13

TREE-MULTIPARTITE GRAPH RAMSEY NUMBERS

P. Erdös, R. J. Faudree, C. C. Rousseau and R. H. Schelp

Abstract

The Ramsey number $r(T, K(n, n))$ is studied in the case where T is a fixed tree of order m and n is large. In particular, we find that $r(K(1, m-1), K(n, n))$ is bounded above and below by $\mathrm{cm} / \mathrm{log}(m)$ where in each bound c is an appropriate positive constant.

1. Introduction

Given graphs G_{1}, \ldots, G_{k}, the Ramsey number $r\left(G_{1}, \ldots, G_{k}\right)$ is the smallest integer r so that, if we color the edges of K_{r} by k colors, then for some i the i th color class contains a copy of G_{i}. The study of $r\left(G_{1}, \ldots, G_{k}\right)$ or generalized Ramsey theory was popularized by Harary, although there were earlier papers on this subject, in particular that of Gerencsér and Gyárfás [4].

In [3] we considered Ramsey numbers of the form $r(H, G)$ where H is a fixed multipartite graph and G is a large sparse graph. The present paper is a companion to [3]. In it we focus on Ramsey numbers of the form $r(T, G)$ where T is a fixed tree and G is a large multipartite graph.

Before presenting these rather special results, we first shall review some of the problems of generalized Ramsey theory which have been of great interest to us. It would be very desirable to have an asymptotic formula for $r\left(K_{3}, K_{n}\right)$. At present, we only know that

$$
\begin{equation*}
c_{1}\left(\frac{n^{2}}{(\log n)^{2}}\right)<r\left(K_{3}, K_{n}\right)<c_{2}\left(\frac{n^{2}}{\log n}\right) \tag{1}
\end{equation*}
$$

for all sufficiently large n. One would expect that, for $m \geqslant 4$ fixed and n sufficiently large,

$$
\begin{equation*}
r\left(K_{m}, K_{n}\right)<n^{m-1-\varepsilon} \tag{2}
\end{equation*}
$$

but this is open even for $m=4$. Perhaps

$$
\begin{equation*}
r\left(C_{4}, K_{n}\right)<n^{2-n} \tag{3}
\end{equation*}
$$

Erdös strongly believes this but others disagree. All agree that the
problem is likely to be difficult. No one doubts that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{r\left(C_{4}, K_{n}\right)}{r\left(K_{3}, K_{n}\right)}=0 \tag{4}
\end{equation*}
$$

but even this is open at present. Szemerédi has observed that

$$
\begin{equation*}
r\left(C_{4}, K_{n}\right)<c\left(\frac{n^{2}}{(\log n)^{2}}\right), \tag{5}
\end{equation*}
$$

which just fails to give (4). The argument is based on the following result, which is found in [1]. Let α, d and h denote the independence number, average degree and number of triangles respectively of a graph G of order N. Then

$$
\begin{equation*}
\alpha>c(N / d) \min \left\{\log \left(N d^{2} / h\right), \log d\right\} . \tag{6}
\end{equation*}
$$

(In (5) and (6) c stands for different absolute constants.) Now the desired result follows immediately by observing that in a graph G of order $N \geqslant c$ $(n / \log n)^{2}$ with no C_{4} the average degree of G is $O\left(N^{1 / 2}\right)$ and the number of triangles is at most as large as the number of edges, i.e. $N d / 2$.

Let G be a graph with q edges. Is it true that

$$
\begin{equation*}
r\left(K_{3}, G\right) \leqslant 2 q+1 ? \tag{7}
\end{equation*}
$$

Equality holds in the case where G is a tree.

2. Results

Our first theorem gives a general upper bound for $r(T, K(n, n))$, where T is a tree of order m.

Theorem 1 Let T be a tree of order m. For all $n \geqslant 3 m$,

$$
r(T, K(n, n)) \leqslant\lceil 4 m n / \log (m)\rceil
$$

Proof As the result is trivial in the case $m \leqslant 3$, we may assume that $m>3$. Let (red, blue) be a two-coloring of K_{N} where $N=\lceil 4 m n / \log (m)\rceil$. If there is no red copy of T, then the number of red edges is at most $N(m-2)$. (This is a well-known result which is casily proved by induction.) Thus, we may assume that there are at least $\binom{N}{2}-N(m-2)$ blue edges, so that the average degree of the blue graph is at least $N-2 m+3$. Let $d_{1}, d_{2}, \ldots, d_{N}$ be the degree sequence of the blue graph and let d denote the average degree of this graph. By a well-known argument, the
inequality

$$
\begin{equation*}
\sum_{k=1}^{N}\binom{d_{k}}{n}>(n-1)\binom{N}{n} \tag{8}
\end{equation*}
$$

implies that there is a blue copy of $K(n, n)$. By convexity, (8) will be satisfied if

$$
\begin{equation*}
N\binom{d}{n}>(n-1)\binom{N}{n} \tag{9}
\end{equation*}
$$

and the latter certainly holds if

$$
\begin{equation*}
N\binom{N-2 m}{n}>n\binom{N}{n} . \tag{10}
\end{equation*}
$$

