ON THE FAVOURITE POINTS OF A RANDOM WALK

P. Erdös, P. Révész

Dedicated to Prof. L. Iliev on the occasion of his 70th birthday

1. Introduction. Let X_{1}, X_{2}, \ldots be a sequence of i. i. d. r. v. 's with $\mathrm{P}\left(X_{1}=+1\right)=\mathrm{P}\left(X_{1}=-1\right)=\frac{1}{2}$ and define the random walk $\{S(n)\}_{n=0}^{\infty}$ by $S(0)=0$, $S(n)=X_{1}+X_{2}+\cdots+X_{n}(n=1,2, \ldots)$. Consider also the r. v.'s $\xi(x, n)=$ No. $\{k: k \leqq n, S(k)=x\} \quad(x=0, \pm 1, \ldots, n=1,2, \ldots)$ (where No $\{\ldots\}$ is the cardinality of the indicated set) and $\xi(n)=\sup _{x} \xi(x, n)$.

The random set $\mathscr{F}_{n}=\{x: \xi(x, n)=\xi(n)\}$ will be called the set of favourite points of the random walk $\{S(n)\}$ at time n. The largest favourite points will be denoted by $f_{n}=\max \left\{x: x \in \mathscr{F}_{n}\right\}$.

In this paper we intend to study the properties of the random sequence $\left\{f_{n}\right\}$ and to formulate some unsolved problems on $\left\{\mathscr{F}_{n}\right\}$.

In order to formulate our results we repeat the definitions of the upperlower classes by Lévy and remind the reader of the Erdös (1942) - Feller (1943-46), (1933-34) test [3, 4, 5].

Definition 1. The sequence $\{u(k)\}_{k=1}^{\infty}$ belongs to the upper class of $\{S(n)\}$ if

$$
S(n) \leqq u(n) n^{1 / 2}
$$

except for finitely many n with probability 1.
Definition 2. The sequence $\{l(k)\}_{k=1}^{\infty}$ belongs to the lower class of, $\{S(n)\}$ if

$$
S(n) \geqq l(n) n^{1 / 2}
$$

infinitely often with probability 1.
Theorem A. The increasing sequence $\{u(n)\}$ belongs to the upper class of $\{S(n)\}$ if and only if

$$
\begin{equation*}
\Sigma n^{-1} u(n) e^{-u^{2}(n) / 2}<\infty \tag{1}
\end{equation*}
$$

We remark that if $u_{p}(n)=\left(2 L_{2}(n)+3 L_{3}(n)+2 L_{4}(n)+\cdots+(2+\varepsilon) L_{p}(n)\right)^{1 / 2}$ $(\varepsilon>0)$, then (1) holds true, but for the sequence $l_{p}(n)=\left(2 L_{2}(n)+3 L_{3}(n)+2 L_{4}(n)\right.$ $\left.+\cdots+2 L_{p}(n)\right)^{1 / 2}$ we have

$$
\Sigma n^{-1} l_{p}(n) e^{-l_{p}^{2}(n) / 2}=\infty \quad(p=2,3, \ldots)
$$

i. e. $\left\{u_{p}(n)\right\}$ belongs to the upper class and $\left\{l_{p}(n)\right\}$ belongs to the lower class for any $p=2,3, \ldots$ Here and in what follows

$$
L_{1}(x)=\left\{\begin{array}{cll}
\log x & \text { if } & x \geqq e \\
1 & \text { if } & 0<x \leqq e
\end{array}\right.
$$

and

$$
L_{p}(x)=L_{1}\left(L_{p-1}(x)\right) .
$$

On the properties of $\left\{f_{n}\right\}$ as a trivial consequence of Theorem A one can see that $f_{n} \leq u(n) . n^{1 / 2}$ with probability 1 except for finitely many n if $\{u(n)\}$ belongs to the upper class of $\{S(n)\}$, i. e. if $\{u(n)\}$ is increasing and (1) holds.

