A NOTE ON THE SIZE OF A CHORDAL SUBGRAPH

Paul Erdos
Hungarian Academy of Sciences
and
Renu Laskar*
Clemson University

1. Let $G(n, m)$ denote an undirected simple graph with n vertices and m edges. A graph is chordal (triangulated, rigid circuit) if every cycle of length > 3 has a chord: namely, an edge joining two nonconsecutive vertices on the cycle. The class of chordal graphs includes trees, k-trees, block graphs, interval graphs and complete graphs. Moreover, chordal graphs are known to be perfect [1] and they possess a number of desirable algorithmic characteristics. Chordal graphs also arise in several application areas: solution of sparse systems of linear equations [12], evolutionary trees [2], facility location [3], and scheduling [11]. Chordal graphs are studied by many, e.g. [5], [6], [9], [10]. If a graph is not chordal, it is quite appropriate to ask the following questions:
(1) What is the maximum order of a chordal subgraph?
(2) What is the maximum size of a chordal subgraph?

In answer to (1) recently Dearing, Shier, and Warner [4] have developed a polynomial time algorithm to generate a maximal chordal subgraph. It may be pointed out that their algorithm does not generate a chordal subgraph of maximum order. In an earlier paper [8], Erdठs and Laskar have determined asymptotically the minimum number of edges to be deleted

* This author's research was supported in part by National Science Foundation Grant Number ISP-8011451.

Congressus Numerantium, 48 (1985), pp.81-86
from a graph such that the resulting graph is a chordal subgraph of maximum order.

This paper is a first attempt to answer to (2). Let $f(n, t)$ denote the smallest positive integer, for which every $G(n, f(n, t))$ contains a chordal subgraph of size at least t. We show here that, $f(n, n)$
$=\left[\frac{n^{2}}{4}\right]+1$. Further, we prove that any $G\left(n,\left[\frac{n^{2}}{4}\right]+1\right)$ contains a chordal subgraph of size $n(1+\varepsilon)$, if $n>n_{0}(\varepsilon)$ where $\varepsilon>0$ is a fixed positive number. At present we cannot determine the exact value of ε. In fact, in such a graph we show the existence of a tringle xyz, with deg $x+$ deg $y+\operatorname{deg} z>n(1+\eta)$ for small $\eta>0$, so that the triangle $x y z$, together with the incident edges of x, y, z give such a chordal subgraph. In this connection, it may be pointed out that Edwards [7] has shown that any graph $G(n, m)$ with $m \geq \frac{n^{2}}{3}$ contains a triangle $x y z$, where deg $x+\operatorname{deg} y$ $+\operatorname{deg} z \geq 2 n$, and hence $G(n, m)$ contains a chordal subgraph of at least size $2 n-3$.
2. Let $f(n, t)$ denote the smallest integer for which every $G(n, f(n, t))$ contains a chordal subgraph of at least t edges. Let $N(v)$ denote the neighbors of v and $N[v]=N(v) \cup\{v\}$.

First we prove the following:

Theorem 1.

$$
f(n, n)=\left[\frac{n^{2}}{4}\right]+1
$$

Proof. Suppose G is a graph with n vertices and $\left[\frac{n^{2}}{4}\right]+1$ edges. It suffices to show that such a graph G always has a chordal subgraph with n edges, and that there exists a graph with n vertices and $\left[\frac{n^{2}}{4}\right]$ edges whose all chordal subgraphs are of size $\leq n-1$.

Let G be a graph with n vertices and $\left[\frac{n^{2}}{4}\right]+1$ edges. First note
that G must have a vertex x with $\operatorname{deg} x>\frac{n}{2}$. Let v be a maximum degree vertex and $\operatorname{deg} v=\frac{n}{2}+t, t>0$. Now there must exist a vertex y $\varepsilon N(v)$ such that, deg $y>\frac{n}{2}-t$. If not, then

$$
\begin{aligned}
& 2|E|=2\left\{\left[\frac{n^{2}}{4}\right]+1\right\}=\sum_{x \in N[v]} \operatorname{deg} x+\sum_{x \in N[v]} \operatorname{deg} x \\
& \leq \frac{n}{2}+t+\left(\frac{n}{2}+t\right)\left(\frac{n}{2}-t\right)+\left(\frac{n}{2}-t-1\right)\left(\frac{n}{2}+t\right) \\
& =2\left(\frac{n^{2}}{4}-t^{2}\right) \text {. } \\
& \text { i.e. }|E| \leq \frac{n^{2}}{4}-t^{2} \text {, a contradiction. }
\end{aligned}
$$

