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0. Introduction

Letf'(z) be an entire function . Consider the (open) set of the z-plane defined by
(1)

	

{z : If(z) I > B} (B > 0),
and let
(2)

	

B)
denote its area (that is its 2-dimensiotal Lebesgue measure) .

QUESTION . When is it possible that

(3)

	

u(If(z)I B) <+~,
for some suitable B (0-B-+ ~)?

Our answer is contained in
THEOREM L Let f(z) be entire, transcendental and such that

log log log M(r)
(4)

	

lim sup	< 2 (M (r) = max If(z) I) .r-.+-

	

logy

	

I=I= r

Consider, in the z-plane, the set of points

ER = {z: R IzI < 2R, log If(z) I 2 T(R)} (R > 0),
where

(6)

	

T(R) =
7r
f log l f(Re iO)I dB
0

is the characteristic ofNevanlinna .
Then, the open set ER has a 2-dimensional Lebesgue measure p(ER ) which

satisfies the condition
p (ER) > Ró (S > 0, R > Ro (b)),

provided 8-0 has been chosen small enough .
If (4) is replaced by

(8)

	

lim inf log log log M(r) C 2
,

r-++- log r
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we may only assert that (7) holds if R is restricted to the values {R t}j_, of some
suitable, increasing, unbounded sequence .

As an immediate consequence of Theorem 1, we find .

COROLLARY 1 .1 . Any entire function f(z) satisfying the condition (8) cannot
satisfy (3) for any fixed positive B .

To verify that Theorem 1 is sharp, we establish the

PROPERTIES OF A SPECIAL FUNCTION . The entire_function 0(z), introduced below,
is such that

log log log M(r)(9)

	

lim	logs	- 2, M(r) = max j0(z)j .r

It satisfies the condition
(10)

	

u(10(z)~ B) < +~,
for some suitable finite B.

Our function O(z) shows that the assertions of Theorem I no logger hold if,
in (4) and (8), the symbols --2 are replaced by _ 2 .

The function O(z) is initially introduced as an integral :

(11)

	

~(z) __ 2I f
eXp (eX ((	

slog
	 O2)) d( (Re z < e'),

I

where the contour of integration T is the boundary of the open set

('17r

	

7C2)

	

92 = j z = x+ iy : x e2, - 2x (log x)2 < y <
2x (log x)2

The orientation on T is the one that always leaves 52 on the right-hand side .
By modifying T, in (11), we verify that O(z) may be continued throughout the

complex plane and is therefore an entire function .
The properties of O(z), which may have some independent interest, are sum-

marized in our

THEOREM 2 . The entire function O(z) is real for real values of z and has the
following properties .

1. There exists some constant B l such that

(13)

	

( (z)- B1 ) z2 (z 54 0)

remains bounded for

(14)

		

ZqS={z=x+iy :x>0, -1<y<Q.

11. The expression

(15)

	

0(z)
(log Izl)2



remains bounded for
(16)

		

jzj t e, zeS, zqQ .
111 . The expression

(17)

	

{(P (z)-exp (exp ((z log z) ~')}
(log^I z I )L

remains bounded for zE Q .

Our construction of (P(z), and our proof of Theorem 2, are straightforward
adaptations of a similar construction and a similar proof given by Pó1ya and Szegő
[3 ; pp. 115-116, ex . 158, 159, 160] .

It follows from Theorem 2 that

(18)

	

lim
log log M(r) - 1

r--- (r log r) 2

which implies (9), and is clearly more precise. From assertions I and II of Theorem 2
we deduce the existence of a bound B (0<B<+-) such that 10(z)~~B (z~0) .
As to the area of P, our definition (12) implies that it is equal to
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+_

	

da

	

7t~f

	

-
e° Q(Iogu)2

	

2

We have thus established the second property (stated above as (10)) of our special
function (P(z) .

1 . Proof of Theorem 1

We take for granted the following wellknown results of Nevanlinna's theory [2] .