Note that (10) is equivalent to

$$
\begin{equation*}
N\binom{N-n}{2 m}>n\binom{N}{2 m} \tag{11}
\end{equation*}
$$

and it certainly follows that there is a blue $K(n, n)$ if

$$
\begin{equation*}
\frac{N}{n}\left(1-\frac{(n+2 m)}{N}\right)^{2 m}>1 \tag{12}
\end{equation*}
$$

With our choice of N and in view of the fact that $n \geqslant 3 m$ we need only verify that

$$
\begin{equation*}
(4 m / \log (m))\left(1-\frac{5 \log (m)}{12 m}\right)^{2 m}>1 \tag{13}
\end{equation*}
$$

for all $m>3$, and this is completely straightforward.
Remarks Neither the constant 4 nor the inequality $n \geqslant 3 m$ is a sharp condition. In fact, were we to set $N=\lceil\mathrm{cmn} / \log (m)\rceil$ and assume n to be sufficiently large, then (11) would become

$$
\begin{equation*}
(c m / \log (m))\left(1-\frac{\log (m)}{c m}\right)^{2 m}>1 \tag{14}
\end{equation*}
$$

which is satisfied for all sufficiently large m by taking $c>2$. Further, the critical value c_{0} so that $c>c_{0}$ will ensure that (14) holds for all m is approximately $2+1 / \mathrm{e}$.

The complete r-partite graph having n vertices in each part will be denoted by $K_{r}(n, \ldots, n)$. In the following theorem, $\log ^{(r)}(n)$ denotes the r-times iterated $\log a r i t h m$, i.e. $\log ^{(1)}(n)=\log (n)$ and $\log ^{(r)}(n)=$
$\log \left(\log ^{(r-1)}(n)\right), r=2,3, \ldots$. The theorem is proved by induction, with Theorem 1 constituting the first step.

Theorem 2 Let T be a tree of order m. For each $r \geqslant 2$ there exists a constant c_{r} such that

$$
r\left(T, K_{r}(n, \ldots, n)\right) \leqslant\left\lceil c, m n / \log ^{(r-1)}(m)\right\rceil
$$

whenever m is sufficiently large and $n \geqslant 3 m$.
The proof of this result is very similar to the proof of Theorem 1 and so it will be omitted. Suffice it to say that using the strategy of the proof of Theorem 1 one can verify that the blue graph contains a $K(n, p)$, where $p=\left\lceil c_{r-1} m n / \log ^{(r-2)}(m)\right\rceil$. This fact, together with the induction hypothesis, completes the proof.

The next result shows that the result of Theorem 1 is, within a constant factor, the correct magnitude in the case where T is a star.

Theorem 3 Let m be fixed. There exists a positive constant c such that

$$
r(K(1, m-1), K(n, n)) \geqslant\lfloor c m n / \log (m)\rfloor
$$

for all sufficiently large n. If m is sufficiently large, $c=\frac{1}{6}$ will suffice.
Proof The proof uses the Lovász-Spencer method as developed in [7] and previously applied by the authors in [2]. We shall simply review the basic ideas of this method. Should additional details be needed, the reader is referred to the account given in [7]. Let $N=\lfloor c m n / \log (m)\rfloor$. We wish to show the existence of a two-colouring of the edges of K_{N} in which there is no red $K(1, m-1)$ and no blue $K(n, n)$. This will be accomplished by the probabilistic method, in particular by considering a random two-coloring in which each edge of the K_{N} is colored red with independent probability p. For each set S of m vertices of the K_{N}, let A_{S} denote the event that the red subgraph spanned by S contains $K(1, m-1)$. Similarly, for each set T of $2 n$ vertices let B_{T} denote the event that the blue subgraph spanned by T contains $K(n, n)$. For a fixed A_{S} let $N_{\text {AA }}$ denote the number of $S^{\prime} \neq S$ such that A_{S} and $A_{S^{\prime}}$ are dependent. Similarly, let $N_{A B}$ denote the number of T such that A_{S} and B_{T} are dependent. In exactly the same way, define $N_{B A}$ and $N_{B B}$. Letting A and B denote typical A_{S} and B_{T} respectively, the desired conclusion will follow from the fundamental lemma of Lovász if there exist constants a and b such that

$$
\begin{gather*}
a P(A)<1, \quad b P(B)<1, \tag{15}\\
\log (a)>N_{A A} a P(A)+N_{A B} b P(B), \tag{16}\\
\log (b)>N_{B A} a P(A)+N_{B B} b P(B) . \tag{17}
\end{gather*}
$$

