FAMILIES OF FINITE SETS IN WHICH NO SET IS COVERED BY THE UNION OF r OTHERS ${ }^{+}$

BY
P. ERDÖS, ${ }^{*}$ P. FRANKL' AND Z. FÜREDI*
${ }^{-}$Mathematical Institute of the Hungarian Academy of Science, 1364 Budapest, P.O.B. 127, Hungary; and ${ }^{6}$ CNRS, 15 Quai A. France, 75007 Paris, France

ABSTRACT
Let $f_{r}(n, k)$ denote the maximum number of k-subsets of an n-set satisfying the condition in the title. It is proved that

$$
f .(n, r(t-1)+1+d) \leqq\binom{ n-d}{t} /\binom{k-d}{t} \quad \text { for } n \text { sufficiently large }
$$

whenever $d=0,1$ or $d \leqq r / 2 t^{2}$ with equality holding iff there exists a Steiner system $S(t, r(t-1)+1, n-d)$. The determination of $f,(n, 2 r)$ led us to a new generalization of BIBD (Definition 2.4). Exponential lower and upper bounds are obtained for the case if we do not put size restrictions on the members of the family.

1. Preliminaries

Let X be an n-element set. For an integer $k, 0 \leqq k \leqq n$ we denote by $\binom{x}{k}$ the collection of all the k-subsets of X, while 2^{x} denotes the power set of X. A family of subsets of X is just a subset of 2^{x}. It is called k-uniform if it is a subset of $\binom{k}{k}$. A Steiner system $\mathscr{S}=S(t, k, n)$ is an $\mathscr{S} \subset\binom{k}{k}$ such that for every $T \in\binom{k}{k}$ there is exactly one $B \in \mathscr{S}$ with $T \subset B$. Obviously, $|\mathscr{S}|=\binom{n}{?} /\binom{k}{k}$ holds. A $\mathscr{P} \subset\left(\begin{array}{l}\binom{k}{k} \\ \left(k_{1}\right)\end{array}\right.$ is called a (t, k, n)-packing if $\left|P \cap P^{\prime}\right|<t$ holds for every pair $P, P^{\prime} \in \mathscr{P} . \mathrm{V}$. Rödl [10] proved that

$$
\begin{equation*}
\max \{|\mathscr{P}|: \mathscr{P} \text { is a }(t, k, n) \text {-packing }\}=(1-o(1))\binom{n}{t} /\binom{k}{t} \tag{1}
\end{equation*}
$$

holds for all fixed k, t whenever $n \rightarrow \infty$.

[^0]Let $\lceil a\rceil$ ($\lfloor b\rfloor$) denote the smallest (greatest) integer (not) exceeding $a(b)$, respectively. We will use the Stirling formula, i.e., $n!\sim(n / e)^{n} \sqrt{ } 2 \pi n$.

2. Uniform r-cover-free families

We call the family of sets $\mathscr{F} r$-cover-free if $F_{0} \not \subset F_{1} \cup \cdots \cup F_{\text {r }}$ holds for all $F_{0}, F_{1}, \ldots, F_{r} \in \mathscr{F} .\left(F_{i} \neq F_{i}\right.$ if $i \neq j$.) Let us denote by $f,(n, k)$ the maximum cardinality of an r-cover-free family $\mathscr{F} \subset\binom{k}{k},|X|=n$. Let us set $t=\lceil k / r\rceil$. Then

To prove the lower bound we show that there exists a (t, k, n)-packing of this size. A $(t, r(t-1)+1, n)$-packing \mathscr{P} is r-cover-free because $\left|P \cap P^{\prime}\right| \leqq t-1$ holds for all $P, P^{\prime} \in \mathscr{P}$. Generally

Example 2.2. Let $X=Y \cup D, \quad|D|=d, \quad|Y|=n-d \quad$ and $\mathscr{P} \quad$ a $(t, r(t-1)+1, n-d)$-packing over Y. Define $\mathscr{F}=\{D \cup P: P \in \mathscr{P}\}$.

