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ABSTRACT

Let f,(n, k) denote the maximum number of k-subsets of an n-set satisfying the
condition in the title . It is proved that

f,(n,r(t-1)+1+d)-(n t dl/
u
lk

t
dl

	

for n sufficiently large

whenever d = 0,1 or d < r/2 t 2 withJh equality holding iff there exists a Steiner
system S(t, r(t - 1) + l, n - d). The determination of f,(n, 2r) led us to a new
generalization of BIRD (Definition 2 .4). Exponential lower and upper bounds
are obtained for the case if we do not put size restrictions on the members of the
family .

1 . Preliminaries

Let X be an n-element set . For an integer k, 0-- k < n we denote by (k) the
collection of all the k-subsets of X, while 2' denotes the power set of X. A
family of subsets of X is just a subset of 2X . It is called k-uniform if it is a subset
of (k) . A Steiner system Y = S(t, k, n) is an Y C (k) such that for every T E (;`)
there is exactly one B E Y with T C B . Obviously, holds. A C (k)
is called a (t, k, n)-packing if I P fl P , I < t holds for every pair P, Y E 91. V . Rödl
[10] proved that
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I : 91 is a (t, k, n)-packing) _ (1- o(1)) I r l / ( 1

holds for all fixed k, t whenever n -.
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Let [al ([b]) denote the smallest (greatest) integer (not) exceeding a (b),
respectively . We will use the Stirling formula, i .e ., n ! -- (n/e )" N/2arn .

2 . Uniform r-cover-free families

We call the family of sets JW r-cover-free if F,, OF, U . . . U R holds for all
F,), F	F, E J. (F, X F, if i j .) Let us denote by f,(n, k) the maximum
cardinality of an r-cover-free family

	

C (k ), X = n. Let us set t = [ k/r 1 . Then

PROPOSITION 2.1 . (,)/( )' f (n, k) ( )l(-,') .

To prove the lower bound we show that there exists a (t, k, n)-packing of this
size . A (t, r(t - 1) + l, n)-packing 91 is r-cover-free because P n P' t - 1
holds for all P, P' E 91 . Generally

EXAMPLE 2.2 . Let X=YUD, ~DJ=d, JYI=n-d and 91 a
(t, r(t - 1) + 1, n - d)-packing over Y. Define . _ {D U P : P E Y'} .

This example and (1) gives the lower bound in the following theorem .

THEOREM 2.3 . Let k = r(t - 1)+ 1 + d where 0 < d < r . Then for n > n,,(k)

(2)

	

0-°(1))(n t
d )/(

k t d)`=f(n,k)`(n t d ) f ( k t d )

holds in the following cases :
(a) d = 0, 1,
(b) d < r/(2 t 2 ),
(c) t = 2 and d < [2r/31 .

Moreover, equality holds in (2) iff a Steiner-system S(t, k - d, n - d) exists .

This theorem determines asymptotically f,(n, k) forr several values of r and k.
The first uncovered case is r = 3, k = 6. The obvious conjecture that the
maximum 9 has the structure given by Example 2 .2 is not true (cf . Theorem
2.6) . A subset A C F E 9 is called an own subset of F if A 0 F' holds for all
F/F'E 9.

Let us suppose X = {1, 2, . . ., n} and define max F = max{i : i c F} .

DEFINITON 2.4 . A family C (X), t, r > 2, is called a near t-packing if
F rl F' ~ _ t holds for all distinct F, F' F= , moreover, I F n F' I = t implies
max FZ F' (in words : the t-subsets of F containing max F are own subsets) .

PROPOSITION 2.5 . If C (X) is a near t-packing then

	

is r-cover-free .
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PROOF. Suppose F C F, U . . . U F„ F, E 39 Since F n F, < t, the sets F n F,
form a partition into t-subsets of F. Choose F, containing max E Then F n F, is
a t-subset of F containing max F and F n F C E However, F n F, was supposed
to be an own subset of F, a contradiction .

