
EXTREMAL PROBLEMS 2OR PAIRWISE BALANCED DESIGNS

Paul Erdös
Hungarian Academy of Sciences

H-1053 Budapest, Hungary

Richard A . Duke, Joel C . 2owler, and Kevin T . Phelps
Georgia Institute of Technology

Atlanta, GA 30332

1 . Introduction
In a previous paper [2] the senior author discussed

many problems concerning block designs . Some of these have
since been settled . Szemerédi and Trotter [5] showed, for
example, that the number of pairwise balanced designs which
can be obtained geometrically on n points in the plane with
the blocks being the lines joining these points is at most
exp(c/) . In [1] Colbourn, Phelps, and Rödl verified con-
jecture (2) of [2] by showing that the number of multisets,
or "sequences," of integers which can be realized as the
block sizes of a pairwise balanced design of order n is
between exp(c 1v log n) and exp(c 2 / log n) . They also
found that the number of sets of (distinct) integers which
can be realized as block sizes, when multiplicities are not
considered, is between exp (c 1/n- ) and exp (c 2 ~-n) .

Here we consider some of the other problems stated in
[2] and related questions for such designs . In particular
we show that the number of multisets which can be realized
as the point-degrees of a pairwise balanced design is
between exp(c In) and exp(c2n) and that bounds of the same
form exist for the number of sets which can be realized as
degrees . We further show that if the set of block sizes to
be used in the design is specified, then for nearly every
such choice of block sizes it is still possible to realize
exponentially many sets or multisets as the degrees . In
fact, we establish that the maximum number of distinct block
sizes which can occur in a design is 2/ - 2 and show that

even if we require that our design have this number of dis-
tinct block sizes, there still exist exponentially many
choices for its degrees .

As in (17) of [2] we let 2(n ;k) denote the maximum over
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all designs on n points of the sum of the sizes of the k
largest blocks . Here we are able to show that 2(n ;k) =
n + ( Z) whenever (2) < n . Using a result of Wilson given in
[2] we also prove that 2(n ;t/i) < (t+c log t)n for t > 1 .
We conjecture that 2(n ;t i) < (t+c)n. Another bound, useful
for k near n and above, is. also obtained .
2 . Extremal Results

A pairwise balanced design of order n is an n-set S
together with a family B of subsets Ai S S, JAi l > 2,
1 < i < b, b > 2, with the property that each (unordered)
pair of elements of S is contained in exactly one member of
S . Hereafter, we shall call such a structure simply a
design . We refer to the elements of B as the blocks of the

design . By the degree of a point x e S we mean the number
of blocks in B which contain x .

The degree sequence of a design (S,B) of order n is the
multiset of n integers which are the degrees of the points
in S . The question of determining the number of distinct
multisets which are the degree sequences of designs of order
n was raised in [2] . We will denote this number by G(n) .
The degree set of a design (S,B) is simply the set of inte-
gers which are degrees of points in S . We will let g(n)
denote the number of distinct degree sets of designs of
order n .

Since no pair of points in a design are contained
together in more than one block, it follows immediately that
the degree of any point of a design of order n is at most
n-1, and thus that there exist positive constants c1 and c2
such that G(n) < exp(c 1n) and g(n) < exp(c2n) . We begin by
showing that lower bounds of this form also exist for both
g (n) and G (n) .
Theorem 1 . There exist positive constants c l ,c2 ,c 3 , and c4

such that exp(c1n) < G(n) < exp(c3n) and exp(c2n) < g(n) <

exp(c 4n) .
Proof . As indicated, the upper bounds are immediate . To
establish the lower bounds we begin with a Steiner triple
system (S,B) of order n. It is well known that such triple
systems exist whenever n =_ 1 or 3 (mod 6) . Each point of S
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has degree (n-1)/2 in this design . Let x1,x2""' xm , m =
en, e < 1/4, be points of S . 2or each i, 1 < i < m, select
ki triples, (n+l)/4 < k i < (n-l)/2, which contain xi but do
not contain any xi , j # i, 1 < j <m. We delete all of these
triples from B . 2or each pair of points in one of the
deleted triples we add that pair as a 2-element block to B .
Each point x i , 1 < i < m, has degree k i + (n-l)/2 > 3n/4 in
the resulting design . Since every point of S {x1, . . .,xm}

was contained in exactly one of the original triples with
any given xi , the degree of such a point is now at most
en + (n-l)/2 < 3n/4 . The values of the en k i 's may be
selected independently from the interval [(n+l)/4,(n-1)/2],
which yields the lower bounds .

