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Il. Introduction. 

If A is a set of natural numbers, let A(x) denote the number of 

members of A not exceeding x . The asymptotic density of A is 

&A: = lim $ A(x) , 
X+J 

should this limit exist. The Schnirelmann density of A is 

trA: = inf L A(n) , 
n21 n 

where n denotes an integer. Of course the Schnirelmann density always 

exists. If 6A exists, then clearly oA s 6A . 

Often the Schnirelmann density gives little information about A . 

For example, if 1 $ A , then aA = 0 . One interest in Schnirelmann 

1 This paper contains original research and will not be published 
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density comes from the theorems of Schnirelmann and Mann [4] that if 

aA > 0 , then there is some integer h such that every natural number 

is a sum of h or fewer members of A . In fact, any h > l/aA will do. 

In this note we will be concerned with the case when A = A(S) is 

the set of natural numbers not divisible by any number in the set S . 

We shall abbreviate 6AcSi, aAt'S), A(S)(x), respectively, by S(S), 

a(S), S<x> . Most of our considerations will be when S is a set of 

primes. In this case (or more generally, whenever the members of S 

are pairwise coprime), 6(S) must exist; in fact, 

6(S) = II (1 - a ) . SES 
Whenever 6(S) exists, we define the discrepancy, D(S) , of the 

set S as the difference 

D(S) = S(S) - a(S) . 

Among the problems we consider are the maximal possible discrepancy as 

S ranges over Ci> sets of primes, (ii) sets of pairwise coprime 

integers, (iii) sets of integers for which D(S) is defined. We also 

consider when a set S of primes with positive discrepancy can be 

embedded in a larger set of primes S' with zero discrepancy, but the 

same Schnirelmann density. We also state several problems we have not 

been able to solve. 

Our principal results are listed below. 

Theorem 1. For finite sets of natural numbers S , D(S) = 0 if and 

only if the least member of S divides every member of S . 

Theorem 2, sup(D(S):S a finite set of natural numbers} = 1 . 

Let P denote the set of prime numbers. Say a set SCP is 

minimal if there is some N with a(S) = $ S<N> and S C [l,N] . 

Note that if S C P and D(S) > 0 , then there is some So C S with 

SO minimal, o(So) = a(S) , and D(S,) 1 D(S). Let max S denote the 

largest element of the set S l Let 



D = sup{D(S):S C P} = sup{D(S):S C P , S minimal) 

D' = lim supiD( S C P , S minimal, max S Z x} 
x+sQ) 

Do 
= sup{D(S): S a set of pairwise coprime natural numbers} . 

Clearly we have D' I D I Do . We have 

Theorem 3. D' = 0.285025... . 

Theorem 4. Do <, e-1 = 0.367879.+. . 

Theorem 5. If SCP, then there is a set S' with SCS'CP 

such that 

(i, cT(S') = a(S) 

(ii) D(S') = 0 . 

52. Proofs of Theorems l-5. 

Theorem 1. For finite sets of natural numbers S , D(S) = 0 if and 

only if the least member of S divides every member of S . 

Proof. Let m denote the least member of the finite set of natural 

numbers S . If m divides every member of S , then 

6(S) = u(S) = 1 - ; , so D(S) = 0 . 

Now suppose m does not divide every member of S , so that 

1 < m < N , where N denotes the least common multiple of the members 

of S . Thus 

SCS? 
m-l 

= + S<N> < y . 

Note that 

S<N> - S<N-m> = m-l 

since no number strictly between N-m and N is divisible by a member 

of s I Therefore 

a(S) I & S<N-m> = N 
S<N> - (m-1) < S<N> _ 

N h(S) , -m 



so that D(S) > 0 . 

Theorem 2. sup{D(S):S a finite set of natural numbers) = 1 . 

Proof. For n 2 3 , let S, denote the set of natural numbers in the 

interval [[n/log n],n] . Evidently, 

u(sn) I + S,<n> I 1 
log n ' 

so that lim o(S,) = 0 . On the other hand, from Erdiis [2], 

lim 6(S,) = 1 . Therefore lim D(S,) = 1 and the theorem is proved. 

Theorem 3. D' = 0.285025... . 

Proof. We shall use the following corollary of the main result in 

Hildebrand [51. 

Theorem (Hildebrand). Let 

G(x,K? = min{i S<x>: S C [1,x] n P , c L I K} . 
pcs p 

Then there are positive constants y, 6 such that 

G(x,K) = p(eK)(l + O((log x1-y)) 

uniformly for 1 I K I 6 loglog x . 