I. The characteristic T(r), introduced in (6), is a continuous, increasing function
of r ::-O and

(1 .1)

	

T(r)
-+

	

(r +
log r

provided f(z) does not reduce to a polynomial.
11 . The functions T(r) and log M(r) are connected by the double inequality

Let U(r) > 1 be a continuous, nondecreasing unbounded function of r ::-O .
A well-known fundamental result of E . Borel implies the following : given EGO,
it is possible to find R„=R,(c) such that if

(1 .4)

	

Ro < R - r -_ 2R, r Q ff, (R),
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[2 ; p . 24]

(1.2)

In particular

T(r) = log M(r) -_ t+r
T(t),

	

t) .(0 < r <

(1 .3) 3 log M (2 - T (R) .
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then

(1.5)

	

U lr+ {,Og U(r)}1+E ) `
eU(r) .

The exceptional set S1(R) is a measurable subset of the interval [R, 2R] and
its Lebesgue linear measure 1(&,(R)) is such that

	 (Ti(R)) - 0 (R-+-) .R

The consequences of Borel's lemma stated in. (1 .4), (1 .5) and (1 .6) are found in
a paper of Edrei and Fuchs [1 ; p . 341] .

In the following proof we apply (1 .5) with U(r) replaced by T(r) and always
take R large enough to imply

(1.7)

	

(R)) < R , log U(R)

	

1 .

Hence, taking
_

	

r
{log T(r)} i + E '

we deduce from (1 .2), (1 .5) and (1 .7)

(1 .8)

	

log M(r) < 3e T(r){log T(r)} 1+E
provided
(1.9)

	

rEDR = {r : R -< r < 2R, rg9l (R)} (R > R O ) .

In view of (1 .7), the one-dimensional set DR has Lebesgue measure

(1 .10)

Introduce the set of values of 0 defined by

(1 .11)

	

A(r) _ {0 : log If(re`s )I > 2 T(R), 0 < 0 < 2r} ;

for every r>0, A(r) is an open subset of the interval (0, 2r.) . Denote by (A(r))
the one-dimensional Lebesgue measure of A (r). The definition of it (ER), as a two-
dimensional Lebesgue measure, and Fubini's theorem yield

2R

	

2R

(1 .12)

	

p(ER ) = ff rdrd0 = f rdr fd0= f rA(A(r))dr,
R

	

A(r)

	

R

where the double integral in (1 .12) is extended to all points z-=re'BEER
By (1 .9) and (1 .12)

(1 .13)

	

it (ER) -_ f r~(A(r)) dr .
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To complete the proof we note that the definition of T(r) (in (6)) and (1 .11)
imply

T(r) - l flog M(r) d0+

	

fn 1 T(R) d6 .2rc A(r)

	

2n o 2

Hence, in view of (1 .8), (1 .9) and the increasini*g character of T(r), we find

2 T(r) 2e T(r)(log T(r))I+'~,(d(r)) (rEDF , r > ro),

,,(A (r)) > e -i ( log T(r)) - l - r (rEDR , r > r,),

which used in (1 .13) yields

Ft(ER) e- I f r {log T(2R)I - ' - ' dr = e - I R {log T(2R)} - i -tti(DR),
AR

and finally by (1 .10)

(1.14)

	

y (ER ) > z e -~ R {log T(2R)} -~- ` (R R„ (s))

Up to this point we have not selected F>0, nor have Nie used (4) or the weaker
assumption (8) .

Assume for instance that (8) holds . Then, if q_-0 is small enough,

(1.15)

	

log T (r) = log log M (r) -z r2(1- ^) ,

as r--+- by values of a suitable increasing, unbounded sequence which we may
write as {2Rj},~=, . Take, in (1 .14), n=E, R=R; and note that since (1 .15) now
implies

(logT(2Rj))I+F < (2Rj)z(I-n%) (j :~-j,,(n)),
we obtain
(1 .16)

	

lu (ER) > (e-1/8)R Z" 2 (R = Rj, j > jo (n)) .

This proves that, under the assumption (8), (7) holds with R=Rj , j>jo .
The validity of (7) under the assumption (4) is obvious because then (1.16)

holds for all sufficiently large values of R and not only for R=Rj . The proof of
the Theorem is now complete .

2. Contours of integration

Let a be a positive variable and y a positive parameter which is restricted by
the conditions

(2.1)

	

4 7~'
y~ 4 .

Assume that y is fixed and consider, in the complex plane, the analytic
described by

(2.2)

	

~(u ; Y) = a+iz(a' Y), 'r (a ; Y) = 2u(loga)2 (e

	

F

arc
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We denote by L,_(z ; )) the arc described by Sju ; y) as a-6-: +-, by
L_(a. ; y) the symmetrical are described by 6-ir and by V(a. ; y) the vertical
segment
(2.3)

	

V(a ; Y) _ (z = x+iy : x = z, - T(a ; Y) = y' = r(a ; Y)}.