Let $y \in N(v)$ such that deg $y>\frac{n}{2}-t$. Now y must be adjacent to at least one other vertex u in $N(v)$; otherwise, G has at least
$|N(y)|+|N(v)| \geq \frac{n}{2}-t-1+\frac{n}{2}+t=n+1$ vertices, a contradiction. Thus we have a $K_{3}=\{v, y, u\}$. The edges incident to v, y, u together with K_{3} form a chordal subgraph of G with n edges.

To show the existence of a graph G with n vertices and $\left[\frac{n^{2}}{4}\right]$ edges, all of whose chordal subgraphs have $\leq n-1$ edges, we note that the Turan graph [13] is complete bipartite $K_{\left[\frac{n}{2}\right],\left\{\frac{n}{2}\right\}}$ with n vertices and $\left[\frac{n^{2}}{4}\right]$ edges and has no triangles. A spanning tree of this graph is a chordal subgraph with maximum number $n-1$ of edges. a

Our next theorem proves a stronger result.
Theorem 2. Any graph $G\left(n,\left[\frac{n^{2}}{4}\right]+1\right)$ contains a chordal subgraph of at least $n(1+\varepsilon)$ edges if $n>n_{0}(\varepsilon)$ where $\varepsilon>0$ is a fixed positive number.

Proof. As in theorem 1 , let v be a maximum degree vertex with deg $v=$ $\frac{n}{2}+t, t>0$. Let $y \in N(v)$ with $\operatorname{deg} y>\frac{n}{2}-t$.

Suppose $t>n n$, for some $n>0$ and $N(v)=\left\{y_{1}, y_{2}, \ldots, y_{\frac{n}{2}}+t\right.$, and $\operatorname{deg} y_{1} \geq \operatorname{deg} y_{2} \geq \cdots \geq \operatorname{deg} y_{\frac{n}{2}+t}$. If $\operatorname{deg} y_{1} \leq \frac{n}{2}-t+n^{2} n$, then

$$
\begin{aligned}
\sum_{i=1}^{\frac{n}{2}+t} \operatorname{deg} y_{i} & \leq\left(\frac{n}{2}+t\right)\left(\frac{n}{2}-t+n^{2} n\right) \\
& =\frac{n^{2}}{4}-t^{2}+n^{2} \frac{n^{2}}{2} \\
& <\frac{n^{2}}{4}(\because t>n n)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
2|E| & =\sum_{i=1}^{\frac{n}{2}+t} \operatorname{deg} y_{i}+\sum_{x \in N(v)}^{\operatorname{deg} x} \\
& <\frac{n^{2}}{4}+\frac{n^{2}}{4}-t^{2} \\
& =\frac{n^{2}}{2}-t^{2}
\end{aligned}
$$

Thus,

$$
|E|<\frac{n^{2}}{4}-\frac{t^{2}}{2}, \text { a contradiction. }
$$

Hence, deg $y_{1}<\frac{n}{2}-t+n^{2} n$. Then y_{1} must be adjacent to $n^{2} n$ vertices y_{i} in $N(v)$. Pick any such vertex, say y_{r}. Then the triangle v, y_{1}, y_{r} forms a chordal subgraph with at least $\operatorname{deg} v+\operatorname{deg} y_{1}+\operatorname{deg} y_{r}-3$ edges, i.e. at least $\frac{n}{2}+t+\frac{n}{2}-t+n^{2} n+1+2-3=n\left(1+n^{2}\right)$ edges, and we have our desired chordal subgraph.