In this result, p denotes the Dickman-de Bruijn function defined by 

the conditions: 

(i) P is continuous on [O,m) , 

(ii, p(u) = 1 for u E [O,l] , 

(iii) p'(u) = -pCu-1)/u for u > 1 . 

It is known that p(u) is positive, non-increasing, and that p(u) + 0 

as u+a. From the defining properties of p it is easy to see that 

(2.1) p(u) = 1 - log u for 1 I u I 2 . 



Let 

f(u): = l/u - p(u) . 

Note that f(l) = 0 , f(u) + 0 as u + m , and that (from (2.1)) 

f(2) = log 2 - l/2 > 0 . Therefore the maximum value of f(u) on 

Cl,@J> occurs at some finite point u. > 1 . We now show that 

(2.2) uo = 2.9329475... , f(u,) = 0.285025... . 

Indeed, 

f'(u) = $ - P'(U) = 
-l+up(u-1) 

‘U 
2 * 

U 

Let g(u) =: -ltupCu-l), so that sign f' = sign g . For l<u52, 

g(u) =-1+u>o. For u>2, 

g' Cu) = p(u-1) + up'(u-1) = p(u-1) - 5 Pru-21 

< pcu-1) - p(u-2) IO , 

so that g(u) is decreasing on [2,=,) . From (2-l), on the interval 

12,31 , 

(2.3) gcu> = -1 t u - u log(u-1) . 

Thus g(2) = 1 , g(3) = 2 - 3 log 2 < 0 . We conclude that u. E [2,3] 

and by Newton's method applied to (2.3) we find the value of u. claimed 

in (2.2). To compute f(uo) , we use 

f(uo) = + - pho? = + - 
U 

~(2) - J o p'(t)dt 
0 0 2 

1 =-- PC21 + / 
"0 p(t-1) dt 

U 
2 t 

0 

1 
6-S 1 + 2 + 

u. l-log(t-1) dt 
u log 1 t , 

0 2 

and integrate numerically. 

With these preliminaries aside, we can now prove Theorem 3. Let 

S(x,y) denote [x,y] fl P and let u L 1 be fixed. Then from 

Mertens' theorem, 



S(S(y,yU>, - ; as y-)00. 

Also from Dickman's theorem [l] , 

~(S(y,y”!! I yauS(y,yu)<yu> - p(u) as y + [D , 

Therefore 

D' 1 lim sup D(S(y,y">? L l/u - P(U) = f(u) , 
Y-+rn 

so that D' 2 f(u,) . 

Thus to complete the proof of Theorem 3, we need only show the 

reverse inequality. For this we shall use Hildebrand's theorem quoted 

above. Let S C P be minimal with s(S) L l/4 and let N be such 

that a(S) = f S<N> , max S I N . We have 

(2.4) l/4 I 6(S) = II Cl- I exp( - 1 I>, 
P&S pES p 

so that 

G 1 < log 4 . 
pES p 

If N is large enough, Hildebrand's theorem is applicable with x = N , 

K= z I, 
pGS p 

giving 

(2.5) o(S) 1 G(N, 1 ' > = plexp( 1 l})tl+O(!log N)-'}) . 
pES p p&S p 

Therefore, from (2.4) and (2.5) , 

DtS) = L?(S) - U(S) I exp(- C L, 
pES p 

- p!ed 2 h 1)(1+0(l)) , 
pES p 

where the "O(1)" tends to 0 as N + 0~ . We conclude that 

D’ 5 max{ ; , " - duo> 1 = fho) , 
0 

which completes the proof of the theorem. 

Theorem 4. Do I e-l = 0.367879... . 



Proof. Let S be any set of pairwise coprime natural 

numbers. If s(S) < e-1 , then certainly D(S) < e-1 , so assume that 

6(S) 1 e-l l We also may assume that D(S) > 0 so that there is some 

N with o(S) = ; S<N> . Thus 

u(S) 1 1 - f 

Also, 

so that 

D(S) I exp{ - 2 L}-1+ 11, o< 2 $1. 
mES m mES m mES 

But the maximum value of emu -l+u on Lo,13 is at u = 1 which 

gives the value e-l . This completes the proof of the theorem. 

Theorem 5. If 

such that 

SCP, then there is a set S' with SCS'CP 

e-l s 6(S) = I[ (l-l/m) I exp{ - 2 &} , 
mES m&S m 

Ci> o(s*) = u(s) 

(ii) D(S') = 0 . 