Hence we have a trivial result saying that f_{n} cannot be very large. In our first theorem we prove that f_{n} occasionally will be large enough indeed. In fact we have:

Theorem 1. For any $\varepsilon>0$

$$
f_{n} \geq\left((2-\varepsilon) n L_{2}(n)\right)^{1 / 2}
$$

with probability 1 infinitely often.
Having this result, one can conjecture that f_{n} will be larger than any function $l(n) \sqrt{n}$ i. o. with probability 1 if $l(n)$ belongs to the lower class of $\{S(n)\}$. However it is not the case. Conversely, we have

Theorem 2. $f_{n} \leqq\left(n\left(2 L_{2}(n)+3 L_{3}(n)+2 L_{4}(n)+2 L_{5}(n)+2 L_{6}(n)\right)\right)^{1 / 2}$ with probability 1 except for finitely many n.

Theorem 1, resp. 2, will be proved in Section 2, resp. 3. In Section 4 we present a few unsolved problems on \mathscr{F}_{n}.
2. Proof of Theorem 1. Let $a_{k}=\exp \left(k^{1+\theta}\right)(\theta>0, k=1,2, \ldots)$ and introduce the notations:

$$
\begin{gathered}
\left.\mathscr{A}(k)=\mathscr{A}(k, \theta, \varepsilon, \quad \delta)=\left\{S\left([1-\varepsilon) a_{k+1}\right]\right)-S\left(\left[a_{k}\right]\right) \geqq\left(2(1-\delta) a_{k+1} L_{2}\left(a_{k+1}\right)\right)^{1 / 2}\right\} \\
(0<\varepsilon<\delta<1, \quad \theta>0, \quad k=1,2, \ldots), \\
\mathscr{B}(k)=\mathscr{B}(k, \quad \theta, \quad \varepsilon, C)=\left\{\max _{x}\left(\xi\left(x,\left[(1-\varepsilon) a_{k+1}\right]\right)-\xi\left(x,\left[a_{k}\right]\right)\right)<C a_{k+1}^{1 / 2}\right\} \\
(\theta>0, \quad C>0, \quad 0<\varepsilon<1, \quad k=1,2, \ldots), \\
\mathscr{C}(k)=\mathscr{C}(k, \theta, \quad \varepsilon, D)=\left\{\xi\left(S\left(\left[(1-\varepsilon) a_{k+1}\right]\right),\left[a_{k+1}\right]\right)-\xi\left(S\left(\left[(1-\varepsilon) a_{k+1}\right]\right),\right.\right. \\
\left.\left.\left[(1-\varepsilon) a_{k+1}\right]\right) \geqq\left(2 D a_{k+1} L_{2}\left(a_{k+1}\right)\right)^{1 / 2}\right\} \\
(\theta>0, \quad D>0, \quad 0<\varepsilon<1, \quad k=1,2, \ldots) \\
\left.\mathscr{D}(k)=\mathscr{D}(k, \quad \theta, \quad \varepsilon, E)=\left\{S\left([1-\varepsilon) a_{k+1}\right]\right)-\quad \inf _{(1-\varepsilon) a_{k+1} \leq I \leqq a_{k+1}} S(l) \geqq E\left(\varepsilon a_{k+1}\right)^{1 / 2}\right\} \\
(\theta>0, \quad E>0, \quad 0<\varepsilon<1, \quad k=1,2, \ldots) .
\end{gathered}
$$

Now we formulate a few lemmas.
Lemma 1. There exists a positive constant \mathscr{K} such that

$$
\mathrm{P}(\mathscr{A}(k)) \geqq K k^{-\frac{1-\delta}{1-2 \varepsilon}(1+\theta)} .
$$

Proof is trivial.
Lemma 2. (cf. Kesten (1965)[2]). For any $\varepsilon>0$ and $\theta>0$ there exists a constant $C=C(\varepsilon, \theta)>0$ such that $\mathrm{P}(\mathscr{B}(k, \theta, \varepsilon, C)) \geq 1 / 2(k=1,2, \ldots)$.

