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TREE-MULTIPARTITE GRAPH
RAMSEY NUMBERS

P . Erdős, R. J . Faudree, C . C. Rousseau and R. H . Schelp

ABSTRACT The Ramsey number r(T, K(n, n)) is studied in the case
where T is a fixed tree of order m and n is large . In particular, we
find that r(K(1, m-1), K(n, n)) is bounded above and below by
cmn/log(m) where in each bound c is an appropriate positive con-
stant .

1. Introduction

Given graphs Gl , . . . , Gk , the Ramsey number r(G 1 , . . . , Gk ) is the
smallest integer r so that, if we color the edges of Kr by k colors, then for
some i the ith color class contains a copy of Q . The study of
r(G,, . . . , Gk ) or generalized Ramsey theory was popularized by Harary,
although there were earlier papers on this subject, in particular that of
Gerencsér and Gyárfás [4] .
In [3] we considered Ramsey numbers of the form r(H, G) where H is

a fixed multipartite graph and G is a large sparse graph . The present
paper is a companion to [3] . In it we focus on Ramsey numbers of the
form r(T, G) where T is a fixed tree and G is a large multipartite graph .

Before presenting these rather special results, we first shall review some
of the problems of generalized Ramsey theory which have been of great
interest to us . It would be very desirable to have an asymptotic formula
for r(K3 , Kn ) . At present, we only know that
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n2 /<r(K3 , Kn)<c2(
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(log n)

	

log n
(1)

for all sufficiently large n. One would expect that, for m > 4 fixed and n
sufficiently large,

r(K., K„) < nm-i- £,

	

(2)

but this is open even for m = 4 . Perhaps

-r (C4, Kn) < n2-£-

	

(3)

Erdős strongly believes this but others disagree . All agree that the
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problem is likely to be difficult . No one doubts that

lim r(C4, K.) -0,

	

(4)- r(K3, K.)
but even this is open at present . Szemerédi has observed that

r(C4i Kn) < c
(

	 n2 l
(log n)2/'

which just fails to give (4) . The argument is based on the following result,
which is found in [1] . Let a, d and h denote the independence number,
average degree and number of triangles respectively of a graph G of
order N. Then

a > c(N/d) min{log(Nd2/h), log d} .

	

(6)

(In (5) and (6) c stands for different absolute constants .) Now the desired
result follows immediately by observing that in a graph G of order N--c
(n/log n)2 with no C4 the average degree of G is O(N'/2) and the number
of triangles is at most as large as the number of edges, i .e. Nd/2 .

Let G be a graph with q edges. Is it true that

r(K3i G) < 2q + 1?

	

(7)
Equality holds in the case where G is a tree .

2. Results

Our first theorem gives a general upper bound for r(T, K(n, n)), where T
is a tree of order m .

THEOREM 1 Let T be a tree of order m . For all n > 3m,

r(T, K(n, n)) < [4mn/log(m)] .

PROOF As the result is trivial in the case m _- 3, we may assume that
m > 3. Let (red, blue) be a two-coloring of KN where N= [4mn/log(m)] .
If there is no red copy of T, then the number of red edges is at most
N(m -2) . (This is a well-known result which is easily proved by induc-

N
tion.) Thus, we may assume that there are at least 2 -N(m-2) blue

edges, so that the average degree of the blue graph is at least N-2m+3 .
Let dl, d2i . . . , dN be the degree sequence of the blue graph and let d
denote the average degree of this graph . By a well-known argument, the

(5)



inequality

L.1 (nk)> (n -1)(1

	

(8 )

implies that there is a blue copy of K(n, n) . By convexity, (8) will be
satisfied if
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With our choice of N and in view of the fact that n > 3m we need only
verify that

(4m/log(m))(1- 5 lg(m))2m > 1

	

(13)

for all m > 3, and this is completely straightforward . 1]

REMARKS Neither the constant 4 nor the inequality n % 3m is a sharp
condition . In fact, were we to set N= [cmn/log(m)] and assume n to be
sufficiently large, then (11) would become

(cm/log(m)) (1 log(m))2m > 1, (14)

which is satisfied for all sufficiently large m by taking c > 2. Further, the
critical value co so that c > co will ensure that (14) holds for all m is
approximately 2+ 1/e .

The complete r-partite graph having n vertices in each part will be
denoted by K,(n, . . . , n) . In the following theorem, log(r)(n) denotes the
r-times iterated logarithm, i .e . log(l)(n)=log(n) and log (r)(n)_

N(n) > (n - 1) (1, (9)

and the latter certainly holds if

(10)N(N-2m) > n(j .

