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ON TWO UNCONVENTIONAL NUMBER THEORETIC FUNCTIONS
AND ON SOME RELATED PROBLMES
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where all the prime factors of the a 's are the prime factors of n . Triviallyf (n) S F(n)
and f (n) = F(n) if n -= p- but f (n) = F(n) is possible for arbitrarily large co(n), we will
give the simple proof later Probably there is no simple characterization of the integers
for which f (n) = F(n) .

For almost all n we probably have

F(n)- f(n)
n
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and perhaps even for almost all n

f (n) -- o(n log log n), F(n) > c n log log n .

I seem to have difficulties with proving (1) and the second inequality of (2), but it is
easy to prove that for almost all integers F(n)ln---> oo .
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Let n = It p; i, ro(n)=k is the number of distinct prime factors of n . Put
i-1

a i

(2)

f (n)ln at first sight almost is a conventional additive function, but this is misleading

and in fact f(n) does not have a mean value . We have in fact that
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f(n) does not have a distribution function but the logarithmic density of the integers n forn
which .f(n) < c exists and is a continuous increasing function of c .

n

Put
max f(n) = m(x), max F(n) _ M(x).
nax

	

nax

I will give a detailed proof of

lira sup m(x)
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(4) was posed by me at the "°Schweitzer competition" in 1982.

1 conjecture but can not prove that

m(x)

	

(1+0(1)) tog
to g x
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(5) is of course much stronger than (4) .

I can not decide whether for infinitely many x

m(x) = M(x) .

	

. . . (6)

In fact perhaps (6) holds for every sufficiently large x (or even for all x) . I feel that (3), (4),
(5) and (6) justify the study of these somewhat unconventional functions . Now I give the
proof of my theorems, further problems will be stated in the text .

THEOREM 1 . For every k there is an nk for which

F(1k) = nk, w(nk) = k .

	

. . . (7)

Theorem 1 is perhaps surprising but the proof is not difficult . Let t be large and
k

ul, u 2 , . . . , u k are integers so that the sums E a t u,, SE a t S k, a t integers are all distinct .
4- 1Let now x be very large compared to t and the u 's and let p i be the prime nearest to

k
t "i xll k and put n k = 11 p j . It is easy to see that n k satisfies (7) . To see this observe

8-1

that the a 's (the integers composed of the p 's) are either n k or are greater than n k and
thus can not be used as summands for F(nk) or are S (1+0(1)) n klt thus their total contribu-
tion would be less than

(1+0(1)) 2
to = o(n)

`which completes the proof of Theorem 1 .
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It would be of some interest to have some more precise condition which implies
F(n) = n and to get a reasonably good estimation for the number of integers n g'- x which
satisfy F(n)

	

n.

THEOREM 2 . For every k there is an mk for which

F(mk)= f (ink ) , w(mk)=k .

	

(8)

Let P i , P29 . . . , Pk be any set of k primes, x be a large integer for which for every
1.i=1, . . ,k

2X<pbt < x .

It follows from elementary theorems on diophantine approximation that such an x exist .

Let in be the smallest integer greater than x of the form t ÍI p{ a , h i > 0. It again follows .

from elementary theorems on diophantine approximation that mk < x (I +z). Clearly (8) is

satisfied for ink since n2 < pb { < ink thus p{t + pal > in,, and hence in the definition of

F(mk ) the a 's must be powers of primes ; which completes the proof of Theorem 2 . Here
too, it would be of some interest to estimate the number of integers in < x satisfying (8) and
to obtain good conditions which imply (8). ((9) clearly implies (8)) .

In fact it is not hard to prove that there are integers is with co(n)=(I- o(1))
log nl i ,, o i o o .for which (8) holds . The proof of (6) will easily give this too .

Are there integers n

	

p° for which (7) and (8) both hold, i .e . ?F(n)= f (n)=n ?
I doubt that such integers exist . In fact, are there integers n for which n p" andf (n)=n ?

Let 2,3, . . . , pk -the sequence of consecutive primes . Denote by x k the smallest
integer for which there is an exponent ~(,, i=1,2, . . . , k satisfying

2 < piai< xk .

	

. . . (10)

It easily follows from the box principle that

xk < exp exp kl+£ .

	

. . . "01) .. .

Unfortunately I have no lower bound for xk .