The following lemma can be proved easily by the reader.

Lemma 3. The conditional probability $\mathrm{P}\left(\mathscr{B}(k) \mid S\left(\left[(1-\varepsilon) a_{k+1}\right]\right)-S\left(\left[a_{k}\right]\right)=y\right)$ is an increasing function of $y(y>0)$.

Lemma 4. (cf. Kesten (1965)[2]). For any $\theta>0, D>0,0<\varepsilon<1$ there exists a positive constant $K=K(\theta, D, \varepsilon)$ such that

$$
\mathrm{P}(\mathscr{C}(k)) \geqq K k^{-D / \varepsilon} \quad(k=1,2, \ldots) .
$$

A simple consequence of Lemma 4 is
Lemma 5. For any $\theta>0, D>0, E>0,0<\varepsilon<1$ there exists a positive constant $K=K(\theta, D, E, \varepsilon)$ such that

$$
\mathrm{P}(\mathscr{C}(k) \mathscr{D}(k)) \geqq K k^{-D / \varepsilon} \quad(k=1,2,, \ldots) .
$$

Lemma 6. For any positive $\varepsilon, \theta, \delta$ there exists a positive constant $C=C(\varepsilon, \theta, \delta)$ such that

$$
\mathrm{P}(\mathscr{B}(k, \theta, \varepsilon, C) \mid \mathscr{A}(k, \theta, \varepsilon, \delta)) \geqq 1 / 2 \quad(k=1,2, \ldots) .
$$

Proof follows immediately from Lemmas 2 and 3.
Lemma 7. For any $\delta>0$ one can find positive constants $\varepsilon, \theta, C, D$ and K such that

$$
\mathrm{P}(\mathscr{A}(k) \mathscr{B}(k) \mathscr{C}(k) \mathscr{D}(k)) \geqq K k^{-1} \quad(k=1,2, \ldots) .
$$

Proof. We have

$$
\begin{gathered}
\mathrm{P}(\mathscr{A}(k) \mathscr{B}(k) \mathscr{C}(k) \mathscr{D}(k))=\mathrm{P}(\mathscr{A}(k) \mathscr{B}(k)) \mathrm{P}(\mathscr{C}(k) \mathscr{D}(k)) \\
=\mathrm{P}(\mathscr{B}(k) \mathscr{A}(k)) \mathrm{P}(\mathscr{A}(k)) \mathrm{P}(\mathscr{C}(k) \mathscr{D}(k)) \geqq \frac{1}{2} K k^{-\frac{1-\delta}{1-2 \mathscr{E}}(1+\theta)} K k^{-\frac{D}{\delta}},
\end{gathered}
$$

which proves the lemma.
Since the events $\mathscr{A}(k) \mathscr{B}(k) \mathscr{C}(k) \mathscr{D}(k)(k=1,2, \ldots)$ are mutually independent, Lemma 7 implies that with probability one infinitely many among them will occur. The event $\mathscr{A}(k) \mathscr{B}(k) \mathscr{C}(k) \mathscr{D}(k)$ implies that

$$
\sup _{x}\left(\xi\left(x, a_{k+1}\right)-\xi\left(x, a_{k}\right)\right) \geqq\left(2 D a_{k+1} L_{2}\left(a_{k+1}\right)\right)^{1 / 2}
$$

and if

$$
\xi\left(x, a_{k+1}\right)-\xi\left(x, a_{k}\right)=\sup _{x}\left(\xi\left(x, a_{k+1}\right)-\xi\left(x, a_{k}\right)\right),
$$

then $x \geqq\left(2(1-2 \delta) a_{k+1} L_{2}\left(a_{k+1}\right)\right)^{1 / 2}$.
Since $\left(2 a_{k} L_{2}\left(a_{k}\right)\right)^{1 / 2}=o\left(\left(2 a_{k+1} L_{2}\left(a_{k+1}\right)\right)^{1 / 2}\right.$, our Theorem 1 follows from the following