Each of the designs constructed in the proof of this
theorem contains a positive fraction of the original
n(n-l)/6 triples and less than n 2/4 blocks of size 2 . This
leads to the following result .
Corollary 2 . 2or sufficiently large n there exists a
sequence of block sizes, JA1 1 > JA21 > . . . > IAb I, such that
the number of degree sequences for designs of order n having
this multiset of block sizes is at least exp(cn) .

We can modify Theorem l's construction to obtain exponen-
tially many degree sets for designs in which block sizes are
only allowed from some fixed set of at least two positive
integers . We illustrate with designs allowing only blocks
of two sizes, k1 and k2 , (k 1 < k2 ) . The construction is
easily generalized to collections of three or more allowable
block sizes . 2irst, let v be such that : 1) a design 2 1 ,
exists on v points with all blocks of size k 1 , and 2) a
design, 2 2 , exists on v points with all blocks of size k 2 .
Such a v exists by well known theorems of Wilson [6] . Let n
be any integer such that there exists a design on n points
with all blocks of size v (again, Wilson's results guarantee
the existence of such a design for all sufficiently large n
which satisfy the elementary necessary conditions on
balanced incomplete block designs) . We now choose a collec-
tion of en points x1,x2, . . .,xen . 2or any set of positive
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points . These blocks, together with all two element blocks
necessary to cover the remaining paris of points, give a
design with the maximum number of different block sizes .

There are I_yn_Icolumn groups, each representing LY'n_I

points . Note that A 1 through A L, give all sizes from
LV_I to 2L,"nJ-1 while A L,J+1 through A2LV-nJ_l cover sizes 2
through LIJ-1 . Since all uncovered pairs of points will be
handled by two element blocks we need only verify that the
above blocks cover every pair of points at most once . If
two points are chosen from the same L,`n_Igroup then they
occur together in the "major" block defining that group,
and no other since the l's below that block occur at most
one to a row . If two points are chosen from different
LV_Iblocks then the structure of the matrix shows that the
"left-most" point is in a block (the major block defining
that point's L1"n_Igroup) which the other is not . But every
point is in at most two of the blocks of the matrix . Hence
this pair is covered at most once .

We note that in the above argument each point was on
at most two of the blocks A i , 1 < i < 2 LdnJ -2 . It follows
that this construction could be carried out in the plane and
hence that this result holds for geometric designs .
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integers b 1 ,b2 , . . .,bcn
the 2 1 design . All of

replaced by the 2 2
then be shown that

x i , i = 1,2, . . .,en

points . Hence for
1 wev-1 )

cn for some

degree sets .

Our next theorem gives

can obtain

we replace b i of the blocks on x i by

the remaining size v blocks are

design . By elementary

for bi < (n-1)/(v-1) - en the degrees of

are below the degrees of all remaining

e sufficiently small (in comparison to

any set of en degrees from a set of size

constant c . This yields exponentially many

an (exact) bound on the number

of different block sizes possible in a design of order n .
We will see that even when this wide range of blocks sizes

is required exponentially many degree sequences are

able .

Theorem 3 . In a design on n points there can occur

than 2Lv,n-J - 2 different block sizes . Moreover, for all n

a design exists with this number of different block sizes .

(Lxi denotes the integer part of x) .
Proof . We show that in a design there can occur no more

than L / J blocks of size ? / . This, together with the fact

that no more than Lv"n-J - 2 sizes are possible from 2 to

- 1, will establish the first part of the theorem.

Let A1,A2, . . .,Ak be blocks of distinct sizes, all

Then by inclusion/exclusion we have
k

n > IA1 u A2 u . . . u AkJ >

	

E

	

JAij -

	

E

	

JAi n AjI
i=1

	

i<j

k-1
> E (J + i) - ( 2)

i= O

(k) + ( 2) - (2)
Hence L"J > k and the result follows . We note that the

above argument shows that a design with 2 LV-nJ - 2 different

block sizes must have as those distinct sizes 2,3,4, . . .,

2 LV-n-J - 1 .

2or the second part of the theorem we present in 2ig . 1

the rows and columns of an incidence matrix which correspond

to blocks of sizes 2,3, . . .,2 L/J - 1 in a design on n
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Next we show that exponentially many degree sequences

can be realized by designs having the maximum number of
block sizes given in Theorem 3 .
Theorem 4 . Let h(n) the number of degree sequences possible
for designs of order n which have at least one block of each
size r in the interval 2 < r < 2 /-l . Then h(n) > exp(cn) .
Proof . Our approach is based on a combination of the con-
structions used for Theorems 1 and 3 . As for Theorem 1 we
begin with a Steiner triple system (S,B) of order n . We add
to B blocks Ai , i = 1,2, . . ., 2,n-l, with jAij = i, con-
structed as in the proof of Theorem 3 . We delete each
triple of B which meets any Ai in more than one point and
replace each such triple by three pairs . Let B* be the
resulting collection of blocks consisting of the Ai , the
remaining triples of B, and these new pairs . Note that the
degree of any point in the new design (S,B*) is between
(n+l)/2 and n-l . Now, as in the proof of Theorem 1, we
replace some of the remaining triples by pairs .