THEOREM 3. F(n)/„--3- oö if one neglects a sequence of density 0 .

Let k > ko (e, n) . It is well known that the density of integers n -which have more
than (1-+i) log log k prime factors = k is greater than 1-e . This follows easily by the
method of Turán* . Let now p .gln, p < q < k . It is easy to see that if n > .n o(k) then,
there are integers a and # with

See e.g . P .D .T.A. Elliott, Probabilistic Number Theory Springer Verlag 1980:
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(1 -e) n < p°qs < n .

Thus from (12) we obtain that for these n F(n) > 3 log log k which implies Theorem 3 .

I hoped that by this method I can prove that for almost all n F(n) > c log log n and

in fact that for almost all n F(n)=' 2 +o(1)) log log n and I hope that I will be successful in

this, but there are some difficulties with diophantine properties of powers of primes . One of
the difficulties is the following : Let p and q be two primes, a, < az < . . . are the integers
composed of p and q . Define f (p, q, e) as the smallest integer so that for every y > f (p,q,e)
there is an a i satisfying y < a ; < y (I+ e) . I have no satisfactory upper or lower bounds
for f (p, q, e) . To obtain such an estimation may be genuinely difficult but perhaps one can

get around this difficulty and obtain F(n)=( +o(1)) log log n, but I have not yet succeeded

in doing this .

THEOREM 4.

lím sup m(x) . (x log x (log log

Let 2 < 3 < . . . < p&; be the primes not exceeding log y (log log y)* . By the prime number
theorem or a more elementary theorem we have k > c , log y (log log y)" . For each

i, i=><,2, . . . , k let 0i be the least exponent for which pt' > y. Clearly

Y 4 Pi ` < Y log y (log log y)` •

Now by a simple computation we see that there is a z, y < z G y log y (log log y') a for
which there are more than c, log y log log y of the numbers pd i satisfying

(t2)

We obtain (13) by a simple counting argument using k > c log y (log log y)' . Let now
s=[(1-e) log y (log log y) -1] and let p,, p,, . . . , p a be any set of s primes satisfying (13).
Clearly

(14) we have

z < p~ ~ <z '1 - og~log y) .

	

(13)

a

Pt <
yl 'ei9 .

Let 4 be the smallest multiple of T, which is greater than z

	

log log y ) '
From (13) and
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I am sure that

I could not prove (17) and (5), but perhaps I overlook a simple idea .

THEOREM 5 . Jim inf f (n), n„ 8 = 2 .

Let p be a large prime, n=pq where q is the greatest prime less than pa . Clearly
f (n) = p'+q = (2+0(1))n'1s . Let p,, and p, be the two smallest prime factors of n .
A simple argument shows that the contribution of p, and p, to f (n) is > (2-ó(1))nws,
which completes the proof of Theorem 5.

THEOREM 6.

m

dim sup
x If Als) n= oe

n < z 1+ 2
log log y

On the other hand we have by (13)

f (n) > s z > (
1-e) log log y

z > (1-2e) log l
og '
log z ' z

.

(15) and (16) clearly prove Theorem 4 .

Denote max w(n)=h(x)=(1+0(1)) . log x
nsx

	

log log x

m(x) < x h(x) .

Theorem 4 can also be stated as

lim
MS-)~ 00
sup m(x) / xibcx) = 1 .

lim x h(x)-m(x) =
x->m

	

x

n-i

. . Clearly
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(16)

Let 2, 3, . . . , p k be the first k primes . t t easily follows from elementary theorems
on diophantine approximations that for every e > 0 and k there are arbitrarily large values
of x - x(s, k) so that for every i, 1 < i <. k there is an a l for which

As stated in the proof of Theorem 3 for every y > x-all but (1.-E)y integers n < y have
more than (1-n) log log k prime factors > p k . Choose y = 2x, then we obtain from (18)



Further write

TREOREM 7 .

a x f

. (n) > 4 x log log k
n-x

which proves Theorem 6 .

Using (10) and (11) we can prove that for infinitely many x

r

I f(n)ln> c x log log log log x .
n-1

In the opposite direction we prove

f(n) < c x log log log x .n
n-i

P. ERDÖS

To prove Theorem 7 it will suffice to show that

ax

f(n) < c 11 x log log log x .
nn-x

I think that (19) is closer to the "truth" than (20) .

