 h(G(n)) .

	

(10)

I conjectured that (10) is best possible, i .e. that for every G(n)

f (GW) < (log n)3 h(G(n)) .

	

(11)

I had difficulties in proving (11), which as far as I know is still open . I
think the proof of (11) will not be difficult and that I am perhaps
overlooking a simple argument . I thought that if h(G(n)) is small then
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h(G(n)) = f(G(n)) is true. This was known for n = 3 and Kostochka just
informs me that if h(G)<5 then f (G) = h(G), but there is a G(n) for
which h(G(n)) = 6 and f (G(n)) > n "" . Kostochka's nice result answers
my question very satisfactorily ; nevertheless many questions remain, e .g .
is it true that if f (G(n)) > n'- E, E

	

0, then h(G(n))

	

-?
An old conjecture of Hajós stated: Is it true that every k-chromatic

graph contains a topological complete h-gon ; i .e . it contains h vertices
every two of which can be joined by paths every two of which are disjoint
(except having common end-points)? This was disproved by Catlin and
Kostochka. Fajtlowicz and I showed by probabilistic methods that if
K(G(n)) is the chromatic number of G and T(G) is the number of
vertices of the largest topologically complete graph embedded in G, then
for almost all graphs

~ iz

K(G(n)) > c~ \lo 2
T(G) .

	

(12)
g

Perhaps (12) is best possible, i .e .

K(G(n))<
czn 1iz

T(G) .
(log n

Bollobás, Catlin and 1, on the other hand, proved that Hadwiger's
conjecture holds for almost all graphs G(n) .

P . Erdős, [Title unknown .] J. Math . Res. Exposition 2 (1982), 93-96 .
P . Erdős and S. Fajtlowicz, On the conjecture of Hajós . Combinatorica 1 (1981),

141-143 .
P. A. Catlin, Hajós's graph-colouring conjecture : variations and counterexamples .

J. Combinat . Theory B 26 (1979), 268-274 .
B. Bollobás, P. A. Catlin and P . Erdős, Hadwiger's conjecture is true for almost

every graph . Europ. J. Combinat . 1 (1980), 195-199 .

10. Denote by C ( " ) the graph of the n-dimensional cube . C( " ) has 2"
vertices and n2n -1 edges. How many edges of C'" ) ensure the existence of
a Czr , a circuit of size 2r? Perhaps for r>2, o(n2") edges suffice. Perhaps
(z+E)n2" - ' edges suffice for a C4 . It is easy to see that 21n2n- ' do not
suffice for a C4 and Chung observed that 3n2" - ' suffice for a C4 . The
following is an old and forgotten problem of Graham and myself . It is
well known that K(2") can be decomposed as the union of n bipartite
graphs, but K(2" + 1) can not be so decomposed . Suppose we decompose
K(2" + 1) as the union of n graphs. What is the least odd circuit which
must occur in any of the decompositions? To be precise, denote by f(n)
the smallest integer such that if

"
K(2") = U Gi

i=1
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then one of the Gs contains an odd circuit of order at most f(n) . How
large is f(n)? As far as I know, nothing is known about this problem,
which has been completely forgotten or at least neglected, perhaps
undeservedly so .

P. Erdős and R. L. Graham, On partition theorems for finite graphs . In Infinite
and Finite Sets, Coll . Math. Soc . J . Bolyai no. 10, North Holland, Amsterdam,
1975, pp. 515-528 .

11 . The following problem is due to Fajtlowicz and myself . A graph G(n)
is said to have property I,,, (respectively I,,-) if every set of l independent
vertices (respectively every set of independent vertices) has a common
neighbour and G(n) contains no K(r) . It is said to have property I if we
only assume that every set of independent vertices has a common
neighbour . f(n ; r, l) (respectively f(n ; r, -) or f(n ; -)) is the largest integer
such that every graph with property I,,, (respectively I, or I) has a
vertex of degree greater than or equal to f(n ; r, I) (respectively f (n ; r, -)
or f (n ; -)) . Determine or estimate f(n ; r, l), f (n ; r, -) and f (n ; -) as well
as possible . Pach proved that f (n ; 3, -) _ (n + 1)/3 and f(n ; 3, 3) < n 1 -3-3 ,

where c3,3 is a positive constant. Pach and I have just proved that
f(n ; r, r) < n' -c,, and by the probability method we established

f(

	

+

	

n log log n
n ;~)=(10(1))

log n

We do not know if f(n ; 3, l) > cn holds for some l > 3 or f(n ; r, -) > cn
is true for some r > 3 .