	

El

THEOREM 2.6 . There exists a near 2-packing

	

C (_;) with (n 2/(4r - 2))-
o(n 2 ) edges .

This theorem and Proposition 2 .1 give that f,(n, 2r) _ (I + o(1))n 2 /(4r -2) . It
is easy to see that

PROPOSITION 2.7 . For fixed k and r,

exists whenever n - oc .

By Proposition 2.1 and (2) we have

lim f,(n, k)/ \ t 1
= lim sup f,(n, k)1 \ t 1 = c,(k)

1 /\ k t d) cc'(k)c1 /( -1 )'

In Chapter 5 we get the slightly better

Cr (k)-(k-dt)/t(k_1 )

but we have no general conjecture for the value of c,(k) not covered by
Theorems 2 .3 and 2 .6 .

3. r-Cover-free families without size restriction

Denote by f ,(n) the maximum cardinality of an r-cover-free family

	

C2X ,

~X~=n.

THEOREM 3 .1 . (1+1/4r')" < f, (n) < e~'

REMARK . In the case r = 1 the constraints reduce to F,) )2! F,, i .e ., the
well-known Sperner-property. Hence (see [11])

fi(n) -

	

n
[n/2]

Suppose now that n is not too large compared to r.
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EXAMPLE 3.2 . Let q be the greatest prime power with q < Vn. Let Y =
GF(q) X GF(q) be the underlying set and consider the graphs of the polynomials
of degree at most d over the finite field GF(q) . Set

Then I F n F'
family .

This yields the lower bound for 2r' < n in the following :

THEOREM 3 .3 . For r = e

	

we have

(1 - o(1))Nvln I` ] " < f,(n) < n rz ` i

For n < ('z~) we have the following easy

PROPOSITION 3 .4 . If n < ( ' 2 2 ) then f,(n) = n.

4 . Proof of Proposition 2.1

If , is a maximal (t, k, n)-packing then for every G E (k) there is an F C
such that I G n F I ? t holds . Hence we have

Using

{{(x, g(x)) : x E GF(q)} : g(x) = a,,+ a,x +

	

+ adx d , a; E GF(q)} .

n
k) -

d holds for F, F' C . q, d , thus it is a [(q - 1)/d ] -cover-free

{G-( k ) .1GnF~~t}

(k)(t~) - (t)(k-t)'

<I k

	

n-t
t) k-t)

this yields the lower bound .
For the proof of the upper bound let us define the family X(F) the non own

parts of F with respect to , i .e .,

X(F) ={TCF :ITI=t,3F'yzF,F'E .f,TCF'} .

LEMMA 4 .1 . If JW is an r-cover-free family, F E and T,, T,,..., Tr E X(F)
then U T I< k.

PROOF. Trivial, choose F/ F; E JW with T, C F, and note FO F, U . . . U F, .

LEMMA 4.2 . 1 A (F) I -:5 -1( k, ) .

11
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PROOF. In view of Lemma 4 .1 X(F) fulfills the following conditions :
(i) X (F) C (, ), rt -- F and (ü) A, U . . . U A, X F for A	A, E X (F) .

Thus by Lemma 1 (Frankl [8]),

	

J < (k `) holds .

	

El

Now Lemma 4.2 implies that each FEE has at least

own subsets . Consequently,

(4)

(5)

(t) (k-t 1)-(t 1

I3I(t-1)c(n)

holds, yielding the desired upper bound .

5. Proof of Theorem 2 .3

Let . „= IF E 9 : 3S CF, S I < t - 1, such that S C F' E 9 implies F'= Fl,
i .e . „ denotes the family of members of JW having an own subset of size smaller
than t. Clearly, we have

(3)

LEMMA 5.1 . If F E -go and T,, T2, . . ., Td+, E X(F) then U T, I <
(d + 1)t .