Note that (10) is equivalent
n

	

n /

(11)

to
N-n

	

N
N 2m > n 2m

and it certainly follows that there is a blue K(n, n) if

(12)
(1 (n

2m))2-
> 1 .

n
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log(log(r-1)(n)), r = 2, 3	he theorem is proved by induction, with
Theorem 1 constituting the first step .

THEOREM 2 Let T be a tree of order m. For each r > 2 there exists a
constant cr such that

r(T, Kr (n, . . . , n)) -- [crmn/log(r 1)(m)]

whenever m is sufficiently large and n > 3m .

The proof of this result is very similar to the proof of Theorem 1 and so
it will be omitted . Suffice it to say that using the strategy of the proof of
Theorem 1 one can verify that the blue graph contains a K(n, p), where
p = [c, , mn/log (r-2)(m)] . This fact, together with the induction
hypothesis, completes the proof .

The next result shows that the result of Theorem 1 is, within a constant
factor, the correct magnitude in the case where T is a star .

THEOREM 3 Let m be fixed. There exists a positive constant c such that

r(K(1, m -1), K(n, n)) -- [cmn/log(m)]

for all sufficiently large n. If m is sufficiently large, c=6 will suffice .

PROOF The proof uses the Lovász-Spencer method as developed in [7]
and previously applied by the authors in [2] . We shall simply review the
basic ideas of this method. Should additional details be needed, the
reader is referred to the account given in [7] . Let N= [cmn/log(m)] . We
wish to show the existence of a two-colouring of the edges of K,,, in which
there is no red K(1, m-1) and no blue K(n, n) . This will be accom-
plished by the probabilistic method, in particular by considering a random
two-coloring in which each edge of the KN is colored red with indepen-
dent probability p. For each set S of m vertices of the KN, let As denote
the event that the red subgraph spanned by S contains K(1, m -1) .
Similarly, for each set T of 2n vertices let BT denote the event that the
blue subgraph spanned by T contains K(n, n) . For a fixed As let NAA
denote the number of S'# S such that As and As, are dependent .
Similarly, let NAB denote the number of T such that As and BT are
dependent. In exactly the same way, define NBA and NBB . Letting A and
B denote typical As and BT respectively, the desired conclusion will
follow from the fundamental lemma of Lovász if there exist constants a
and b such that aP(A) < 1, bP(B) < 1, (15)

log(a) > NAAaP(A) + NABbP(B), (16)
log(b) > NBAaP(A) + NBBbP(B) .

	

(17)
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The following bounds are obvious :

NAAC \2/\m-21'

NAB , N B
\

	

/'2 n

NBA C \21 (m-2)'

THEOREM (H~ggkvist) r(P-, K(n, k)) < m + n + k -2 .

159

P(A) _ mpm ',

P(B) _ (2n/(1-p)", .
o

With E an appropriately small positive constant, set

p = (2+ E) log(m)/n, (23)

a =1 + E, (24)

b = mEn, (25)
C = 6 .

	

(26)

Straightforward calculations verify that with these choices NAAaP(A) and
NABbP(B) tend to zero as n and that log(b) exceeds NBAaP(A), at
least for all sufficiently large m . Thus with n - and m taken to be
sufficiently large, conditions (15)-(17) are satisfied and the proof is
complete .

Although the bound of Theorem 1 is, in a certain sense, sharp in the
case where T is a star, this is certainly not the case in general . In
particular, the behavior of r(T, K(n, n)) is quite different in the case
where T is a path . H~ggkvist reports that be has proved the following
result [5] :

(20)

(21)

(22)

In any case, the crude upper bound r(P_, K(n, n)) _ m +4n follows from
a simple argument using a result of Pósa [6] . Let (red, blue) be a
two-coloring of the edges of KN, where N= m + 4n. If there is no red P„,
then Pósa's lemma yields a set of vertices X with its neighborhood in the
red graph, F(X), such that JXJ _ m/3 and JF(X) U X1 _ 3 JXJ . Repeated
use of this result gives a set Y such that n _ I YJ _ n + m/3 and
IF(Y) U YJ _ 3 1 Y1 _ 3n + m. It follows that the blue graph contains a copy
of K(n, n) .
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3. Open questions and final remarks

What is the behavior of r(T, K(n, n)) when T has bounded degree?
Perhaps the methods of Hdggkvist will shed some light on this question .

We have seen that for a tree, T, the Ramsey number r(T, K(n, n)) is
linear in n. However, if T is replaced by a graph containing a cycle this is
no longer true . In [7] Spencer showed that r(C., Kn,) , c(n/log(n))-,
where a = (m -1)/(m -2) . By the same method, one obtains the same
bound for r(C., K(n, n)), except for the value of the positive constant c .
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