The following slightly modified problem could also be considered .
Assume that a graph G(n) is such that every set of r vertices of G(n) has
a common neighbour. Then of course it is immediate that our G(n) must
contain a K(r+1) . On the other hand it is easy to see by the probability
method that there is such a graph which contains no K(r+2) and each
vertex of which has degree o(n) .

J. Pach, Graphs whose every independent set has a common neighbour . Discrete
Math. 37 (1981), 217-218 .

12 . A group is said to have property Ak if it has at most k elements
which pairwise do not commute . About 10 years ago I asked : Determine
or estimate the smallest f(k) so that every group with property A(k) is
the union of f (k) or fewer Abelian groups . This is a finite modification of
a problem considered by Bernhard Neumann . Isaacs proved that

(1+c) k < f(k) <kl 2+e
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13 . Finally I state a few recent problems which have not been investi-
gated carefully .

Let G be a graph. Denote by f,,(G) the maximal number of edges of a
bipartite subgraph contained in G and by f3(G) the maximal number of
edges of a triangle-free graph contained in G. Trivially,

f3(G) > fb(G) .

	

(13)

Can one characterize the graphs for which there is equality in (13)? Or
at least can one give a fairly general class of graphs having this property?
Clearly K(n) has equality in (13) by Turán's theorem and Simonovits
easily showed by the method of Zykov that all complete r-partite graphs
also have equality in (13) . V. T . Sós asked: Let G be such that every
circuit has a diagonal (or perhaps only every odd circuit has a diagonal) .
Is it then true that G has equality in (13)?

Horak, Kratochvil and I considered the following questions . Let
G, (n), . . . , G, (n) be edge-disjoint subgraphs of K(n) such that every
Hamiltonian circuit of G(n) has an edge in common with the G i (n) . Put

f (n ; r) = min

	

e (G (n)),
1

where e(G) denotes the number of edges of G . It is easy to see that
f (n ; r) = r(n - 2) for r -- 3 and f(n ; r) < 2`~' for r > 3 . Can one determine
the exact value of f(n ; r) for r>3? What is the largest value g(n) of r for
which such graphs G(n) exist? Similar questions can be asked for
Hamiltonian paths or other subgraphs of K(n) .

Shortly after we posed these questions . Horák and Sirán succeeded in
determining both f(n ; r) and g(n) . They proved that

g(n)= [3 +1092 n31J for n--4 .

Furthermore, setting w(n, r) = 3 • 2r-4 (2n-3 • 2r-3 -1),

n+bn
f(n ;r)=w(n,r)

	

for 4--r--3+1og2 9 ,

f(n ; r)=w(n, r-1)+cn for 3+logz n9 bn <r-g(n),

where c, _ (n 2-1)/8. b„, = 1 for odd values of n and cn = (n'+ 2n - 8)/8 .
b„ = 4 for even values of n .
Let G be a graph of e edges . Is it true that

r(G, G) < 2` , e""?

	

(14)
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If true, (14) is easily seen to be best possible apart from the value of c l .
Probably r(G) is maximal if G is as complete as possible .
V. T . Sós asked: A graph G is said to be Ramsey-critical if

r(G, G) > r(G-e, G-e)

	

(15)

for every edge of G . Can one characterize the graphs which satisfy (15)?
As far as I know this simple and interesting question has not yet been
considered . It seems certain that K(n) satisfies (15), but even this is not
known and it is not clear to me that (15) holds for almost all graphs . A
related question is: Can one characterize the graphs for which

r(G, G)<r(G+e, G+e),

	

(16)

where e is any edge not in G which joins two vertices of G?

II. Set systems

I have published many problems on set systems, therefore I mention only
some problems which are perhaps not too well known .