This example and (1) gives the lower bound in the following theorem.
Theorem 2.3. Let $k=r(t-1)+1+d$ where $0 \leqq d<r$. Then for $n>n_{0}(k)$

$$
\begin{equation*}
(1-o(1))\binom{n-d}{t} /\binom{k-d}{t} \leqq f_{\cdot}(n, k) \leqq\binom{ n-d}{t} /\binom{k-d}{t} \tag{2}
\end{equation*}
$$

holds in the following cases:
(a) $d=0,1$,
(b) $d<r /\left(2 t^{2}\right)$,
(c) $t=2$ and $d<[2 r / 3]$.

Moreover, equality holds in (2) iff a Steiner-system $S(t, k-d, n-d)$ exists.
This theorem determines asymptotically $f_{t}(n, k)$ for several values of r and k. The first uncovered case is $r=3, k=6$. The obvious conjecture that the maximum \mathscr{F} has the structure given by Example 2.2 is not true (cf. Theorem 2.6). A subset $A \subset F \in \mathscr{F}$ is called an own subset of F if $A \not \subset F^{\prime}$ holds for all $F \neq F^{\prime} \in \mathscr{F}$.

Let us suppose $X=\{1,2, \ldots, n\}$ and define $\max F=\max \{i: i \in F\}$.
Defintron 2.4. A family $\mathscr{F} \subset\binom{x}{r}, t, r \geqq 2$, is called a near t-packing if $\left|F \cap F^{\prime}\right| \leqq t$ holds for all distinct $F, F^{\prime} \in \mathscr{F}$, moreover, $\left|F \cap F^{\prime}\right|=t$ implies $\max F \notin F^{\prime}$ (in words: the t-subsets of F containing $\max F$ are own subsets).

Proposmion 2.5. If $\mathscr{F} C\left(\begin{array}{l}\binom{x}{0}\end{array}\right)$ is a near t-packing then \mathscr{F} is r-cover-free.

Proof. Suppose $F \subset F_{1} \cup \cdots \cup F_{n}, F_{i} \in \mathscr{F}$. Since $\left|F \cap F_{i}\right| \leqq t$, the sets $F \cap F_{1}$ form a partition into t-subsets of F. Choose F_{1} containing max F. Then $F \cap F_{i}$ is a t-subset of F containing max F and $F \cap F_{i} \subset F$. However, $F \cap F_{i}$ was supposed to be an own subset of F, a contradiction.

Theorem 2.6. There exists a near 2-packing $\mathscr{F} \subset\binom{x}{2}$ with $\left(n^{2} /(4 r-2)\right)-$ $o\left(n^{2}\right)$ edges.

This theorem and Proposition 2.1 give that $f_{r}(n, 2 r)=(1+o(1)) n^{2} /(4 r-2)$. It is easy to see that

Proposmion 2.7. For fixed k and r,

$$
\lim f_{r}(n, k) /\binom{n}{t}=\limsup _{n \rightarrow \infty} f_{r}(n, k) /\binom{n}{t}=c_{r}(k)
$$

exists whenever $n \rightarrow \infty$.

By Proposition 2.1 and (2) we have

$$
1 /\binom{k-d}{t} \leqq c_{r}(k) \leqq 1 /\binom{k-1}{t-1} .
$$

In Chapter 5 we get the slightly better

$$
c_{r}(k) \leqq(k-d t) / t\binom{k-1}{t-1}
$$

but we have no general conjecture for the value of $c_{r}(k)$ not covered by Theorems 2.3 and 2.6.

3. r-Cover-free families without size restriction

Denote by $f_{r}(n)$ the maximum cardinality of an r-cover-free family $\mathscr{F} \subset 2^{x}$, $|X|=n$.

Theorem 3.1. $\left(1+1 / 4 r^{2}\right)^{n}<f_{1}(n)<e^{(1+o(t))^{n} / s}$.
Remark. In the case $r=1$ the constraints reduce to $F_{0} \not \subset F_{1}$, i.e., the well-known Sperner-property. Hence (see [11])

$$
f_{1}(n)=\binom{n}{\lfloor n / 2\rfloor} .
$$

Suppose now that n is not too large compared to r.