Let the points of S be xl,x2' . . .,xn and let ti denote
the number of triples of B\B* containing x i . That is, t i
is the number of triples at x i which were lost when we added
the Ai . The degree of xi in (S,B*) is then ti + (n+l)/2 or
ti + (n+3)/2 . Since each triple of B\B* meets some A i in
at least two points we have

n

	

2 V-1
E ti <

	

E

	

(2) < 4 n3/2 .
i=1

	

j=2

It follows that there exist positive constants c1 and c2 ,
c l > c2 , such that the number of x i for which ti > n/5 is
less than c1 v"R, and the number for which t i > n/10 is less
than c2 Vn- . We also have that the number of xi with ti < ME
is at least n/3 . Suppose then that t i < 2 / for each i,
1 < i < m, m = en, E < 1/10 . 2or each of these xi select
ki triples in B* which contain xi , contain no xj , j # i,
1 < j < m, and contain no x j , j > m, for which t j > n/10 .
Note that xi is on at least (2n/5) - c2 An- such triples . 2or
each i, 1 < i < m, we delete these triples from B* and
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replace them with pairs . If each k i is chosen to be at
least n/4, then the resulting degree of x i , 1 < i < m, is at
least 3n/4 . 2urthermore, the only other points affected are
among those with t i < n/10 and so now have degrees less than
3n/4 . 2inally we may choose the value of each k i so that
the new degree of xi is not equal to that of any point for
which t i > n/5 . (There are at most c 1Y"n- such points .) It
then follows that each such selection of values for the m
k i 's yields a distinct degree sequence and the result fol-
lows .

We now turn our attention to the following problem
mentioned in [2] . Let

k
2(n ;k) = max( E

	

IA.!),

i=1
where this maximum is taken over all designs possible on n

points. Thus 2(n;k) is simply the maximum value over all
designs on n points of the sum of the k largest block sizes .
In [2] it is noted that

2(n ;k) < max(c1nk 1/2 , c2n1/2
k) .

for some constants c 1 and c 2 .
Here we present tighter

2(n ;k) = n + (2 ) for (2) <

first show 2(n ;k) < n + ( 2)
design on n points which achieves this

Theorem 5 .
Proof . We

n > JA1 u A2 u . . . u Ak I >

which immediately gives the

bounds on 2(n ;k) .
n .
and then
bound .

2or any set of k blocks in a design we have, arguing as
in Theorem 2,

k
E

i=1
k

>

	

E

	

IAi I - ( 2)
i=1

bound 2(n ;k) < n + ( 2) .
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To construct a design achieving this bound we first
note that it is always possible to place k blocks of size
k-l onto a set of (2) points such that no pair of points is
covered more than once . The incidence matrix for such a
configuration is



62

J
The first group of points is of size k-1, the second of

size k-2, the third of size k-3, etc . Hence the total num-
ber of points used is 1 + 2 + . . . + (k-2) + (k-1) = ( 2) .
2or n > ( 2) we can place the above configuration on

(2) of the points and adjoin the remaining n - ( 2) points to
A1 . Add size two blocks to cover any uncovered pairs of
points that remain . We now have a design with IA1I =

(k-1) + n - ( 2) and JAI = k-i for 2 < i < k . Hence
k
Z

	

JAiI = n + ( 2) .
i=1

We note that the above bound and construction are

applicable to sets of points in the plane . Thus the above
theorem also holds when the designs under consideration are
to come from points and lines in the plane .

2or larger k in relation to n our results are less
exact .
Theorem 6 . 2or (2) > n, 2(n ;k) < k~ + cn log(k/~), for

some constant c .
Proof . We rely upon the following bound . If 2 is a family
of subsets of an n-set, cardinalities from r to s, I< r< s,
no pair of which meet in more than one point, then

I2I
< n(s-1)r

This can be proved in the same way that bound (6), due

to Wilson, in (2) pg . 6, is obtained .
Using the above with r = (1 + 21+1s = (1 + 21 ) 'x,

A1 1 1 1 1 . . . 1

A2 1 1 1 1 . . . 1

A3 1 1 1 1 1 . . . 1

A4 1 . 1 . 1 1 1 . . . 1

Ak-1 1 1 1 1 1

Ak 1 1 1 1 1



and some algebra we obtain that the number of blocks in a

design with sizes in this range is no more than 2i+1Vi .