1 . Rado and I once considered the following problem . Determine or
estimate the largest integer g(n) for which one can give g(n) sets A,,,
IAh l = n, 1 -- h < g(n), so that for every three of our A hs the union of
some two of them contains the third . Jean Larson showed g(2n) > (n + 1) 2
and Frankl and Pach proved that g(2n) _ (n + 1) 2 . More generally, let
g,(n) denote the maximum number m such that there exists a family of
n-sets {A,, Az , . . . , A„} without t disjointly representable members (i .e .
any t members of the family contains one which is covered by the
remaining t-I members) . Frankl and Pach conjecture that

g,(n) = T(n + t - 1, t, t-I),

where T(n, k, l) denotes the Turán number, the maximum cardinality of a
family of l-sets on an n-set without a complete subgraph with k points .
They can prove that

T(n+t-1, t, t-1)<g,(n)<
n+t-1
t-1

Let h,(n) denote the maximum cardinality of a (non-uniform) family on
n points without t disjointly representable members . A theorem of Sauer
implies that

h,(n)=

	

n
,-i-

-t-i (i
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Frankl gave a construction for t = 3 (unpublished) and Füredi and Quinn
proved that equality holds here for all t . There are a large number of
optimal families .

Frankl and Pach also conjecture that the following beautiful generaliza-
tion of the Erdös-Ko-Rado theorem is true . Suppose that X is a system
of k element subsets of an n element set and that

I J>
\k-11'

Then there exists a H„ E X such that for every subset A g Ho one can
choose H E X satisfying H fl Ho = A. (We obtain the Erdös-Ko-Rado
theorem in the special case A = 0 .) They can prove this for set-systems

of cardinality greater than G n 1 / by using a linear algebraic approach .

P. Frankl and J . Pach, On the number of sets in a null-t design . Europ. J.
Combinat. 4 (1983), 21-23 .

P. Frankl and J. Pach, On disjointly representable sets . Combinatorica 4 (1984),
in press .

Z. Füredi and F. Quinn, Traces of finite sets . Ars Combinat . in press .
N. Sauer, On density of families of sets . J. Combinat. Theory A 13 (1972),

145-147 .
P. Erdös, Chao Ko and R . Rado, Intersection theorems for systems of finite sets .

Quart. J. Math . Oxford (2) 12 (1961), 313-320 .

2. A few years ago Frankl formulated the following interesting problem :
Let {Ak}, JAk I = n, be a two-chromatic clique, i .e . JAk, n Akz 1 0 and
U Ak = S can be decomposed into the union of two disjoint sets S r and
k

Sz so that no A k is contained in S, or S z . Let f(n) be the smallest integer
for which there is a set B, IBI = f (n), Ai B, B fl A i # 0 . Frankl showed
that n + cV n < f(n) < n2 log n. It would of course be very desirable to
have a better estimate for f (n) .

3. Let JA, : 1, i -- tn I be a family of n-sets which is a maximal clique, i .e .
which is such that A i nA;1 0 for all 1 < i < j , n and there is no n-set B
for which B n Ai # 0 for every l _- i -_ tn . Füredi asked whether it is true
th at

U Ai < tn
=1

If true, this would be a generalization of Fischer's inequality .
Perhaps the conjecture remains true if IAi I = n is replaced by IAi I _- n.
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This, if true, would be a generalization of the theorem of de Bruijn and
myself .

N. G. de Bruijn and P . Erdős, On a combinatorial problem . Indig. Math . 10
(1948), 421-423 .

4. The following problem is due to Duke and myself . Consider set
systems {Ai : 1-- i < m}, A i - S, I SI = n, JA I = r -- 3, such that no t sets
Ai , A	A,, intersect in the same element (i .e . the family {A i : 1 < i
m} contains no A-systems of size t and kernel 1) . Denote by f(n ; r, t) the
maximal value of m . With Duke we proved that f (n ; r, t) < c(r, t) n' -2 .

Recently Chung and Frankl proved that

for n > n o (t), t odd, and

f(n ; 3, t)=2(2)(n-2t)+2(3

f(n ; 3, t)=(t(t-z)+O(1))(n-2t+1)

for t even .
Here is their construction for odd t: Consider two disjoint t element

subsets X and Y of S. Our family consists of all three element subsets A i
of S which are disjoint from one of X and Y and intersect the other in at
least two elements .

For r - 4 we can add to the above construction all r sets intersecting
both X and Y in at least two elements .

Frankl and Füredi proved that for n > n o (r, t) this construction is best
possible . They also proved that for every c, there is a c z such that if r = 5,
m > Czn 2 then there are c, sets which form a A-system of kernel 2 . It
would be desirable to determine c z as a function of c, .
Here I want to remind the reader of one of my favourite problems,

asked by Rado and myself more than 20 years ago. Is it true that there is
an absolute constant C so that any family of Cn n-sets contains a
A-system of three sets? I offer US$1000 for a proof or disproof .