Example 3.2. Let q be the greatest prime power with $q \leqq \sqrt{n}$. Let $Y=$ $\mathrm{GF}(q) \times \mathrm{GF}(q)$ be the underlying set and consider the graphs of the polynomials of degree at most d over the finite field $\operatorname{GF}(q)$. Set

$$
\mathscr{F}_{4, d}=\left\{\{(x, g(x)): x \in \mathrm{GF}(q)\}: g(x)=a_{0}+a_{1} x+\cdots+a_{i} x^{4}, a_{i} \in \mathrm{GF}(q)\right\} .
$$

Then $\left|F \cap F^{\prime}\right| \leqq d$ holds for $F, F^{\prime} \in \mathscr{F}_{q, d,}$ thus it is a $\lfloor(q-1) / d\rfloor$-cover-free family.

This yields the lower bound for $2 r^{2}<n$ in the following:
Theorem 3.3. For $r=\varepsilon \sqrt{n}$ we have

$$
(1-o(1)) \sqrt{n^{\mid 1 / / \beta} \mid+1} \leqq f_{,}(n) \leqq n^{[2 / \kappa 2]} \text {. }
$$

For $n<\binom{c+2}{2}$ we have the following easy
Proposition 3.4. If $n<\binom{+2}{2}$ then $f_{r}(n)=n$.

4. Proof of Proposition 2.1

If \mathscr{F} is a maximal (t, k, n)-packing then for every $G \in\binom{k}{k}$ there is an $F \in \mathscr{F}$ such that $|G \cap F| \geqq t$ holds. Hence we have

$$
\binom{n}{k} \leqq \sum_{P \in F}\left|\left\{G \in\binom{X}{k}:|G \cap F| \geqq t\right\}\right| \leqq|\mathscr{F}|\binom{k}{t}\binom{n-t}{k-t} .
$$

Using

$$
\binom{n}{k}\binom{k}{t}=\binom{n}{t}\binom{n-t}{k-t},
$$

this yields the lower bound.
For the proof of the upper bound let us define the family $\mathcal{N}(F)$ the non own parts of F with respect to \mathscr{F}, i.e.,

$$
\mathcal{N}(F)=\left\{T \subset F:|T|=t, \exists F^{\prime} \neq F, F^{\prime} \in \mathscr{F}, T \subset F^{\prime}\right\}
$$

Lemma 4.1. If \mathscr{F} is an r-cover-free family, $F \in \mathscr{F}$ and $T_{1}, T_{2}, \ldots, T, \in \mathcal{N}(F)$ then $\left|\cup T_{i}\right|<k$.

Proof. Trivial, choose $F \neq F_{i} \in \mathscr{F}$ with $T_{i} \subset F_{i}$ and note $F \not \subset F_{1} \cup \cdots \cup F_{r}$.

Lemma 4.2. $|\mathcal{N}(F)| \leqq\binom{ k-1}{}$, .

Proof. In view of Lemma $4.1 \mathscr{N}(F)$ fulfills the following conditions: (i) $\mathcal{N}(F) \subset\left({ }^{f}\right), r t \geqq|F|$ and (ii) $A_{1} \cup \cdots \cup A, \neq F$ for $A_{1}, \ldots, A_{,} \in \mathcal{N}(F)$.

Thus by Lemma 1 (Frankl [8]), $|\mathscr{F}| \leqq\binom{ k-1}{1}$ holds.
Now Lemma 4.2 implies that each $F \in \mathscr{F}$ has at least

$$
\binom{k}{t}-\binom{k-1}{t}=\binom{k-1}{t-1}
$$

own subsets. Consequently,

$$
|\mathscr{F}|\binom{k-1}{t-1} \leqq\binom{ n}{t}
$$

holds, yielding the desired upper bound.

