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Does there exist a function f (r, n) such that each graph G with Z(G) _-f (r, n) contains
either it complete subgraph of order r or else two non-neigh boring n-chromatic s! tbgraphs? It is known
that f (r, 2) exists and we establish the existence off (r, 3) . We also give some interesting results about
graphs %vhigh do not contain two independent edges .

1 . Introduction

hwo subgraphs G r , G_ of a graph G are called non-neighboring if there is no
edge v,v_EE(G) with v,EG, and v_EG_ . In general, an arbitrary graph may not
contain two non-neighboring subgraphs at all, for example the complete graph . In
this paper we raise the following question : Is there a minimal integer,f(r, n) such that
each graph G with Z(G) -f(r, n) and which does not contain a complete subgraph of
order r must contain two non-neighboring n-chromatic subgraphs? An upper bound
for f (r, 2) follows from a result of S . Wagon [2] . Here we show that it is sufficient to
prove the existence of f (r, n) for r-n . More precisely, for a fixed n, an upper bound
for .f(r . It), r :-- it, is given in terms of f(r, n), r=n . The proof is based on the same
idea of S . Wagon . From f(3, 3) `=8 we deduce an upper bound for f(r, 3) . Next we
muesli ate graphs which do not contain 2K, as an induced subgraph . We say that the
two edges v, v_, u, it., of the graph G are independent if the subgraph induced by
v,, v .,, it,, u, is 2K,., i .e ., the complement of a chordless 4-cycle . We prove that a ver-
tex-critical 4-chromatic graph G which does not contain two independent edges has
order iG'1 __ 13. We also give a lower bound for the maximum degree of a graph
without two independent edges .

2 . Notation

We consider graphs G=(V(G), f:(G)) which are finite, loopless and have no
multiple edges. The neighborhood N(v) of a vertex v(G is the set of vertices adjacent
to v. We put N*(v)=N(v)U (v) . For W C V(G), we denote N(IV)= U {N(v) : u(W )
and N'(6V)=N(IV )U W . If G, is a subgraph of G then N(G,), N*(G,) respectively
denote N(V(G,)), N''(V(G,)) . Two subgraphs G,, G,, are non-neighboring if V(G,)Cl
'1 N'(G,)=0 . A subset IV C V(G) is called a dominating set if N*(W)=V(G) .
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3. The functions f(r, 2) and f(r, 3)

S. Wagon [2] proved that if G contains neither a complete subgraph of order

r nor two independent edges then z(G)-(2) . It follows that (1% 2) (2)+1 . The

slightly stronger result f (r+1,2) --f (r, 2)+r is implicit in [2] . It is trivial that
.f(2,2) -2 and the pentagon C5 shows that f(3, 2)=4 . The 5-wheel C,-,+K, shows
that ,f(4,2) = 5 and from Wagon's Theorem we have J'(4, 2)-,-,7 . Recently P. Hajnal
proved that f (4,2)-6 . Finally, Nagy and Szentmiklóssy proved f(4.2) =5 .

Theorem 1 . For r :-íi .

f(~'>n)=1 }(n-i)(r-1)
n

	

f 2: (.f(j+1,n)-l~(`

	

)JJ-1

Proof. Let G be a graph which does not contain two non-neighboring n-chromatic
subgraphs . Let K be a complete subgraph of maximum order in G and assume that

jK I =k

	

For each 1 -=./*-- n, let S.'O, I -i-(k), denote the j-subsets of V(K ) . Put

X„' } _ {v : N(v)C1 S,,"' = 0

	

i - i

	

(
k ,
rr)

1';` ) _ {v : N(v)nV(K) = V(K)--5 ;` 1 1j I = j < n, 1 - i -
(k) .

J
We have x(X„ ~)-n-1 since otherwise, S,') would be non-neighboring to an n-chro-
matic subgraph of Also z(Y('))=f(j+l, n)-I since YM does not contain
a complete subgraph of order j+1 . The union of the X;' ) and Y~i) is V(G) . Therefore

k
(G)--( -I)(r'r)+á(Í(J+l, n)-l)(

J )i-~

which implies the required result .

Theorem 2 . f'(3,á)=:_:8 .

Proof. Let G be a triangle-free graph which does not contain two non-neighboriM,
odd circuits. Let C= v. u, . . . 02, be an odd circuit of minimum lenght in G . We describe
a proper 7-coloring c of G as follows . Let e(v„)=1 and c(vi)=2 (resp . 3) if i is odd
(resp. even) and I -i=2k . Further we let c(x)=2 (resp . 3) if .vEN(vi ) for i even
(resp. odd) and 2-i-2k-1 . Otherwise, for xEN(C) we let

i R

	

1 xE N(v,)
c(x)= 4 xEN(v„)

5 xE N(v21,) .