Proof. We first show the following lemma. 

m 
Lemma. Let Sl C S2 C...C P and let S = U Si . Then 

u(S) = lim U(Si> d 
i=l 

iSa, 

Proof. We have a(S1) 2 o(S2) 2 . . . , so the limit exists, call it u . 

Since UlSi) 2 O(S) for each i , we have u 1 u(S) . Suppose 

0‘ > u(s) . Then there is some N such that [I > f S<N> . But 

S<N> * Si<N> for all sufficiently large i . Thus o > a&> for some 

i , a contradiction. 

We now turn to the proof of the theorem. Say S C P . We may 

suppose D(S) > 0 , for otherwise let S' = S . Consider the set 

F= {T: S C T C P , o(S) = u(T)} . 



Let S' be any maximal element of F . (By the lemma, F has maximal 

elements.) It remains to show that D(S') = 0 . Suppose not, so that 

D(S') > 0 . 

There exists some N so that if n > N , then 

i S'<n> > o(S'j + + D(S') . 

Let p be any prime with 

p4s’, p > max(Z/D(S'j , N) - 

We claim that S'U{p} isin F, contradicting the maximal choice of 

S' and thus proving the theorem. It will be sufficient to show that 

OCS'j = a(S' u {p), . Say M is such that 

a(S’ lJ {Pi> = ; (S’ U {p})<M> . 

Suppose M 2 p . Then 

a(s’, < f S'<M> - 3 DcS'j < i S'<M> - ; 

I i (S' u (p}j<M> = o(S' u {p}, I u(S'j , 

a contradiction. Thus M < p and so evidently o(S' U {p}j = u(S') . 

13. Further problems. 

Is D' = D? If not, then clearly there is some finite set of 

primes S with D = D(S) . Perhaps a candidate for such a set S can 

be found numerically, but we have had no luck. We examined many sets S 

of primes and the largest discrepancy calculated was x 0.245712 

achieved for S the set of primes in the interval [19,12487-i . 

Although it is not clear that a set of primes S with maximal 

discrepancy (should such a set S exist! must consist of all the primes 

in an interval, it was solely over such sets that we searched. As 

above, let S(a,b) denote the set of primes in the interval ia,bl . 

For each prime p , let bp denote the prime which maximizes 

D(S(p,bpH . From the proof of Theorem 3 , 



bP 'P 
u,+ow 

, D(S(p,bp)) + fCuo) as p + 0) , 

where uo, f(u,) are given by (2.2). Must the convergenke to f(uo) 

be from below? If not, then D' < D . For several small values of p 

we have computed candidate values of bp and have approximated 

D(S(p,bp)): 

P b 
P 

D(S(p,bp)? log bp/log p 
__-.- . .1, I. .̂_. 

2 13 0.129308 3.7004 

3 113 0.173985 4.3031 

5 719 0.204992 4.0871 

7 1861 0.223270 3.8691 

11 4759 0.235227 3.5313 

Perhaps an example can be found to show D' < Do , but we have 

not investigated this. 

It is clear from the proof of Theorem 5 that actually a more 

general result is provable. Namely, given a set of primes S , then for 

any x with o(S) I x < a(S) , there is a set of primes S, I) S with 

dS,> = a(S) and 6!S,) = x . Consider the set of points in E2 

A = ((a(S), 6(S)): S C P) . 

It is clear that for each a , 0 I a I 1 , we have (a,a) E A . 

Indeed, if S is a maximal set of primes with a(S) 2 a (from the 

lemma in the proof of Theorem 5, S exists), then a(S) = a . For if 

u(S) > a and if p is any prime larger than (a(S) - a>-l and not 

in S , then 

u(s u (p), 2 a(s) -;>a, 

contradicting S maximal. Also by the proof of Theorem 5, D(S) = 0 , 

so (a,a) E A . 

From the above paragraph, for each a, 0 I a I 1 , the set of b 

with (a,b) E A is an interval [a,b,) or [a,ba] . Is the 

interval always closed? This would follow by showing that whenever 



Sl,Q,-.* are minimal sets of primes with a(Si) = a , then SUp{b(Si)} = 

6(Si,) for some i, . 

The function a + b, is continuous only at 0 and 1 . Indeed, 

if a is irrational, 0 < a < 1 , then b, = a . But for any 0 < a < 1 , 

li~+;up bt > a . 

Indeed, let u be such that p(u) = a . Then from the methods of the 

proof of Theorem 3, 

lim o(S!x,x")) = a , 
X* 

lim 6(S(x,x")) -' =u 
X-J- 

so that there is a sequence t, + a with btn + u-1 > a . 