5. Proof of Theorem 2.3

Let $\mathscr{F}_{0}=\left\{F \in \mathscr{F}: \exists S \subset F,|S| \leqq t-1\right.$, such that $S \subset F^{\prime} \in \mathscr{F}$ implies $\left.F^{\prime}=F\right\}$, i.e. \mathscr{F}_{0} denotes the family of members of \mathscr{F} having an own subset of size smaller than t. Clearly, we have

$$
\begin{equation*}
\left|\mathscr{F}_{n}\right| \leqq\binom{ n}{t-1} . \tag{3}
\end{equation*}
$$

Lemma 5.1. If $F \in \mathscr{F}-\mathscr{F}_{0}$ and $T_{1}, T_{2}, \ldots, T_{d+1} \in \mathcal{N}(F)$ then $\left|\cup_{i}\right|<$ $(d+1) t$.

Proof. Suppose for contradiction that $\left|\bigcup_{i}\right|=(d+1) t$ and let $\mathscr{P}=$ $\left\{T_{1}, T_{2}, \ldots, T_{d+1}, S_{1}, S_{2}, \ldots, S_{i-d-1}\right\}$ be a partition of F such that $\left|S_{i}\right|=t-1$. Then for each $P \in \mathscr{P}$ there exists a $F_{p} \in \mathscr{F}, F_{P} \neq F$ with $P \subset F$. Hence $F \subset$ $\bigcup_{\left\{F_{P}: P \in \mathscr{P}\right\} \text {, a contradiction. }}^{\text {. }}$

Lemma 5.2. For $F \in \mathscr{F}-\mathscr{F}_{0}$ we have

$$
\begin{equation*}
|\mathcal{N}(F)| \leqq d\binom{k-1}{t-1} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
|\mathcal{N}(F)| \leqq\binom{ k}{t}-\binom{k-d}{t} \quad \text { if } k>2 t^{3} d \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
|\mathcal{N}(F)| \leqq\binom{ k}{2}-\binom{k-d}{2} \quad \text { if } t=2, \quad k \geqq \frac{5}{2} d+2 . \tag{6}
\end{equation*}
$$

Moreover, equality holds in (5) or (6) iff $\left|\bigcup\left\{T \in\binom{x}{1}: T \notin \mathcal{N}(F)\right\}\right|=k-d$.

Proof. Let us define $m(k, t, d)=\max \left\{|\mathcal{N}|: \mathcal{N} \subset\binom{k}{i}, \mathcal{N}\right.$ does not contain $d+1$ pairwise disjoint members\} where $k>t d, k, t, d$ are positive integers. Erdös, Ko and Rado [6] proved that

$$
m(k, t, 1)=\binom{k-1}{t-1} \quad \text { for } k \geqq 2 t
$$

and

$$
m(k, t, d) \leqq d\binom{k-1}{t-1}
$$

was shown by Frankl (cf. [7] or [9]). For $k>k_{0}(t, d)$ Erdös [3] proved that

$$
m(k, t, d)=\binom{k}{t}-\binom{k-d}{t}
$$

Later $k_{0}(t, d)<2 t^{3} d$ was established by Bollobás, Daykin and Erdös [2]. For $t=2$,

$$
m(k, 2, d)=\binom{d}{2}+d(k-d)
$$

was proved by Erdös and Gallai [5] (for $k \geqq(5 d / 2)+2$). The uniqueness of the optimal families was proved both in [2] and [5]. These results and Lemma 5.1 imply (4)-(6).

From now on we suppose that one of the cases (a), (b), or (c) holds, i.e., (5) or (6) is fulfilled. We apply the following theorem of Bollobás [1].

Lemma 5.3. Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be finite sets and suppose that $A_{i} \cap B_{i}=\varnothing$ and $A_{i} \cap B_{i} \neq \varnothing$ holds for all $i \neq j$. Then

$$
\begin{equation*}
\sum \frac{1}{\binom{\left|A_{i}\right|+\left|B_{i}\right|}{\left|A_{i}\right|}} \leqq 1 . \tag{7}
\end{equation*}
$$

Moreover, if $\left|A_{i}\right|=a,\left|B_{i}\right|=b$ holds for all i then equality holds in (7) only if $\left|\bigcup A_{i}\right|=\left|\bigcup B_{i}\right|=a+b$.