PROOF. Suppose for contradiction that U Ti

	

(d + 1)t and let _15P
IT,, Tz, . . . , Td+,, S,, Sz, . . . , S, d ,} be a partition of F such that I S ; = t -1 . Then
for each P E

	

there exists a F,( :-:::g, F, / F with P C F. Hence F C
U IF, : P E 311, a contradiction .

	

0

LEMMA 5.2. For F E 9 - 9, we have

X (F) < d k -1t-1 )'

IX(F)I~(k)-(kt d) if k > 2t3d,

(6)

	

IX(F) <_(2)-(k2 d)

	

ift=2, k--'2d+2 .

Moreover, equality holds in (5) or (6) iff I U IT E (X) : TO X(F)11 = k - d .
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PROOF . Let us define m (k, t, d) = max f j X : N C (t ), X does not contain
d + 1 pairwise disjoint members} where k > td, k, t, d are positive integers .
Erdős, Ko and Rado [6] proved that

m(k,t,1)=(i-Í)

	

for k?2t

and

m(k,t,d)-d(k-1 )

was shown by Frankl (cf . [7] or [9]) . For k > ko(t, d) Erdős [3] proved that

m(k,t,d)-(t)-(k t d ) .

Later k,)(t, d) < 2t'd was established by Bollobás, Daykin and Erdős [2] . For
t = 2,

m(k,2,d)= (d)+d(k-d)

was proved by Erdős and Gallai [5] (for k ? (5d/2)+2) . The uniqueness of the
optimal families was proved both in [2] and [5] . These results and Lemma 5 .1
imply (4)-(6) .

	

0

From now on we suppose that one of the cases (a), (b), or (c) holds, i .e ., (5) or
(6) is fulfilled . We apply the following theorem of Bollobás [1] .

LEMMA 5 .3 . Let A	A„, and B	B,„ be finite sets and suppose that

A; n B; = 0 and A ; n B; / 6 holds for all i,4 j. Then

(7)
	 1

(~A,1+ 1 8,

	

~1 .

A,~

	

)

Moreover, if I A ; ~ = a, I B; I = b holds for all i then equality holds in (7) only if
IUA,~=I UB;I=a+b.

Divide

	

- o into two parts : , = fF E - go : X(F) I < (k) - (kr °)}, z =
- 9, - 9,. Then for each F E 92 we have a d-subset D (F) C F, such that

(F - D (F)) n F' I > t implies F = F' .
Now let T,, T2 , . . ., T„ be the family of all minimal own subsets of size at most

t of the members of 9, i .e ., T, C (F n F') and F, F' C .W imply F = F', and for all
x E T there exists F' F, F' E 9 such that (T - f x }) C F n F' . Define
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X-T,-D(F)

	

if Ti CFC~Y2 .

Clearly x, f1 T, _ 0 . We claim that X; n T, 0 holds for all i,4 j. If X; = X - T,
then this follows from the minimality of T,, i .e., T;;,-' T,. Suppose X, _
X - T, - D(F) . If T is a t-subset of T, U D(F), then either T = T ; or
T fl D (F) X 0 holds . Since T, is an own subset of some F' C 9 and F C 92, we
infer TO (T, U D (F)), i .e., T n X; x o .
Now Lemma 5 .3 yields

k-d +1

	

k-d

1>	 I	~~"~ +	t	t ) IJ ~ .Fe .

	

T,~F

	

n

	

(n)

	

~n-d)T' ni o-,

	

T

	

t- 1

	

t

	

tpa rtgf F

Straightforward calculation shows that if n > 2dt( ;), then the coefficient of

	

t
is the smallest, hence we have

~J~ °1+I 'I+IJ2~=~

	

n t d) /(k t d),

as desired . Moreover, equality can hold only if ,, = 9, _ 0 . Finally, to get the
extremal family we apply the second part of Lemma 5 .3, which yields that each
D(F) is the same .

6. Proof of Theorem 2 .6

We are going to use probabilistic methods .