Lemma 8. (cf. Kesten (1965)[2]). With probability one we have

$$
\limsup _{k \rightarrow \infty} \frac{\xi\left(a_{k}\right)}{\left(2 a_{k} L_{2}\left(a_{k}\right)\right)^{1 / 2}} \leqq 1 .
$$

3. Proof of Theorem 2. The following lemma can be obtained by a simple calculation.

Lemma 9. For any $i=0,1, \ldots,\left[L_{2}(n)\right]-1$ and $p=2,3, \ldots$ we have

$$
\lim _{n \rightarrow \infty} P\left\{\left.S\left(\left[(i+1) \frac{n}{L_{2}(n)}\right]\right)-S\left(\left[i \frac{n}{L_{2}(n)}\right]\right) \leqq y\left(\frac{n}{L_{2}(n)}\right)^{1 / 2} \right\rvert\, S_{n} \geqq\left(n \left(2 L_{2}(n)+3 L_{3}(n)\right.\right.\right.
$$

$$
\left.\left.\left.+2 L_{4}(n)+\cdots+2 L_{p}(n)\right)\right)^{1 / 2}\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-\frac{(x-\sqrt{2})^{2}}{2}} d x \quad(-\infty<y<+\infty) .
$$

By a combinatorial argument one can see
Lemma 10. (Csáki-Földes (1983) [1]).

$$
\mathrm{P}\{\xi(0,2 k)=l \mid S(2 k)=2 m)=2^{l} \frac{(2 m+l)\binom{2 k-l}{k+m}}{(2 k-l)\binom{2 k}{k+m}} \quad(l=0,1, \ldots, k-m)
$$

and
$\lim _{n+\infty} \mathrm{P}\left\{\xi(0, n)<x n^{1 / 2} \mid S(n)=\left[y n^{1 / 2}\right]\right\}=1-\exp \left(-\frac{1}{2}\left((x+y)^{2}-y^{2}\right)\right) \quad(0 \leqq x<\infty)$.
Given the sequence $S\left(\left[i \frac{n}{L_{2}(n)}\right]\right)\left(i=0,1,2, \ldots,\left[L_{2}(n)\right]-1\right)$ the r. v.'s

$$
\eta(i)=\xi\left(S\left(\left[i \frac{n}{L_{2}(n)}\right]\right),\left[(i+1) \frac{n}{L_{2}(n)}\right]\right)-\xi\left(S\left(\left[i \frac{n}{L_{2}(n)}\right]\right),\left[i \frac{n}{L_{2}(n)}\right]\right)
$$

are clearly independent with distribution

$$
\mathrm{P}\left\{\eta(i)<y\left(\frac{n}{L_{2}(n)}\right)^{1 / 2}\right\}=1-\exp \left(-\frac{1}{2}\left(\left(y+\Delta_{i}\right)^{2}-\Delta_{i}^{2}\right)\right)
$$

where

$$
\Delta_{i}=\left(S\left(\left[(i+1) \frac{n}{L_{2}(n)}\right]\right)-S\left(\left[i \frac{n}{L_{2}(n)}\right]\right)\right)\left(\frac{L_{2}(n)}{n}\right)^{1 / 2} .
$$

By a simple calculation again one gets
Lemma 11.

$$
\begin{aligned}
\mathrm{P}\left\{\max _{0 \leqq i \leqq\left|L_{2}(n)\right|-1} \eta(i) \leqq K\left(\frac{n}{L_{2}(n)}\right.\right. & \left.\left.L_{4}(n)\right)^{1 / 2} \mid \Delta_{i}=y_{i}, \quad i=0,2, \ldots,\left[L_{2}(n)\right]-1\right\} \\
& \leqq C(L(n))^{-1},
\end{aligned}
$$

where $K=K\left(y, y_{2}, \ldots, y_{\left[L_{2}(n)\right]-1}\right)$ is a big enough positive constant, $C>0$ is also big enough.