Divide $\mathscr{F}-\mathscr{F}_{0}$ into two parts: $\mathscr{F}_{1}=\left\{F \in \mathscr{F}-\mathscr{F}_{0}:|\mathcal{N}(F)|<\binom{k}{1}-\binom{k-d}{1}\right\}, \mathscr{F}_{2}=$ $\mathscr{F}-\mathscr{F}_{0}-\mathscr{F}_{1}$. Then for each $F \in \mathscr{F}_{2}$ we have a d-subset $D(F) \subset F$, such that $\left|(F-D(F)) \cap F^{\prime}\right| \geqq t$ implies $F=F^{\prime}$.

Now let $T_{1}, T_{2}, \ldots, T_{m}$ be the family of all minimal own subsets of size at most t of the members of \mathscr{F}, i.e., $T_{i} \subset\left(F \cap F^{\prime}\right)$ and $F, F^{\prime} \in \mathscr{F}$ imply $F=F^{\prime}$, and for all $x \in T_{i}$ there exists $F^{\prime} \neq F, F^{\prime} \in \mathscr{F}$ such that $\left(T_{i}-\{x\}\right) \subset F \cap F^{\prime}$. Define

$$
X_{i}= \begin{cases}X-T_{i} & \text { if } T_{i} \subset F \in\left(\mathscr{F}_{i} \cup \mathscr{F}_{i}\right) \\ X-T_{i}-D(F) & \text { if } T_{i} \subset F \in \mathscr{F}_{2}\end{cases}
$$

Clearly $X_{i} \cap T_{i}=\varnothing$. We claim that $X_{i} \cap T_{i} \neq \varnothing$ holds for all $i \neq j$. If $X_{i}=X-T_{i}$ then this follows from the minimality of T_{i}, i.e., $T_{i} \subset T_{i}$. Suppose $X_{i}=$ $X-T_{i}-D(F)$. If T is a t-subset of $T_{i} \cup D(F)$, then either $T=T_{i}$ or $T \cap D(F) \neq \varnothing$ holds. Since $T_{;}$is an own subset of some $F^{\prime} \in \mathscr{F}$ and $F \in \mathscr{F}_{2}$, we infer $T_{i} \not \subset\left(T_{i} \cup D(F)\right.$), i.e., $T_{i} \cap X_{i} \neq \varnothing$.

Now Lemma 5.3 yields

Straightforward calculation shows that if $\left.n>2 d t{ }_{(}^{d}\right)$, then the coefficient of $\left|\mathscr{F}_{2}\right|$ is the smallest, hence we have

$$
\left|F_{0}\right|+\left|F_{1}\right|+\left|\mathscr{F}_{2}\right|=\left|F_{F}\right| \leqq\binom{ n-d}{t} /\binom{k-d}{t} .
$$

as desired. Moreover, equality can hold only if $\mathscr{F}_{0}=\mathscr{F}_{1}=\varnothing$. Finally, to get the extremal family we apply the second part of Lemma 5.3, which yields that each $D(F)$ is the same.

6. Proof of Theorem 2.6

We are going to use probabilistic methods.
Lemma 6.1. Let Y be an m-element set, $m \geqq 2 r$. Then there exist $(2 r-1)$ uniform families $\mathscr{P}_{1}, \ldots, \mathscr{P}$, such that $P \cap P^{\prime}=\varnothing$ for $P, P^{\prime} \in \mathscr{P},|\mathscr{P}| \geqq$ $(m /(2 r-1))-12 r^{2} \sqrt{m},\left|P \cap P^{\prime}\right| \leqq 2$ for all $P \in \mathscr{P}_{b}, P^{\prime} \in \mathscr{P}$, and $s>m^{3 / 2} / r^{2}$.