LEMMA 6 .1. Let Y be an m-element set, m ? 2r. Then there exist (2r - I)-
uniform families 91	Pr such that P n P' _ o for P, P' E 3P;, 1,9
(m l(2r - 1)) -12r2Um, ~ P n P' J< 2 for all P E 2? ;, P' E -91; and s > m-l2/r2 .

PROOF. Let A,, A2, . . . , A„ be pairwise disjoint (2r - l)-element subsets of Y,
u = [m/(2r - 1)] . Consider 3s permutations chosen independently at random of
Y, IT,, ár2	35 where s = [m3/2/r2j . Define the family R ; as {7r; (A;) : I < j
u}. To obtain the families 9 ; we will delete the "bad" members of R;.
For B C (3) we have that

X;

	

X- T

	

if T, CFC(A,U

Prob(B is covered by some members of R;) _
R2r	 3 -1

	

4r2
m < m 2
3
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Hence we get
Z 2

	

4

E (
# B E

(
3) which are covered by R, and R, as well) < ( 3) (mr2 ) < 8r .

Finally we get

(8)

	

E(# R E UR; : there exists R' E=- U Rt„ I R n R' l -- 3)

3s

	

8r'
(2) • 2 .3m < 3s (8r,~).

Now, call a permutation ar; "bad" if R; contains at least 12r 2 \/m members R
with the property IR n R' I ? 3 for some R'(=- U ;,,; R; . Then by (8) we have

E( # bad R;) -- 2s .

Thus there exists a choice of the random permutations ?r,, . . . , ?r3s such that at
most 2s out of RI, . . . , R( 3s are bad . Suppose by symmetry ,, . . . , R.r are not
bad. Each R; contains less than 12r 2 -\VI-M members R such that R n R' I ? 3 for
some R' E U ;,, ;R; . Let 91 j be the family obtained from R ; after deleting these
R . Then O,	9PS satisfy all the requirements .

	

11

Now the construction of the desired •# C (z), where X = 11, 2, . . . , n} is the
following. Let X = Y, U YZ U . . . U Ya U Yo where

IY,I= . . . =I .I=m= [r 2 n 2/3 ]

	

a=[n'/3/r'], Yin Y,=o

for all 0 < i < j a. Take a copy of the families defined by Lemma 6 .1 for each
Y„ we get JIs. Finally, set = 1P U 1j} : P E ,? ;, 1 :5 i < jlm} . We
have

1 1''Y, (jlm-1)( 2rm 1-12r2~)>(Z) 2r1 1-

O(n5/3v .

7 . Proof of Proposition 2.7

Let k and r be fixed . Let gr (n, k) be the maximum size of an r-cover-free
family .W such that for all F E , T C F, I T = t -1 we have an F'74 F, F' E 9
with (F n F') D T.

Such a family is called r-cover-free without small own subsets . Deleting
successively the members of 9 having own (t - 1)-subsets we can always obtain a
Ifi C , W is without small own subsets . Obviously,

t n1)
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hence we have

f (n, k) - ( t n 1) `= gr(n, k) --`-- fr(n, k) .

Hence it is sufficient to prove that for all E > 0 and n there exists an No (n, E )

such that

(9) g.(N,k)~(N)>(g.(n,k)l(t
))
-E

holds whenever N > No .
Let 3 C (k), I X I = n be an r-cover-free family without own parts of cardinal-

ity at most (t - 1) such that I ,W I = gr (n, k) . By Rödl's theorem (i .e . by (1)) for
N > No(n, E) there exists a (t, n, N)-packing over the N-element set Y, with

I -OP I >(1-E)(N)l(t) .

Replace each P E by a copy of . We obtain an r-cover-free family on N
points, yielding (9) .

8. Proof of Theorem 3 .1

The upper bound of 3.1 comes from Proposition 2.1 using the obvious
f, (n) < Ik f, (n, k) and the Stirling formula .

The lower bound was obtained from Proposition 2 .1, also, with k = n/4r. We
can get somewhat better lower bounds carrying out the proof given in [4] for the
case r = 2 .

