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1. INTRODUCTION AND SUMMARY 

A graph G is said to have property P(k) if for any two sets 

A and B of vertices of G with A n B = $J and /A u BI = k , there 

is a vertex u P A u B which is joined to every vertex of A and not 

joined to any vertex of B . Note that if a graph G has property 

P(k) , then the complement GC of G also has property P(k) . If we 

specify the sizes of A and B as x and y respectively (x + y = k) 

then we denote the above property by P(k:x,y) I Let f(n) be the 

largest integer for which there exists a graph on n vertices having 

property P(f(n)) . 

In this paper we prove, using probabilistic methods (see Erdas 

[3], Erdos and Moser [4], Erdb;s and Spencer [S] and [6]) that 

logn - (2 + o(l)) log 1% n < f(n) < s . 
log 2 

We do not construct our graphs explicitly. 

In a previous paper, Caccetta, Vijayan and Wallis [2] studied 

graphs having property P(4:2,2) , That is, they considered graphs with 

the property that for any four vertices of the graph there is always 

another vertex joined to the first two and not joined to the last two. 

In particular, they showed that the order of such a graph must be at least 

34 and verified that all Paley graphs of prime order between 61 and 

173 have this property. A consequence of our result on f(n) is that 

graphs with property P(4:2,2) exist for large n (n 2 345) . 

We conclude this paper by giving, for every n L 9 , a class of 

graphs on n vertices having property P(2) . The graph r:onstructed has 

a certain monotonic property namely an m-vertex graph with property PI21 

is obtained from an (m - l)-vertex graph with the same property by adding 

a new vertex and some edges incident to it. 

Graphs with property P(k:x,y) have been studied by other 

authors; see Exoo [7] for details. 
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2. MAIN RESULTS 

THEOREM 1: For n sufficiently large 

logn - (2 + o(1)) loglogn s f(n) < * , 

log 2 

PROOF. We first establish the upper bound. Denote by G(n) , a graph on 

n vertices with property P(k) . Let v1,v2,...,vk be any set of k 

vertices from G(n) . We can divide this set in 2k ways into two dis- 

joint subsets A and B . To every such division there corresponds a 

vertex *AB 
which is joined to every vertex of A and not to any vertex 

of B . Thus there are more than Zk + k vertices in our graph. Hence 

the upper bound. 

The proof of the lower bound is slightly more complicated. We 

would use a probabilistic argument. We choose a random graph G of n 

vertices in which each of the n(n - 1) 
2 possible edges is chosen with 

1 probability 7 , We show that if 

k < logn - (2 f o(l))loglogn 
log 2 

then G has the property P(k) with probability greater than 0 . 

First we observe that, the number of ways of choosing disjoint 

sets A and B with /Al + /BI = k is less than nk . 

For a fixed A and B with IAl + IBI = k , the probability 

that a given vertex u is joined to every vertex of A and to no vertex 

of B is clearly 

,Al:,Bi = I. 

Therefore the probability that none of the n - k vertices of G not in 

A u B has the required property is 

G does not satisfy P(k) only if there is at least one choice of A 

and B for which the required property is not satisfied and this 

probability is at the most equal to 

I 1 
n-k 

nk 1-1 . 
2k 
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NOW, 

k 1-L I 1 
n-k n 

n 
2k 

C 2n k 1-L l 1 2k 

< 2nke-n/2k . 

And if 

k < log n - (2 + o(l))loglogn 
log 2 

then 2nkeeni2k < 1 . 

Hence for all k less than or equal to the lower bound, there exists a 

graph satisfying P(k) and hence f(n) should at least equal to the 

lower bound. 0 

It would be of interest to decide whether the bounds in Theorem 1 

can be improved or not. In particular whether the lower bound could be 
logn improved to log - c for some absolute constant c . This problem is 

similar to an old and slightly related problem of Erd& and Spencer [6]: 

Let S be a set of n elements for which there corresponds to 

every subset Sl c S an element h(S1) of S . Denote by 

g(n) the smallest integer for which there is such a function 

h(S1) so that for every subset S' c S , IS'/ > g(n) and 

U h(S") = S . 
.y'cS ' 

They proved, by a similar method, that 

logn logn - - cloglogn < g(n)<- 
log 2 log 2 

and they could never improve this. 

Let G(n,2) denote the class of graphs on n vertices having pro- 

perty P(2) . Also the class of graphs on n vertices having property 

P(4: 2,2) be denoted by G(n,2,2) . It was the class G(n,2,2) that 

was studied in [2]. Using an argument similar to the one employed in the 

proof of Theorem 1 we can establish the following result concerning the 

classes G(n,2) and G(n,2,2) . 

THEOREM 2: 

(a> G(n,2) # $ for all n t 28 
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(b) G(n,2,2) # $ for all n t 345 II 

It may be of interest to reformulate our general problem in terms of 

the inverse function h(n) of f(n) . That is, h(n) is the smallest 

integer for which f(h(n)) 2 n , or, in other words, h(n) is the smallest 

integer for which there exists a graph on h(n) vertices with 

f(h(n)) 2 n . Our Theorem 1 can then be restated as follows: 

THEOREM 3: 

2" + n < h(n) < 2 n+(Z+o(l)logn 

Remark. Let a(m,m) denote the minimum order among all graphs satisfying 

property P(2m : m,m) . Exoo[7] obtained the following bounds on a(m,m>: 

0 

E!$L p 2 2m r a(m,m) 5 cm 2 

for some positive constant c . Since a graph with property P(2m) or 

P(2m + 1) also has property P(2m : m,m) it follows immediately that 

h(n)?T2" , 

thus improving our lower bound in Theorem 3. 