The following bounds are obvious:

$$
\begin{align*}
N_{\mathrm{AA}} & \leqslant\binom{ m}{2}\binom{N-2}{m-2}, \tag{18}\\
N_{\mathrm{AB}}, N_{\mathrm{BB}} & \leqslant\binom{ N}{2 n}, \tag{19}\\
N_{\mathrm{BA}} & \leqslant\binom{ 2 n}{2}\binom{N-2}{m-2}, \tag{20}\\
P(A) & \leqslant m p^{m-1}, \tag{21}\\
P(B) & \leqslant\binom{ 2 n}{n}(1-p)^{n^{2}} . \tag{22}
\end{align*}
$$

With ε an appropriately small positive constant, set

$$
\begin{align*}
p & =(2+\varepsilon) \log (m) / n, \tag{23}\\
a & =1+\varepsilon, \tag{24}\\
b & =m^{\varepsilon n}, \tag{25}\\
c & =\frac{1}{6} . \tag{26}
\end{align*}
$$

Straightforward calculations verify that with these choices $N_{\mathrm{AA}} a P(A)$ and $N_{A B} b P(B)$ tend to zero as $n \rightarrow \infty$ and that $\log (b)$ exceeds $N_{B A} a P(A)$, at least for all sufficiently large m. Thus with $n \rightarrow \infty$ and m taken to be sufficiently large, conditions (15)-(17) are satisfied and the proof is complete.

Although the bound of Theorem 1 is, in a certain sense, sharp in the case where T is a star, this is certainly not the case in general. In particular, the behavior of $r(T, K(n, n))$ is quite different in the case where T is a path. Häggkvist reports that he has proved the following result [5]:

Theorem (Häggkvist) $r\left(P_{m}, K(n, k)\right)<m+n+k-2$.
In any case, the crude upper bound $r\left(P_{m}, K(n, n)\right) \leqslant m+4 n$ follows from a simple argument using a result of Pósa [6]. Let (red, blue) be a two-coloring of the edges of K_{N}, where $N=m+4 n$. If there is no red P_{m} then Pósa's lemma yields a set of vertices X with its neighborhood in the red graph, $\Gamma(X)$, such that $|X| \leqslant m / 3$ and $|\Gamma(X) \cup X| \leqslant 3|X|$. Repeated use of this result gives a set Y such that $n \equiv|Y| \leqslant n+m / 3$ and $|\Gamma(Y) \cup Y| \leqslant 3|Y| \leqslant 3 n+m$. It follows that the blue graph contains a copy of $K(n, n)$.

3. Open questions and final remarks

What is the behavior of $r(T, K(n, n))$ when T has bounded degree? Perhaps the methods of Haggkvist will shed some light on this question.

We have seen that for a tree, T, the Ramsey number $r(T, K(n, n))$ is linear in n. However, if T is replaced by a graph containing a cycle this is no longer true. In [7] Spencer showed that $r\left(C_{m}, K_{n}\right) \geqslant c(n / \log (n))^{\sim}$, where $\alpha=(m-1) /(m-2)$. By the same method, one obtains the same bound for $r\left(C_{m}, K(n, n)\right)$, except for the value of the positive constant c.

References

1. M. Ajtai, P. Erdös, J. Komlós and E. Szemerédi, On Turan's theorem for sparse graphs. Combinatorica 1 (1981), 313-317.
2. S. A. Burr, P. Erdös, R. J. Faudree, C. C. Rousseau and R. H. Schelp, An extremal problem in generalized Ramsey theory. Ars Combinat. 10 (1980), 193-203.
3. P. Erdös, R. J. Faudree, C. C. Rousseau and R. H. Schelp, Multipartite graph-sparse graph Ramsey numbers. To appear.
4. L. Geréncser and A. Gyárfás, On Ramsey-type problems. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), 167-170.
5. R. Haggkvist, Personal communication.
6. L. Pósa, Hamiltonian circuits in random graphs. Discrete Math. 14 (1976), 359-364.
7. J. Spencer, Asymptotic lower bounds for Ramsey functions. Discrete Math. 20 (1977), 69-76.