Hence the maximum contribution to 2(n ;k) from blocks with

sizes in this interval is

Vn- (1 + 1) (/n- 2i+1 )

2

occurring when there are Yrn- 2i+1 of these blocks . Hence if

kl is the number of blocks of size <_ 2 vrn- and
e i+1kl

	

E V 2
i=0

then the sum over these k 1 block sizes is bounded by k 1 VR +

of the form ofcn log(k1/v), which

theorem .

2or block sizes

than /n_ blocks exist of this

> Vn- (2 Yrni ) - n -	
2

	

'

a contradiction . We then apply the bound of Theorem 5 to

obtain a maximum contribution of n + ( 2) to 2(n;k) from
blocks of size >_ 2yrn- . This term is easily absorbed into
the bound of the theorem .

Our last bound on 2(n ;k) improves Theorem 6 for k near

n and above .

	

_'
Theorem 7 . 2(n ;k) < (k + V k 2 + 4kn(n-l))/2 .

Proof . Let A1,A2, . . .,Ak be the k largest blocks of a design

on n points . Then
k
E

	

lAi H(lAi l-1) < n(n-1) .
i=1

Hence
k

(

	

~

	

2

	

k
Z

	

Ai l)

	

- n(n-1) < E

	

lAi l .
i=l

	

i=1

By the Cauchy-Schwartz inequality

k( E

	

lA.l) 2 <

	

Z

	

JA .I 2 .
i=l

	

1

	

- i=1 1

Thus

is

n >

	

JAI
U

	

. U
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the bound of the

larger than 2/ we note that no

size since otherwise

AE I > E IAi I - (2 )
1

more



( E

	

JA.l) 2 - k( E JA .P) - kn(n-1) < 0 .
i=1

	

1

	

i=1
1

This quadratic inequality then implies the bound of the

theorem .
We note that equality in the above bound implies first

that A1 , . . .,Ak cover all pairs of points and second that all
blocks are of the same size . That is, equality holds if and

only if we have all blocks of a balanced incomplete block

design .
3 . 2urtherProblems

Many additional problems on block designs are discussed

in [2) . Others can be found in (3] . Here we repeat a few

of these questions and pose some new problems which we find
particularly interesting .

In [2] it was remarked that "it is perhaps not reason-
able to expect to obtain a necessary and sufficient condi-
tion for a sequence x l , . . .,xn that there should be a block
design" with these block sizes . It was later shown in [1]
that the problem of deciding whether a given multiset can be
realized in this way is in fact NP-complete . Is there any
hope of characterizing those multisets which are the degrees
of a design? What about degree sets?

In [4] Larson and Erdös asked whether there exists an
absolute constant C such that for each n there exists a
pairwise balanced design {Ai } of order n such that jAi j >

n1/2 - C for all i . Their guess was that no such constant
could exist .

2or each design consider the maximum number of blocks
of any single size . Let f(n) be the minimum of these values
over all designs of order n . 2irst we would like to deter-
mine whether f(n) < cn1/2 . That is, does there exist a
design of order n such that for each r the number of blocks
of size r is less than cn1/2? If true, then apart from the
value of c, this result is best possible . Perhaps there
exists a design in which for each r the number of blocks of
size r is less than cr1/2 . If such a design does exist it
would probably be quite different from those constructed
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Anr .
Many open questions remain concerning sums of block

aces . We conjecture that Theorem 6 can be improved to

#(n ;k) < kV + cn, for some constant c . 2urther questions

concerning 2(n ;k) might be formulated as follows . Call a

design on n points strong if it has b blocks (A1,A2, . . .,Ab)

and for any other design on n points with at least b blocks,largest

blocks B1,B2, . . .,Bb, we have

b

	

b
E

	

JB1.l <

	

E

	

JA1.l .
i=1

	

i=1

Theorem 7 and the remarks following
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its proof show
that every balanced incomplete block design is strong . Can
anything further be said regarding strong designs?

As we have noted the results of Theorems 3 and 5 are

also applicable for those designs which can be obtained from

o points in the plane where the blocks are the lines joining
these points . Clearly all of our questions about degrees

and block sizes could be formulated for such geometric

designs, and it would be interesting to determine how the

values obtained in these cases compare with those which
result when all designs are considered .

By an r-design we understand a set S and a collection

of subsets of S such that each r-tuple of S is contained in
one and only one of these subsets . Here we have been con-
cerned only with the case r = 2 . Similar questions could,
of course, be asked for r-designs with r > 3 . As far as we
know few of these problems have been considered .
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