Thus, to complete the proof we have to show that $t>n n$ for some $\eta>0$. As before, we consider the triangle v, y, y_{r}, where v is a maximum degree vertex with $\operatorname{deg} v=\left[\frac{n}{2}\right]+t$ and $y, y_{r} \varepsilon N(v)$ and $\operatorname{deg} y \geq \frac{n}{2}-t+1$. If deg $y_{r} \geq n n$, we have a chordal subgraph consisting of the triangle v_{y}, together with the edges incident with v, y, and y_{r}, having at
least $\frac{n}{2}+t+\frac{n}{2}-t+1+n n=n(1+n)-1$ edges. So assume that deg $y_{r}<n n$. Delete y_{r} from G, the resulting graph has $n-1$ vertices and at least $\frac{n^{2}}{4}+1-n n>\frac{(n-1)^{2}}{4}$ edges. Hence, we can repeat the argument. Suppose we can continue this process for \& times. The resulting graph G_{1} has then $m=n-\ell$ vertices and $>\frac{m^{2}}{4}$ edges. Consider the triangle $v^{\prime} y^{\prime} y_{r}^{\prime}$ in G_{1} as of the construction, where v^{\prime} is a maximum degree vertex with $\operatorname{deg} v^{\prime}=\frac{m}{2}+t^{\prime}$ and $\operatorname{deg} y^{\prime}>\frac{m}{2}-t^{\prime}$. If $\operatorname{deg} y_{r}^{\prime}>$ $\ell+n n$, then we have

$$
\operatorname{deg} v^{\prime}+\operatorname{deg} y^{\prime}+\operatorname{deg} y_{r}^{\prime}>n n+\ell+\frac{m}{2}+t^{\prime}+\frac{m}{2}-t^{\prime}=n+n n
$$

and we have our desired chordal subgraph.
If deg $y_{r}^{\prime} \leq \eta n+\ell$, choose ℓ to be very small, say, $\ell=\frac{n}{10}$ (it is large compared to n). Counting the edges of G (note that there are $\frac{n}{10}$ vertices of G whose degrees are $<\frac{n}{10}+n n$), we have

$$
|E| \leq \frac{1}{2}\left[\left(\frac{n}{2}+t\right)\left(n-\frac{n}{10}\right)+\frac{n}{10}\left(\frac{n}{10}+\eta n\right)\right]
$$

Now if $t \leq n n$,

$$
|E| \leq \frac{1}{2}\left[\left(\frac{n}{2}+n n\right)\left(n-\frac{n}{10}\right)+\frac{n}{10}\left(\frac{n}{10}+n n\right)\right]<\frac{n^{2}}{4}
$$

a contradiction.
Thus $t>n n$, and we complete our proof. a
[1] Berge, C. Some Classes of Perfect Graphs, in Graph Theory and Theoretical Physics, Academic Press, 1967, 155-166.
[2] Buneman, R., A Characterization of Rigid Circuit Graphs, Discrete Math. 9 (1974), 205-212.
[3] Chandrasekaran, R. and A. Tamir, Polynomially Bounded Algorithms for Locating p-centers on a Tree, Discussion paper no. 358, Center for Mathematical Studies in Economics and Management Science, Southwestern University, 1978.
[4] Dearing, P. M., D. R. Shier, and D. D. Warner, Maximal Chordal Subgraphs, Clemson University Technical Report \#404, 1982.
[5] Dirac, D. A., On Rigid Circuit Graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71-76.
[6] Duchet, P. Classical Perfect Graphs, Topics on Perfect Graphs, C. Berge and V. Chvatal, editors, Annals of Discrete Math. 21 (1984), 67-96.
[7] Edwards, C. S., The Largest Vertex Degree Sum for a Triangle in a Graph, Bull. London Math. Soc. 9 (1977), 203-208.
[8] Erdos, P. and R. Laskar, On Maximum Chordal Subgraphs, Congressus Numerantium 39 (1983), 367-373.
[9] Gavril, F., Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graphs, SIAM J. Comput. 1 (1972), 180-187.
[10] Golumbic, M., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[11] Papadimittrion, C. H. and M. Yahhakakis, Scheduling Interval-ordered Tasks, SIAM J. Comput. 8 (1979), 405-409.
[12] Rose, D. J., Triangulated Graphs and the Elimination Process, J. Math. Annal. Appl. 32 (1970), 597-607.
[13] Turan, P., On an External Problem in Graph Theory, Mat. Fiz. Lapok 48 (1941), 436-452.