Proof. Let $A_{1}, A_{2}, \ldots, A_{i n}$ be pairwise disjoint ($2 r-1$)-element subsets of Y, $u=\lfloor m /(2 r-1)\rfloor$. Consider $3 s$ permutations chosen independently at random of $Y, \pi_{1}, \pi_{2}, \ldots, \pi_{3 n}$ where $s=\left\lceil m^{3 / 2} / r^{2}\right\rceil$. Define the family $\mathscr{R}_{\text {i }}$ as $\left\{\pi_{i}\left(A_{i}\right): 1 \leqq j \leqq\right.$ $u\}$. To obtain the families \mathscr{P}, we will delete the "bad" members of $\mathscr{R}_{\text {. }}$

For $B \in\binom{7}{3}$ we have that

$$
\operatorname{Prob}\left(B \text { is covered by some members of } \mathscr{R}_{i}\right)=\frac{\left|\mathscr{R}_{\mathrm{i}}\right|\binom{2 r-1}{3}}{\binom{m}{3}}<\frac{4 r^{2}}{m^{2}}
$$

Hence we get
$\mathrm{E}\left(\# B \in\binom{Y}{3}\right.$ which are covered by \mathscr{R}_{i} and \mathscr{R}_{i} as well $)<\binom{m}{3}\left(\frac{4 r^{2}}{m^{2}}\right)^{2}<\frac{8 r^{4}}{2 m}$.
Finally we get

$$
\begin{equation*}
\mathrm{E}\left(\# R \in \bigcup \mathscr{R}_{i}: \text { there exists } R^{\prime} \in \cup \mathscr{R}_{\mathrm{i}},\left|R \cap R^{\prime}\right| \geqq 3\right) \tag{8}
\end{equation*}
$$

$$
\leqq\binom{ 3 s}{2} \cdot 2 \cdot \frac{8 r^{4}}{3 m}<3 s\left(8 r^{2} \sqrt{m}\right)
$$

Now, call a permutation π_{i} "bad" if $\mathscr{\pi}_{i}$ contains at least $12 r^{2} \sqrt{m}$ members R with the property $\left|R \cap R^{\prime}\right| \geqq 3$ for some $R^{\prime} \in \bigcup_{i \neq i} \mathscr{R}_{\text {. }}$. Then by (8) we have

$$
\mathrm{E}\left(\# \operatorname{bad} \mathscr{R}_{i}\right) \leqq 2 s .
$$

Thus there exists a choice of the random permutations π_{1}, \ldots, π_{3} such that at most $2 s$ out of $\mathscr{R}_{1}, \ldots, \mathscr{R}_{3}$, are bad. Suppose by symmetry $\mathscr{R}_{1}, \ldots, \mathscr{R}_{2}$ are not bad. Each \mathscr{R}_{i} contains less than $12 r^{2} \sqrt{m}$ members R such that $\left|R \cap R^{\prime}\right| \geqq 3$ for some $R^{\prime} \in \bigcup_{i \neq i} \mathscr{R}_{i}$. Let \mathscr{P}_{i} be the family obtained from \mathscr{R}_{i} after deleting these R. Then $\mathscr{P}_{1}, \ldots, \mathscr{P}_{s}$ satisfy all the requirements.

Now the construction of the desired $\mathscr{F} \subset\binom{x}{2}$, where $X=\{1,2, \ldots, n\}$ is the following. Let $X=Y_{1} \cup Y_{2} \cup \cdots \cup Y_{d} \cup Y_{0}$ where

$$
\left|Y_{1}\right|=\cdots=\left|Y_{a}\right|=m=\left\lceil r^{2} n^{2 / 3}\right\rceil, \quad a=\left\lfloor n^{1 / 3} / r^{2}\right\rfloor, \quad Y_{i} \cap Y_{j}=\varnothing
$$

for all $0 \leqq i<j \leqq a$. Take a copy of the families defined by Lemma 6.1 for each Y_{i}, we get $\mathscr{P}_{1}^{i}, \mathscr{P}_{2}^{i} \ldots, \mathscr{P}_{2}^{i}$. Finally, set $\mathscr{F}=\left\{P \cup\{j\}: P \in \mathscr{P}_{j}^{\prime}, 1 \leqq i<j / m\right\}$. We have

$$
|\mathscr{F}| \geqq \sum_{1: 1=n}(j / m-1)\left(\frac{m}{2 r-1}-12 r^{2} \sqrt{m}\right) \geqq\binom{ n}{2} \frac{1}{2 r-1}-O\left(n^{533}\right) .
$$