Since G-N`(C) does not contain an odd circuit, we need at most two more
colors 6 and 7 to extend c to all of V(G) . This shows that Z(G)-7 and, therefore .
f(3,3)á_8 . 1



Case 2. N" (v, , v,>, v,)= V (G) .
We let
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It is easy to check that the triangle-free 5-chromatic graph described by
Mycielski (I] does not contain two non-neighboring odd circuits . This shows that
f(3.3) - 6 .

From Theorems 1 and 2 we get the following polynomial upper bound for
f (r, 3) .

Corollary 3 . f (r, 3)=2 (t 3 1 )+7 (' 2 1) +r (r~:-3) .

4. Graphs without two independent edges

In this section we prove some more results about graphs without two inde-
pendent edges . We start by a result about 4-critical (Le vertex-critical 4-chromatic)
graphs without two such edges . Examples of these graphs are K, and the 5-wheel
C,,+K, . We shall encounter more in what follows . It is somewhat a surprising fact
that these graphs cannot have a large order, specially if we know that this is not the
case for higher chromatic numbers .

Theorem 4 . If G is a 4-critical graph without two independent edges then G1 -13 .

Proof. We may assume that G is not (and therefore does not contain) K . . Let vi v ., v,,
be a triangle in G. We have two cases .
Case 1 . There is a vertex vEG adjacent to none of v,, v zi v 3 . Since G contains no two
independent edges, then each vertex uE N(v) must be adjacent to exactly two of
v, . v., v., . Let c be a proper 3-coloring of G-v. There must exist three vertices
u,, ar„ it,E N(v) such that c(u,)=i,(i=1, 2, 3) . Suppose the vertices v,,, v.,, V 3 were so
labelled that c(vi)=- i. Thus u is adjacent to vj iff i-,. However, G contains no
more vertices since, so far, it is 4-critical . G could contain none, one or two more edges
connecting some of it,, u2 , u .; . These graphs are shown in Figure 1 .

j~, . t

Ai = N(v i)- U N(Vj), B i = n N(vj) - {v,}, 1 _ i -= 3,
j

	

j*i
3

A = l_) A i and B = U Bi .
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We note that each B ; is independent since G contains no K,, . Also, each A i is
independent since if, for example, there were two adjacent vertices a, a'( A, then the
two edges ac', v, v, would be independent. Therefore both A and B are nonempty . .
We pick an edge xy with xCA,, yEB.j and i j (if no such edge exists then G is
3-chromatic) . For convenience, we assume that y( B 2 and vCA, . We choose a maxi-
mal uniquely 3-colorable subgraph in G-x as follows. Assign color i to v,
(i= 1, 2, 3) . At each subsequent step a vertex v is assigned color j whenever it is
adjacent to two vertices which were previously assigned the two other colors distinct
from . i. We continue in this way until we cannot proceed further . Denote by Id the
set of vertices colored in this way and by c(v) the color assigned to vE f3% . Thus. for
example, c(u)=i for each vEB ; . Suppose c(iv) J I for each vertex ii,CII/ adjacent
to .v. Then by putting c(_t)=i and

vEA2 -W
vEA,-W
vE A, -W

we get a proper 3-coloring of G which is a contradiction . Therefore, there is a vertex
rti, E [t," •adjacent to v with chi',)=1 . We prove that there is a path such
that :

lt) c'(ii' ;)=i (mod 3`,
(ii) for i-t, iv;EA; where i+2-,i(mod 3) and ir,EB, where t-1(mod 3) .

This is true if iv,EB, . Suppose not, then necessarily iv, EA j and it was iissi`_-
ncd color I due to its adjacency to a vertex 1" 2 (previously) colored with color 2 .
Either ir 2E B2 or w •, EA I and we can find iv, with the required properties . Continuing
in this way we, eventually, arrive at t ,E B . Let us assume further that this path i's of
minimum length. Clearly the vertices vi , v2 , x, y, ii - I . . . , iii, span a 4-chromatic
graph so that they must be all of V(G) . Thus we have to prove that 1=8 . Assume, on
the contrary, that t-9 . Consider the two edges xtir, and 1"7 71 • . . There is no edge
" ' I "t'7 since c(iv,)=c(iv_,)=1 . Also, xiv,, iv, iv, E(G) since, otherwise, we could have
chosen a path of smaller length . Therefore xiv,EE(G) . Now consider the two edges
xur, and iv,,v, . If either xiv,, iv,iv,EE(G) then we get a path of smaller length . Also
none of , ir, is adjacent to v3 . This is a contradiction since xif - ,, iv,v, cannot be
independent. This completes the proof that IGI --13 . I

To show that 13 in Theorem 4 is best possible, we give a graph . G with IG! =13 .
This is shown in Figure 2 .