Define the r. v. v_{n} by $v_{n}=\inf \left\{k: S(k) \geqq\left(n\left(2 L_{2}(n)+3 L_{3}(n)+2 L_{4}(n)+2 L_{6}(n)\right)\right\}\right.$ Theorem A implies

Lemma 12.

$$
v_{n} \geqq n\left(1-\frac{L_{6}(n)}{L_{2}(n)}\right)
$$

with probability one except for finitely many n and

$$
\mathrm{P}\left(v_{n} \leqq n\right) \leqq \frac{C}{\left.L_{1}(n) L_{2}(n)\right)^{3 / 2} L_{3}(n) L_{4}(n) L_{5}(n)} .
$$

Applying again Kesten's result and Lemma 12, one gets
Lemma 13. There exists a $C>0$ such that

$$
\mathrm{P}\left\{\sup _{x}\left(\xi(x, n)-\xi\left(x, v_{n}\right)\right) \geqq C\left(n \frac{L_{5}(n)}{L_{2}(n)}\right)^{1 / 2}\right\} \leqq \frac{C}{L_{4}(n)} .
$$

ntroduce the following notations:

$$
\begin{aligned}
& \mathscr{A}(n)=\left\{f_{n} \geqq\left(n\left(2 L_{2}(n)+3 L_{3}(n)+2 L_{4}(n)+L_{5}(n)\right)\right)^{1 / 2}\right\}, \\
& \mathscr{B}(n)=\left\{v_{n} \leq n\right\}, \\
& \mathscr{C}(n)=\mathscr{C}(n, K)=\left\{\max _{\left.0 \leqq i \leqq I L_{2}(n)-L_{0}(n)\right]} \eta(i) \leqq K\left(\frac{n}{L_{2}(n)} L_{4}(n)\right)^{1 / 2}\right\}, \\
& \mathscr{D}(n)=\mathscr{D}(n, C)=\left\{\sup _{x}\left(\xi(x, n)-\xi\left(x, v_{n}\right)\right) \geqq C\left(n \frac{L_{5}(n)}{L_{2}(n)}\right)^{1 / 2}\right\} .
\end{aligned}
$$

Then we have

$$
\mathscr{A} \subset\left[\mathscr{B} \cap\left(\mathscr{C} \cup\left\{\max _{\left.0 \leq i \leq \mid L_{\mathrm{s}}(n)-L_{\mathrm{s}}(n)\right]} \eta_{i \leq} \leq \sup _{x}\left(\xi(x, n)-\xi\left(x, v_{n}\right)\right)\right\}\right)\right.
$$

$$
\left.\cup\left[\mathscr{B} \cap \overline{(\mathscr{C}} \cup\left\{\max _{0 \leq i \leq\left\lfloor L_{2}(n)\right]-\left[L_{6}(n)\right]} \eta_{i} \leq \sup _{x}\left(\xi(x, n)-\xi\left(x, v_{n}\right)\right)\right\}\right)\right] \subset(\mathscr{B} \cap \mathscr{C}) \cup(\mathscr{B} \cap \mathscr{D}) .
$$

Hence

$$
\mathrm{P}(A) \leqq \frac{C}{L_{1}(n)\left(L_{2}(n)\right)^{3 / 2} L_{3}(n)\left(L_{4}(n)\right)^{2} L_{5}(n)},
$$

which implies that among the events $\mathscr{A}\left(\left[a_{k}\right]\right)$ (where $\left.a_{k}=\exp \left(\frac{k}{(\log k)^{1 / 2}}\right)\right)$ only finitely many will occur with probability 1.