To prove (20) we interchange the order of summation and obtain

=p(x)

	

ap(x)+1
(P

	

G 2x < P

	

)

ax
f (n) < 1

	

2x PQp (xt = 2
n

	

x
..d

P
n~x
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Where in X 11 p G (log x) 110 and in Ea (log x) 110 < p 4 x .

Clearly

P a q (xt _ ~ +P

	

Lr11

	

a

. . . (20)

1 < 4x

	

I < c2 x log log log x :

	

. (22)
p<(log x)10
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where in the inner sum

x

	

11~r

log log x

	

G p G x 1/3

	

. . . (26)

and r runs from 2 to log og'x . The upper bound for r is given by the fact that iflog x

r >

	

log X-- then x 11 ' r < (log x) 110 and in $,,' we have p > (log x) 110
10 log log x

Now by Brun's method we easily obtain that (I supress here some details which can
easily be filled in by the interested reader, we use that the number of primes in y, y+t is
< ct(log t)

1

	

log log x
p c` log x

9 in <ss)

Thus by (25) and (27) and r < 10 log x
log log x

Eg - Ey-i- Zy

where in EQ PY" < log log x and in E9

x 	< p'v(" < 2x, in both E'2 and -x we have p > (log x) 1°. Clearly
log log x

2x

	

1
xa < log log x11 p < C$ X.

Thus to complete our proof we only have to estimate X" . We evidently have

< c&x .
a

lim in

21

. . .

	

(23)

. . . (24)

. . . (25)

< ~ .

. . . (27)

. . . (28)

Thus finally by (21), (22), (23), (24) and (28) we obtain (20) which completes the proof
of Theorem 7 .

THEOREM S.
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THEOREM 9. The logarithmic density of the integers n for which f (n)

	

< c exists.
n

In other words

log x

	

n -f (e)nax1(n)eon

and f (c) is a continuous function of c . I do not prove Theorem 8 and 9 here since my proof
at the moment is probably too complicated . The reason for the truth of Theorems 8 and 9
is that the contribution of the large primes p to f (n) is on the average (logarithmic average)
small, but I hope to return to some of these questions at an other occasion .

In a problem of mine (Nieuw Archief voor Wiskunde (1983) p . 81, problem 623 I ask
the following question

Define
A set S={al, . . . , al} is admissible for n if a ; < n, 1 S i < 1, and (a ;, a;)=1 if i O j.

G(n)= max 2 a ;

where the summation is extended over all admissible sets S .

Van Lint and I prove that

G(n)=~ p+(1+o(l)) n z(n1r$) .
~án . . . (30)

Is there a relatively simple algorithm for computing G(n) ? Is it true that for n>no(r)
at least one of the a 's in (29) must have more than r prime factors (compare Theorem 1) ?
This is easy for r=1 in fact by a simple computation (which I have not carried out) one could
determine the largest n for which all the a 's in (29) are powers of primes . Observe that an
a ; can occur in (29) only if F(a ;)-a ; . Put H(n)=

Lint in fact gives

H(n) -ng~s < G(n) < H(n) .

It is not entirely trivial to prove that

lim H(n) -G(n) _-oo
n

. . . (29)

E p+n n (n 1/2). Our proof with van
pán

and if we make plausible (but hopeless) assumptions about the distribution of primes then for
every e > 0 and n > n je)

G(n) > H(n) - nl+e



ON TWO UNCONVENTIONAL NUMBER THEORETIC FUNCTIONS AND ON SOME RELATED PROBLEMS 121

Put

.f (*'(n)=

f x(n) is a slight modification off (n), but f *(n) behaves much more like an ordinary additive
function . First of all f *(n),,, has a distribution function

1

	

f	*i(n) -c , lim sup f * (n)/n=00x

	

n

Pa i
Pin

P"E0CD«+ i

but it is not yet clear to me how fast f *(n) can tend to infinity. Also it is not hard to prove
that the density of integers for which f (n-á-1) > f (n) as j and the same holds for F(n) and
f *(n)•

Put finally

2~
pa+i

91n
P"~n<P a-g

f **(n) no longer causes serious difficulties . Elementary results on diophantine approxima-
tion (see (9)) give

lim sup f (n)=

	

1
P° '9
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