What can be said about the set of a such that (a,b) E A ? 

IS it always dense in the interval [ab,b] where 

ab = inf{fl(S):G(S) = b , S C P} ? 

If so, then D'=D. To see this, suppose D' < D and so D = D(S) 

for some S C P . Let b = 6(S) , so that ab = o(S) . Let {S,} be 

a sequence of sets of primes with 6(Sn? = b and cr(S,) .& ab . Let 

s; c s, be a minimal set of primes with u(Sz) = o(S,) . Then 

6(SE) 2 b, so that 

lim inf DtSz) 2 b - ab = D . 
n-)a 

But since the sets Sz are mutually distinct, we must have 

(max SE} unbounded, so that D' 2 lim inf D(Son) 2 D , a contradiction. 

Consider the function b 3 ab . It is not so hard to see that ab 

is monotone non-decreasing and that ab < b whenever 0 < b < 1 . 

Moreover, by monotonicity b -+ ab is continuous at all but at most 

countably many b . Is it continuous at all b ? 

For S C P and D(S) > 0 9 can the set of N for which u(s) = 

i S<N> be arbitrarily large? Let Nl(S), N2(S) , respectively, be 

the smallest, largest N with U(S) = f S<N> . Can Nz(S)/Nl(S) be 



arbitrarily large? Probably these questions can be answered in the 

affirmative by starting with a finite set of primes and adding some large 

primes so as to have the Schnirelmann density attained again. These 

questions seem to be much harder for minimal sets of primes. We can 

show that Nl(S)/max S can be arbitrarily large. Indeed, if 

S = [x,2x] n P , then Nl(S) >> ~l+~ for some c>o. For if 

N < x2 , then 

j$ S<N> = 1 - 2 L + ; 
pcs p 

where { ) denotes the fractional part. Thus if a(S) = i S<N> for 

some N < x2 , then ; C@/P) i s minimal for N in this range. It is 

easy to show that z{N/p} x/log x uniformly for x I N I xlcc 

using Hoheisel-type results on the distribution of primes in short 

intervals. Probably Nl(S) >> x2-& holds for each E > 0. On the 

other hand it is easy to show N2(S) << x2SE for every E > 0 . In 

general, if S is the interval of primes [x,y] n P and ISI 2 2 , then 

probably for y I x2 we have Nl(S) = x2+o(l) = N2rS) and for y > x 2 

we have Nl(S) = yl+O(l) = N2CS) . We can show that if S = (p,q) where 

p > q are primes, then Nl(S) 2 p(q-l)/(q-p) , so that if q - p < log p 

(which can be arranged infinitely often), then Nl(S) > p2/log p . 

Is it true that if S C P is minimal and max S = p , then 

; s<p> - u(S) + 0 as P+, 

or even 

; s<p> -a(S) as p+m? 

These fail if S iQ: P . For example, if S is the set of integers 

in (n,2n] , then 

k S<2n> = Jj , k S<4n> - 5 . 

The set of 6(S) where S C P , S finite, is exactly the set of 

rationals of the form $Cn)/n where @I denotes Euler's function. There 

is a very simple decision procedure for membership in this set. What can 

be said about the set of U(S) where S C P , S finite? Can any 

rational in CO,11 be shown to be not in this set? What if S is 

allowed to be any finite set of pairwise coprime integers? Is the 



membership problem for the set of a(S) still decidable? Finally, what 

if S is any finite set of integers? Does every rational r E CO,11 

satisfy r = rriS1) = 6CS2) for some finite sets of integers Sl, S2 ? 

Another line of research is to consider gaps between the elements 

in the set A(S) for various choices of S . This question and similar 

questions are studied in the papers [3], [6], 171, [8]. 

Finally we record the following old problem of the ageless first 

author. If S is a set of natural numbers, let 

S’<x> = x - s<x> 

for every natural number x . Thus S' <x> is the number of integers 

up to x divisible by some member of S . There are easy examples 

where 1 x S'<x> is very large and then drops drastically. For example, 

from the proof of Theorem 2, 

i Si<n> x 1 , lim i 
X-ks 

s;<x> = 0 

for n large. The question is if the reverse can happen. That is, can 

i S'<n> be small for some n L max S , but $ S'<x> is large for some 

x > n? To quantify this question, we ask if it is always true that 

$ s’<x> < f s+<n> 

for any finite set of natural numbers S and x > n 1 max S? That "2" 

cannot be replaced by a smaller number can be seen by looking at the 

case S = {k} , n = 2k - 1 , x = 2k . 
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