Denoting, as usual, opposite arcs by L and -L, we consider systematically
contours of integration

(a. ; Y) = -L _ ~(' ; Y) + Y (a ; ~I) + L +(a ; Y) ((2 .4

	

C

	

` r

	

) .a = e, - _ • • _ -

All the points z j C(a ; y) fall in two disjoint open regions . One of them :

(2 .5)

	

d (a ; Y) _ {z = x+iY, x 7 a, - i(x ; Y) = Y 'r (x, "A

has a finite area. (This fact is an obvious consequence of (19)) .
_ The other one, which contains the whole negative axis, will be denoted by
d (a ; Y) •

3 . The function 0(z) is entire

Consider in the half-plane Re z-2 the analytic function

(3 .1)

	

F(z) = exp (e(z log 0 2 ) (loge = 1),

where the branch of log z is determined by its value at e.
We shall first verify that for any yE[3/4, 5/4]

(3.2)

	

f 1F(C)l jd~~ = f IF(C)l
L.(e2,r)

	

C %

This follows at once from

d~

d6

(3 .3)

	

6
-- 1 (6 - -, y fixed)

and from the elementary estimates contained in

LEMMA 3.1 . if ~CL_r (e 2 ; y)3/4-y-5/4) then

(3 .4) F(S) =exp ~eWor"Ye'- j 1+loc61) (Re Z =a-.- ,

	

= co (6, y)),

where, in the error term,

0--A =absolute coast .,

Moreover, if cc -ao ~:,e'2 and if a o is large enough, then

	 iZY	)
(3.5)

	

IF' a +	
2a (log a)-
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d6<+-.

exp
l- 2

e (a log a)=)
la

= a0,
4 y

__ 4
)



PROOF . An elementary evaluation shows that (2 .1) and (2 .2) imply

(3 .6)

	

(~ log ~) 2 = (Q log 6) 2 +i7rY+ logv (w = 03 (a, Y), 1 (0 1
= 1) .

In (3 .6), and throughout the paper, we denote by a) a complex quantity, which
may depend on all the parameters of the problem, but is always of modulus =1 .
The symbol w, as well as A (our symbol for positive absolute constants), may assume
different values at each occurrence .

We note that, with this convention .

(3 .7)

	

e" = 1 +onielu I

Ii is obvious that (3 .6) and (3 .7) yield (3.4) . Observing that

Aw

	

A

	

1

	

3

	

5
Re e'rzy )1 +

logo: = Cos (71Y) + log a

	

a -_ ao ) ,

we deduce (3.5) from (3 .4) .
This completes the proof of Lemma 3 .1 .
Now the integrals in (3.2) are clearly convergent by (3.3) and (3 .4) . Noticing

that the contour F, which appears in the definition (11) of (b(z), coincides with
C(e2 ; 1) defined in (2 .4), we may rewrite

(3 .8)

	

O (z) =
2I

	

f
FF(C)

d f (Re z < e 2) .
C(e~ ;1)

This shows that P(z) is a function holomorphic in the half-plane

(3.9)

	

Re z < e2 .

The fact that C(e2 ; 1) has the real axis for axis of symmetry, and that F(z) is
real for real z, shows that O(z) is real lot real z .

By Cauchy's theorem, under the restriction (3 .9), we may replace the represen-
tation (3 .8) by

(3.10)

	

0(z)	 d( (a e 2)27rí C(
a ; 1)

C-z

and let a -- + -. This step is certainly justified because F(z) is holomorphic throu-
ghout Re z--2 . The form (3.10) shows that our original function, given by (3 .8),
may be continued throughout Re z---c( . Hence O(z) is in fact an entire function .