In fact the above proof gives a bit more:
Lemma 14. Among the events

$$
\mathscr{A}^{*}(k)=\left\{\sup _{n \leq a_{k}} f_{n} \geqq\left(a_{k}\left(2 L_{2}\left(a_{k}\right)+3 L_{3}\left(a_{k}\right)+2 L_{4}\left(a_{k}\right)+2 L_{5}\left(a_{k}\right)\right)\right)^{1 / 2}\right\}
$$

only finitely many can occur with probability 1.
This lemma and the trivial inequality

$$
\begin{aligned}
& \left(a_{k}\left(2 L_{2}\left(a_{k}\right)+3 L_{3}\left(a_{k}\right)+2 L_{4}\left(a_{k}\right)+2 L_{5}\left(a_{k}\right)+2 L_{6}\left(a_{k}\right)\right)\right)^{1 / 2} \\
\geqq & \left(a_{k+1}\left(2 L_{2}\left(a_{k+1}\right)+3 L_{3}\left(a_{k+1}\right)+2 L_{4}\left(a_{k+1}\right)+2 L_{5}\left(a_{k+1}\right)\right)\right)^{1 / 2}
\end{aligned}
$$

implies our Theorem 2.
4. A Few Unsolved Problems. 1. The upper and lower estimates of f_{n} are far away from each other. It is not very hard to find somewhat better estimates, however a precise description of the upper and lower classes of f_{n} seems to be hard.
2. Our Theorem 1 stated that $f_{n} \geqq\left((2-\varepsilon) n L_{2}(n)\right)^{1 / 2}$ infinitely often with probability 1. Its proof shows that when $f_{n} \geqq\left((2-\varepsilon) n L_{2}(n)\right)^{1 / 2}$, then $\xi\left(f_{n}, n\right)$ $=\xi(n)$ will be larger than $\left(2 D n L_{2}(n)\right)^{1 / 2}$ (where D is a small enough positive constant) infinitely often with probability one. As it is well known for any fixed x

$$
\limsup _{n \rightarrow \infty} \frac{\xi(x, n)}{\left(2 n L_{2}(n)\right)^{1 / 2}}=1 \text { with probability one, }
$$

Suppose that for a random sequence $\left\{x_{n}\right\}$ we have

$$
\limsup _{n \rightarrow \infty} \frac{\xi\left(x_{n}, n\right)}{\left(2 n L_{2}(n)\right)^{1 / 2}}=1 .
$$

Our question is: how big can x_{n} be?
3. Everyone can see immediately that No $\left\{\mathscr{F}_{n}\right\} \geqq 2$ infinitely often with probability one. Can we say that No $\left\{\mathscr{F}_{n}\right\} \geqq 3$ infinitely often with probability one?
4. Consider the random sequence v_{n} for which No $\left\{\mathscr{F}_{v_{n}}\right\} \geqq 2$. What can we say about the sequence $\left\{v_{n}\right\}$? Can we say, for example, that $\lim _{n \rightarrow \infty} v_{n} / n=\infty$ with probability 1 ?
5. What are the properties of the sequence $\left|f_{n+1}-f_{n}\right|$? Is it true that $\lim \sup _{n \rightarrow \infty}\left|f_{n+1}-f_{n}\right|=\infty$? If yes, what is the rate of convergence ?
6. Does the sequence f_{n} / \sqrt{n} have a limit distribution ? If yes, what is it ?
7. Is it true that $0 \in \mathscr{F}_{n}$ infinitely often with probability one?

REFERENCES

1. E. Csáki, A. Földes. How big are the increments of the local time of a simple symmetric random walk ? Coll. Math. Soc. J. Bolyai, 36, 1983.
2. H. Kesten. An iterated logarithm law for local time. Duke Math. J., 32, 1965, 447-456.
3. P. Erdös. On the law of iterated logarithm. Ann. Math., 43, 1942, 419-436.
4. W. Feller. The general form of the so-called law of the iterated logarithm. Trans. Amer. Math. Soc., 54, 1943, 373-402.
5. W. Feller. The law of the iterated logarithm for identically distributed random variables. - Ann. Math., 47, 1946, 631-638.

Mathematical Institute of the Hungarian