R. Duke and P . Erdős, Systems of finite sets having a common intersection . In
Proceedings of the Southeastern Conference on Combinatorics, etc ., Congres-
ses Num. XIX, Utilitas Mathematicae, Winnipeg, 1977, pp. 247-252 .

P. Erdős and R. Rado, Intersection theorems for systems of sets . J. London Math .
Soc. 35 (1960), 85-90 .

5 . Let ISI = 2n, Ak (-S, IAk 1= n, I -- k < Tn be a system of subsets of S .
Assume that the number of pairs Ai, A i satisfying Ai fl A; = 0 is greater
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than or equal to 2 2 " . I conjectured a few years ago that this implies

Tn > (1 - F)2"' .

Frankl recently proved my conjecture. Frankl conjectures that if T" >
2"n` then the number of disjoint pairs is at most E(c)T2, where E(c)-~0
as c - -> - .

Frankl proved that if 2"(" < a < 2"' and T" = a" then there are at
most

s-s+E (2
/n

disjoint pairs . It is easy to see that this result is best possible . In some
sense this is a phenomenon similar to the Erdös-Stone theorem .

I hope Frankl will soon publish his interesting results in detail .

6. Let A	A, JA i I=r,

	

Ai nA,- o, 1-_i<j<m. Assume
that for every A; and every proper subset B of A i there is an A;
satisfying A ; n B = 0 (i .e . the family {Ai } is a clique but this property gets
destroyed if we replace any of the sets by a smaller one) . Denote by f (r)
the largest possible value of

Calczinska-Karlowitz showed that f(r) is finite. After some results of

M. Calczinska-Karlowitz, Theorem on families of finite sets . Bull. Acad. Polon .
Sci . Ser . Math. Astr. Phys . 12 (1964), 87-89 .

A. Ehrenfeucht and J . Mycielski, Interpolation of functions over a measure space
and conjectures about memory . J. Approximation Theory 9 (1973), 218-236 .

P. Erdös and L. Lovász, Problems and results on three-chromatic hypergraphs
and some related questions . In Infinite and Finite Sets, Coll . Math. Soc . J .
Bolyai no. 10, North Holland, Amsterdam, 1975, pp . 609-627 .

Ehrenfeucht and Mycielski, we proved with Lovász that

2 (n-1 ) +2r-2<f(r)c2 (
2r

r 1) - (17)

By making use of a theorem of Bollobás, Tuza improved (17) to

2(2r-4)+2r-4<f(r)<(2r-1) +(2r-4) .
(18)

r-2

	

r-1

	

r-2

Tuza conjectures that the lower bound in (18) is exact .
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B . Bollobás, On generalized graphs . Acta Math. Acad. Sci . Hungar . 16 (1965),
447-452 .

Z. Tuza, Critical hypergraphs and intersecting set-pair systems . Discrete Math. to
appear .

7. J. Larson and I asked : Is there an absolute constant C so that for
every n there is a partially balanced block design {AJ on a set S of n
elements so that

Ai l > n'/2 - C

	

(19)

holds for every i? Our guess was that such a C does not exist for all n.
I just heard that Shrikande and Singhi have proved that if our guess is

wrong, i .e. if a block design exists for every n satisfying (19), then there is
a finite geometry whose order is not of the form p2+ p + 1, where p is a
power of a prime .

As far as I know it is not impossible that there is a sequence n, <
n2< . . . which is such that for every i we have n i+i - ni < c and there exists a
finite geometry n ; + ni + 1 elements . It is easy to see that in this case there
is a block design for every n satisfying (19) .

Is there a partially balanced block design on n elements, say {A : 1
i -- to 1, so that for every r the number of indices i for which JA I = r is less
than cn'/2 ? It is easy to see that, if true, then apart from the value of c
this result is best possible, though perhaps cn'12 could be replaced by
cru2

P. Erdős and J . Larson, On pairwise balanced block designs with the sizes of
blocks as uniform as possible . Ann . Discrete Math. 15 (1983), 129-134 .

8 . Is it true that in every finite geometry of p 2 + p + 1 elements there is a
blocking set which meets every line in fewer than C points? Bruen and
Freeman showed that such geometries exist for infinitely many p . I have
been informed that T . Evans stated this problem several years before me .