We conclude this section with the following problems. 

Problem 1. Is it true that h(n)/n2n + ~0 or is it the case that 

h(n) c cn2" for some constant c ? 

We feel that 

lim h(n) 

n+mn2 n 

exists. 

Problem 2. Is it true that if there is a graph G(n,k) on n vertices 

with property P(k) ) then there is a graph G(n + 1, k) with the same 

property? If so, can we get a family of graphs G(n,k) such that a 

G(m + 1, k) is obtained by adding a vertex from G(m,k) and some edges 

incident to it. 

In the next section we give a class of graphs for which G(m f 1, k) 

is obtained from G(m,k) for k = 2 . 
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3. THE CASE f(n) = 2 

In the previous section we noted that G(n,Z) # @ for all n > 28 . 

In this section we establish that G(n,Z) # @ for all n 1 9 through 

construction and G(n,2) = I$ for all n < 9 . 

The graph H displayed in Figure 1, is a basic building block in 

our construction. 

Figure 1. The Graph H . 

We identify a vertex as odd or even according to its label. The graph H 

has the following properties: 

1. every vertex of H has two odd neighbours; 

2. every vertex of H has two even non-neighbours; 

3. every odd vertex of H has two even neighbours. 

For nZ9,let n=$m+l+e,where 05857. Wedefine 6(t) as 

0 or 1 according to whether t is odd or even. The graph L(8m + 9) 

on 8m + 9 vertices is formed as follows. Take m + 1 copies 

Hl, H2, . . . . H&l of H . Join vertex i of HR , R > 1 to vertices 

i-1+6(i) , i + 2 - S(i) , i+4-d(i), i + 6 - S(i) (mod.8) 

of each %' lSk<R. To the resulting graph we add a new vertex x 

and join x to all even labelled vertices. The graph G(n) is obtained 

from L(8m + 9) by deleting 8 - 0 vertices of Htil with even vertices 

being deleted (in the order 6, 4, 2, 0) before any odd vertex is deleted. 

Some members of G(n) are displayed in Figure 2 below. 
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G(9) 

Figure 2. 
Each subgraph Hi , 1 < i 6 m , of G(n) has the properties (1) to 

(3) mentioned above. In addition, we make the following observations con- 

cerning our graph G(n) : 

4. every vertex of I$ , R > 1 , is joined to three odd vertices 

and one even vertex of each Hkl l<k<ll; 

5. two vertices of HR , il > 1 , have at most three common 

neighbours in any Hk , 1 5 k < R 

We now establish the following Theorem. 

THEOREM 4: G(n,2) # @ if and only if n 2 9 . 

PROOF. We first establish that G(n,2) # @ only if n > 9 . Let u be 
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a vertex of G E G(n,Z) and N u the set of vertices joined to u . Any 
vertex of Nu should have both a neighbour and a non-neighbour (i.e. a 

vertex not adjacent) amongst vertices of Nu if P(Z) is to be satisfied. 

This implies that jN('4. Since GC E G(n,?.) , it follows that n > 9 . u 

We now establish that G(n) E G(n,2) for every n 2 9 . Observa- 

tions (1) - (3) together with the fact that x is joined to all even 

labelled vertices imply that the subgraph Hk u {xl c G(9,2) for 

each 1 < k ': m . We note that if a pair of vertices i and j has the 

desired property in a subgraph of G(n) , then the pair has the desired 

property in G(n) . Thus it suffices to consider only pairs of vertices 

left in He1 , and pairs in different Hk's . 

Suppose 9 > 2 and let i and j be a pair of vertices in Hhl. 

Observation (4) ensures that i and j have a common neighbour, and a 

common non-neighbour in G(n) . Observation (5) ensures that i hasa 

neighbour which is not joined to j and that j has a neighbour which is 

not joined to i . Thus the pair i and j have the desired property in 

G(n) . 

Finally, consider the pair i,j with i E Ha and j c Hk , R < k. 

Observations (l), (2) and (4) ensure that 1 and j share a common neigh- 

bour and a common non-neighbour in G(n) . So we now need only establish 

that there is always a vertex joined to i but not to j , and a vertex 

joined to j but not to i . Observations (3) and (4) together with the 

fact that x is joined to all even vertices ensures that this is the case 

providing i and j are not both even. Suppose then that i and j 

are both even. Certainly j is joined to an odd vertex of HQ which is 

not joined to i . So we need to show that there is a vertex, t , say, 

joined to i but not to j . By definition i is joined to i + 4 

(mod.8) in HR * ff j is joined to i then we can take t as i+4 

(mod.8) since j can only be joined to one even vertex of Ha . So 

suppose j is not joined to i . The only case that needs attention is 

that when j is joined to vertices i + 4 , % + 1 and i + 7 (mod.8) 

of Hk. But then vertex j + 5 (mod.8) of Sk is joined to vertex i 

of HR and not joined to vertex j of Hk , and so we can take 

t = j + 5 (mod.8) . Note that this argument holds when k = m + 1 , 

since all odd vertices are present when Hm+l has even vertices. This 

completes our proof. 0 
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Remark. The class of graphs G(n) constructed above possess the mono- 

tonicity property mentioned at the end of the previous section (Problem 

2) * That is, G(n -I 1) can always be obtained from G(n) by adding a 

vertex. 
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