4. Proof of assertions I and II of Theorem 2

If zEd(e 2 ; 1), Cauchy's theorem and (3.5) show that we may use the represen-
tation

(4.1)

instead of (3.8) .
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(z) = 1

	

//' F(~)

d~27rí
c(el ;314) C-z

	

'
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we have

lisin-, in (4 .1) the identity

A. EDREI AND P . ERDŐS

1

	

I	 5~	
s -z

	

z"(S-z) (z / 0),

21 f F(Z) cK, B, = -
21, frF(~) c1c, C, = C

c,

	

cl

(4 .2)

and writing

(4.3)

	

B, _ -

Gve fund
B, &

	

i

	

f S~F(S) ~s (zEd(e, : 1)) .(4 .4)

	

~(z) _ -+-+
21ciz z c

	

-z

To complete the proof of assertions I and 11 of Theorem 2, there only remains
to estimate the integral in (4 .4) . It is clear that its modulus cannot exceed

(4 .5)

	

1
t5P

	

f jrjV(~) jdlj,
C 1

where b,(z) denotes the shortest distance between z and the contour C, .
If z7 S. an inspection of (12) and (14) shows that

(4.6)

	

(5,( .:) - (9/10),
and hence (4.4) yields

(0(z)-
B, - B, = (10I) f ~S,2F(Q

dl
= IB I3 .

I

	

cl

Assertion 1 of Theorem 2 is now obvious . To obtain assertion 11 of Theorem 2
it suffices to replace, in the previous proof, the inequality (4.6) by another one,
valid under the restrictions (16) .

1f

Rez=x>e2 +1, }-

	

,2x (log x)z`

ar

	

3rc

	

_
(4.7)

	

c5, (z) = 2x (log x)z

	

~111a

	

X8alog (,7) 2

7,

	

1

	

3
2 x (log x)2

	

4 (x-1) (log (x-1))2 ~'

J, (z)

	

n
1 Ox (log x) . (x -. xo e2 + 1)

provided x o is chosen large enough. Using (4.8) in (4.5) and returning to (4.4) we
find, for some suitable constant B 4>-0,

'V (z)

	

+B+
Bow x (log x) (zEd(xo , 1)) .
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Hence the expression (15) remains bounded for

(4.9)

	

JzJ -- xo +1, zES, z J Q .

Since O(z) is entire it is also bounded in the disk lzl-xo +1 . This enables us to
replace the restrictions (4.9) by the less restrictive conditions (16) . The proof of
assertion II of Theorem 2 is now complete .

5. Proof of assertion III of Theorem 2

We first confine z to an open rectangle

(5 .1)

	

= jz=x+iy : e 2-1 x-e2,- 7T <y c
8e2

Let H be the contour of integration formed by the boundary of ~R, taken in
the positive sense . A first application of Cauchy's theorem yields

(5.2)

	

1
f

	 F(~), d~ = exp (eXp ((z log Z)2)),
27r! H S -Z

and consequently

(5.3)

	

(P(z) - exp (exp ((z log z) 2 )) = 2ni f	 (C) dC,
r,

where r, is the contour formed by the juxtaposition of -L-,(e2 ; 1), three sides
of R, and L + (e2 ; l) .

It is obvious that the integral in (5.3) yields the analytic continuation of the
left-hand side of (5.3) throughout the open region (of finite area) enclosed by h .

In particular (5 .3) is valid for all points zE Q . A new application of Cauchy's
theorem and (3 .5) enable us to replace (5 .3) by

(5.4)

(z)-exp (exp ((z log z) 2) =
2ni ~	 (~) d~ (C2 = C (e2 ;

4
~, zE Ql .

l

	

l

	

J

We now repeat the argument in § 4 : from (4.2) and (5.4) we see that, instead
of (4.4), we obtain

a
(5 .5) (P (z) - exP (eXp ((z log z) 2)) =

BI
+ B2 + 27d Z_

	

yF(
dS (zEQ) .

C, S

The constants BI and B2 are again given by (4 .3) because, by Cauchy's theorem
and (3 .5), the values of the relevant integrals are not affected when the contour of
integration Cl is replaced by C2 .

To complete the proof of assertion III of Theorem 2 we need a lower bound
for the distance 6 2(z) between z and C2 . As in (4 .7), we find

S2(-) =

	

mi

	

J
n l(5/4) 7r

t

	

7r
- s-I- -=r-1 2Q(log 6) 2

	

2x (log x) 2 .
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provided x=el+ i, zE 0. Hence, if xI is choosen large enough

(5.6)

	

820

	

r

	

(x - xI - e'+ 1) .
I Ox (log x)'-

Using (5.6) in (5 .5) we complete the proof of assertion III of Theorem 2 by
the arguments which led to the proof of assertion 11 .
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