Fig . 2



In contrast to Theorem 4, we describe a 5-critical graph without two indepen-
dent edges which has 4n+5 vertices for arbitrary n . The vertices of this graph are
x,, x-, -v.,, .v.,, y,,, y,,

	

The edges are

.x i x,

	

(i

Yiyi -i (0 -- i - 4n- I ),

yix j

	

r- .~ - 2, 3 (mod 4),

y, y i

	

i - .j and i -j - 2, 3 (mod 4),

Yoxa

	

YU X4

Our next result describes dominating sets of connected graphs without two
independent edges . Here, of course, the connectedness is equivalent to having no
isolated vertices .

Theorem 5. Let G be a connected graph without tivo independent edges . Then G has
a dominating set mhose induced subgraph is either a complete subgraph or ca path on 3
vertices .

Proof. Let v,v2EE(G) . Denote A- V(G) -N*(v,, w2 ) and Y=N'(v,, v.,)-{v,, u .,j .
We may assume X (I since otherwise {v,, v2} is a dominating set . The set X is inde-
pendent but each xEX is adjacent to at least one v( Y . We choose vertices r, . .

y,E Y with r minimum and satisfying :

(i) X( i N( .vi),

(ü) for each i, N(y i)(1X is maximal that is not properly contained in N(y) X
for any yE Y .

1f t- 1 then {v,, v 2 , y,j is a dominating set with the required property . Let
us assume that r--_2 . If yi y, then we can find x, .x'EX such that _l i . v, y i x'EE(G)
but y i x', y j xq E(G) . Therefore y iyfi E(G) for all i-- . Obviously {v,, v- y,	I
is a dominating set. So we need only to prove that for i=1, 2, either v i is adjacent
to all of y,, .̀ . ., y, or else N(v i) CN(y,,, . . ., y,) . Suppose on the contrary that .
for example, v,y,JE(G) and there is a vertex vEN(v,) adjacent to none of y,, . . .
. . ., y r . Let vEN(y,)nX. Since the two edges v,v, y,x are not independent, then we
must have xvEE(G) . Therefore N(y,)nXC-N(,) nX and by (ü) above equality
holds . Choose two vertices x,, x2EX with x,y,, x2y 2EE(G) and x,y2 , x,y,, E(G) .
The two edges x,v, x 2y, are then independent. This is a contradiction and our theo-
rem is proved .

Corollary 1 . (fG is a connected graph oforder n and without tivo independent edges then
1

	

I
its maximum degree d(G)-min 12lrn-2,

1
(n+1)} .

Proof. IfG has the vertices of a complete subgraph
j
of order r as a dominating set then

this complete subgraph contains a vertex x with degree

d(x, G) -
1
-(n-r)+r-I -- 2JFn - 2 .
r
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If the dominatin(, set is a path v l v., v,; then for some i

d (v„ G) - 3 (n + l ) .

For each n, we can construct a graph G with (GI=n, A(G)=[2[/n-2l
([xl is the smallest integer -x) and no two independent edges as follows . Choose
two positive integers r, s with rs-n and r+s is minimum . Starting from the vertices
v,, . . ., v, of the complete graph Kr, we add n-r more vertices it,, . . ., u each
joined to at least one v ; in such a way that no vi is joined to more than s- i vertices
u i . Clearly for large n these are the only extremal graphs to Corollary 1 . In parti-
cular, for sufficiently large n, [2}án -2] is the smallest possible maximum degree .
However, even for small values Of tt, this is not far from being true .

Corollary 2. All connected graphs G on n vertices and without tíí~o independent edges
satisfy d (G) =2 jin -2 except the three graphs shown in Figure 3 .

Proof. Assume A(G)<2 Vn -2 . Then, since A(G) is an integer, we must have
I3 (n+1)1--2l n -2. This is true only for n=5, 7, 8, 10, 11, i3, 14, 17 . However,

keeping in mind that G must have a path of three vertices as a dominating set, we can
check each case to see that no such graph exists except when n=5, 7, 10 where there
is a unique graph in each case .

--

Fig . 3
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