7. Proof of Proposition 2.7

Let k and r be fixed. Let $g_{r}(n, k)$ be the maximum size of an r-cover-free family \mathscr{F} such that for all $F \in \mathscr{F}, T \subset F,|T|=t-1$ we have an $F^{\prime} \neq F, F^{\prime} \in \mathscr{F}$ with $\left(F \cap F^{\prime}\right) \supset T$.

Such a family \mathscr{F} is called r-cover-free without small own subsets. Deleting successively the members of \mathscr{F} having own $(t-1)$-subsets we can always obtain a $\mathscr{G} \subset \mathscr{F}, \mathscr{G}$ is without small own subsets. Obviously,

$$
|\mathscr{F}-\mathscr{G}| \leqq\binom{ n}{t-1}
$$

hence we have

$$
f .(n, k)-\binom{n}{t-1} \leqq g,(n, k) \leqq f_{t}(n, k) .
$$

Hence it is sufficient to prove that for all $\varepsilon>0$ and n there exists an $N_{0}(n, \varepsilon)$ such that

$$
\begin{equation*}
g_{r}(N, k) /\binom{N}{t}>\left(g_{r}(n, k) /\binom{n}{t}\right)-\varepsilon \tag{9}
\end{equation*}
$$

holds whenever $N>N_{0}$.
Let $\mathscr{F} \subset\binom{k}{k},|X|=n$ be an r-cover-free family without own parts of cardinality at most $(t-1)$ such that $|\mathscr{F}|=g_{r}(n, k)$. By Rödl's theorem (i.e. by (1)) for $N>N_{o}(n, \varepsilon)$ there exists a (t, n, N)-packing \mathscr{P} over the N-element set Y, with

$$
|\mathscr{P}|>(1-\varepsilon)\binom{N}{t} /\binom{n}{t} .
$$

Replace each $P \in \mathscr{P}$ by a copy of \mathscr{F}. We obtain an r-cover-free family on N points, yielding (9).

8. Proof of Theorem 3.1

The upper bound of 3.1 comes from Proposition 2.1 using the obvious $f_{r}(n) \leqq \Sigma_{k} f_{r}(n, k)$ and the Stirling formula.

The lower bound was obtained from Proposition 2.1, also, with $k=n / 4 r$. We can get somewhat better lower bounds carrying out the proof given in [4] for the case $r=2$.

9. Proof of Theorem 3.3 and Proposition 3.4

Let $\mathscr{F} \subset 2^{x}$ be an r-cover-free family and define

$$
\mathscr{F}_{t}=\{F \in \mathscr{F}: F \text { has own subset of size most } t\} .
$$

Clearly, $\left|\mathscr{F}_{t}\right| \leqq\binom{ n}{r}$.
Lemma 9.1. If $F \in\left(\mathscr{F}-\mathscr{F}_{t}\right)$ and $F_{1}, F_{2}, \ldots, F_{i} \in \mathscr{F}$ then

$$
\left|F-\bigcup_{i=1} F_{f}\right|>t(r-i)
$$

This lemma implies that:

$$
\begin{equation*}
F_{1}, \ldots, F_{r+1} \in\left(\mathscr{F}-\mathscr{F}_{t}\right) \quad \text { then } \quad\left|\bigcup_{i \leqslant r+1} F_{i}\right| \geqq(r+1)(t r+2) / 2 . \tag{10}
\end{equation*}
$$