9 . Proof of Theorem 3.3 and Proposition 3.4

Let C 2' be an r-cover-free family and define

, _ {F E : F has own subset of size most t} .

Clearly, 1 3 , 1< (, ) .

LEMMA 9.1 . If F E (f - 9,) and F,, F2 , . . . ' F; E 9 then

This lemma implies that :

F-UF;

(10) F,,...,F,+, E ff - 9,) then

> t(r - i) .

	

11

(r + 1)(tr + 2)/2 .
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For r = E'\1n and t = [2/E Z ] the right-hand side of (10) is greater than n . Thus

[2 n
2]

/ +
E

	

< n [2/, 2 1

The case t = 1 follows from Proposition 3 .4 .

To prove Proposition 3 .4 we apply induction on n . The statement is trivial,
e.g ., for n -- r. Suppose 3 C 2 X , X = n, is r-cover-free . If some F E has a
1-element own subset, say {x }, then the statement follows by induction, applied
to

	

- {F}, X - {x} . If , = 0, and

	

I > r, then (10) implies

X =n>~
r 2 2

),

a contradiction . Thus I

	

r < n holds .

10 . Final remarks

The paper is a continuation of the earlier work of the authors [4] where they
dealt with the case r = 2, i .e ., A„ A, U A z . The above topic is full of problems
which are related to designs and error-correcting codes .

OPEN PROBLEM . Suppose

	

C 2X, 1 X ~ = n,

	

is r-cover-free, 3'1 > n. For a
given r denote by n (r) the minimum of such n . Then by Proposition 3 .4 we have

for t?2 .

r22

	

r (r) <r2 +o(r 2 ).

(The upper bound comes from the example of an affine plane of order at least
r + 1 .) One can prove n (r) > (1+0(1))6r

2 . We conjecture that lim n(r)/r' = 1, or
even stronger n(r)? (r + If (We can prove this for r < 3 .)

Added in proof. Theorem 3.1 was proved independently by Hwang and Sós
[12] . They apply the estimations of f,(n) for group testing .

REFERENCES

1. B . Bollobás, On generalized graphs, Acta Math . Acad . Sci . Hungar. 16 (1965), 447-452 .
2 . B . Bollobás, D . E . Daykin and P . Erdős, On the number of independent edges in a hypergraph,

Quart . J. Math. Oxford (2) 27 (1976), 25-32 .
3 . P . Erdős, A problem of independent r-tuples, Ann. Univ . Budapest 8 (1965), 93-95 .
4 . P . Erdős, P . Frankl and Z . Füredi, Families of finite sets in which no set is covered by the union

of two others, J . Comb. Theory, Ser . A 33 (1982), 158-166 .



Vol . 51, t985

	

NO SET IS COVERED BY r OTHERS

	

89

5 . P. Erdős and T . Gallai, On maximal paths and circuits of graphs, Acta Math . Acad . Sci .
Hungar . 10 (1959), 337-356 .

6 . P . Erdős, C . Ko and R . Rado, An intersection theorem for finite sets, Quart . J . Math . Oxford
(2) 12 (1961), 313-320 .

7 . P . Erdős and E . Szemerédi, Combinatorial properties of a system of sets, J . Comb. Theory, Set .
A 24 (1978), 308-311 .

8 . P . Frankl, On Sperner families satisfying an additional condition, J . Comb. Theory Set . A 20
(1976), 1-11 .

9 . P . Frankl, A general intersection theorem for finite sets, Ann . Discrete Math . S (1980), 43-49 .
10. V . Rödl, On a packing and covering problem, Eur. J. Combinatorics 5 (1984) .
11 . J . Sperner, Ein Satz über Untermengen einer endlichen Menge, Math . Z . 27 (1928), 544-548 .
12. F. K. Hwang and V. T . Sós, Non-adaptive hypergeómetric group testing, Studia Sci . Math .

Hungar ., to appear .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11