9. Let {AkI be a family of subsets of a set with n elements. When is there
a set S such that

1--1Ak nsi_C

	

(20)

for every k? Perhaps there is an S satisfying (20) provided that lAkl>
crn' t2 and JA k , n Ak2 l 1 for all k, k, and k2 with k, -t k2 . Maybe the last
condition can even be weakened to lAk, n Akzl < c 2 with c = c(c,, C2) .

The following is an old question posed by Grünbaum and myself . Let
JA, : 1 < k < Tn} be a partially balanced block design on n elements .
Define a graph whose vertices are the A is. Join two Ais if they have a
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non-empty intersection. Is it true that the chromatic number of this graph
is at most n?

To conclude this section I wish to call attention to a forthcoming book
on extremal problems on set systems being written by Frankl, Füredi and
Katona . I await the appearance of this book with great interest .

Ill. Combinatorial number theory

1. Let a, < a 2< . . . < an be a B2 sequence of Sidon, i .e. a sequence such
that the sums ai + a; are all distinct . Can this sequence be embedded into
a perfect difference set? In other words, does there exist a sequence
b, < b2< . . . < by+ , such that all the differences are incongruent modulo
p2 +p+1 and the a i s all occur among the b;s? (A slightly stronger
requirement would be ai = bi , 1 _ i _ n .) For the applications I have in
mind it would suffice if there is an X and a B 2 sequence 1 _ b, < . . . < b,
X such that t = X1/2 (l + o(l)) and all the a is occur among the b;s .
Unfortunately I could make no progress with these problems .

2. During the International Congress in Warsaw, Pisier asked me the
following question. Call a sequence a, < . . . < an independent if the sums

n
e,a„ E,=0 or 1

i=1

are all distinct. Now let b, < b2< . . . be an infinite sequence of integers
and assume that there is a 8 > 0 such that for every n every subsequence
of n terms of the b i s contains an independent subsequence of 8n terms . Is
it then true that our sequence b, < b 2< . . . is the union of finitely many
independent sequences? (Of course, their number should depend only on
8.) Pisier is not a combinatorialist but an outstanding analyst ; he would
need this lemma to characterize Sidon sets . As the reader can see "all
roads lead to Rome" . Unfortunately, so far I have been able to make no
contribution to this very interesting question .

One of my oldest problems deals with independent sequences . Let
1 _ a, < a2< . . . <a, < n be independent. Is it true that

max t = log n + O(1)?

	

(21)
g

Leo Moser and I proved 30 years ago by using the second moment
method that

log n log log n
max t=1o +

	

+O(1).

	

(22)
g 2 2 10g 2
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As far as I know, (22) is still the best known upper bound for max t . I
offer a reward of US$500 for a proof or disproof of (21) .

Here is another additive Pisier-type problem . Assume that the infinite
sequence B = {b l < b 2< . . .} has the property that for every n every
subsequence of n terms of our sequence has a subsequence of 8n terms
which is a B2 sequence. Is it then true that B is the union of CS B2
sequences? Many generalizations and extensions are possible but I have
no non-trivial results .

3. The problem posed by Pisier led me to several related questions . Let
G be an infinite graph . Assume that there is a 8 > 0 such that every set of
e edges of G contains a subgraph of 8e edges which do not contain a C 4.
Is it then true that G is the union of Q graphs which do not contain a
C4? The answer is expected to be negative . C4 could of course be
replaced by any other graph H, but it is uncertain whether any non-trivial
positive results can be obtained .

4. I conjectured that every sequence of integers a l < . . .< a. contains a
subsequence a j , < aiz< . . . < a, which is a B2 sequence and r =
(1+o(1))n'l2 . Komlós, Sulyok and Szemerédi proved this with r<cn' /2 .

I proved that there is a B2' sequence a, < . . . < an (i .e . the number of
solutions of a, + a; = t is greater than or equal to 2), such that the largest
B2 subsequence of it has at most cn2/3 terms. Is this best possible? Or can
3 be replaced by 2 + s, or even by 2-

J . Komlós, M. Sulyok and E. Szemerédi, Linear problems in combinatorial
number theory . Acta Math. Acad . Sci . Hungar . 26 (1975), 113-121 .

Clearly many further problems of the Pisier type can be asked, but it is
not clear whether there ever are any non-trivial positive results .
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