For $r=\varepsilon \sqrt{n}$ and $t=\left\lceil 2 / \varepsilon^{2}\right]$ the right-hand side of (10) is greater than n. Thus $\left|\mathscr{S}-\mathscr{F}_{1}\right| \leqq r$, i.e.,

$$
|\mathscr{F}| \leqq\binom{ n}{\left\lceil 2 / \varepsilon^{2}\right\rceil}+\varepsilon \sqrt{n} \leqq n^{\left|2, x^{2}\right|} \quad \text { for } t \geqq 2 .
$$

The case $t=1$ follows from Proposition 3.4.
To prove Proposition 3.4 we apply induction on n. The statement is trivial, e.g., for $n \leqq r$. Suppose $\mathscr{F} \subset 2^{x},|X|=n, \mathscr{F}$ is r-cover-free. If some $F \in \mathscr{F}$ has a 1-element own subset, say $\{x\}$, then the statement follows by induction, applied to $\mathscr{F}-\{F\}, X-\{x\}$. If $\mathscr{F}_{1}=\varnothing$, and $|\mathscr{F}|>r$, then (10) implies

$$
|X|=n \geqq\binom{ r+2}{2}
$$

a contradiction. Thus $|\mathscr{F}| \leqq r<n$ holds.

10. Final remarks

The paper is a continuation of the earlier work of the authors [4] where they dealt with the case $r=2$, i.e., $A_{0} \not \subset A_{1} \cup A_{2}$. The above topic is full of problems which are related to designs and error-correcting codes.

Open Problem. Suppose $\mathscr{F} \subset 2^{x},|X|=n, \mathscr{F}$ is r-cover-free, $|\mathscr{F}|>n$. For a given r denote by $n(r)$ the minimum of such n. Then by Proposition 3.4 we have

$$
\binom{r+2}{2} \leqq n(r)<r^{2}+o\left(r^{2}\right) .
$$

(The upper bound comes from the example of an affine plane of order at least $r+1$.) One can prove $n(r)>(1+o(1)) \frac{5}{6} r^{2}$. We conjecture that $\lim n(r) / r^{2}=1$, or even stronger $n(r) \geqq(r+1)^{2}$. (We can prove this for $r \leqq 3$.)

Added in proof. Theorem 3.1 was proved independently by Hwang and Sós [12]. They apply the estimations of $f_{f}(n)$ for group testing.

References

1. B. Bollobảs, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16 (1965), 447-452,
2. B. Bollobás, D. E. Daykin and P. Erdōs, On the number of independent edges in a hypergraph, Quart. J. Math. Oxford (2) 27 (1976), 25-32.
3. P. Erdös, A problem of independent r-tuples, Ann. Univ. Budapest 8 (1965), 93-95.
4. P. Erdōs, P. Frankl and Z. Füredi, Families of finite sets in which no set is covered by the union of two others, J. Comb. Theory, Ser. A 33 (1982), 158-166.
5. P. Erdös and T. Gallai, On maximal paths and circuils of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356.
6. P. Erdoss, C. Ko and R. Rado, An intersection theorem for fintere sets, Ouart. J. Math. Oxford (2) 12 (1961), 313-320.
7. P. Erdös and E. Szemerédi, Combinatorial properties of a system of sets, J. Comb. Theory, Ser. A 24 (1978), 308-311,
8. P. Frankl, On Sperner families satisfying an additional condition, J. Comb. Theory Ser. A 20 (1976), 1-11.
9. P. Frankl, A general intersection theorem for finite sets, Ann. Discrete Math. 8 (1980), 43-49.
10. V. Rödl, On a packing and covering problem, Eur. J. Combinatorics 5 (1984).
11. J. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544-548,
12. F. K. Hwang and V. T. Sós, Non-adaptive hypergeometric group testing, Studia Sci. Math. Hungar., to appear.

[^0]: ${ }^{+}$This technical report is published as a result of an FCAC Foundation grant.
 Received April 30, 1984 and in revised form October 1, 1984

