On 2-Designs

P. ERDÖS

Hungarian Academy of Sciences

Joel C. Fowler*
California Institute of Technology, Pasadena, California 91125

Vera T. Sós ${ }^{+}$

Bell Laboratories, Murray Hill, New Jersey 07974

AND
Richard M. Wilson*
California Institute of Technology, Pasadena, California 91125
Communicated by the Managing Editors

Received December 9, 1982

Abstract

Denote by M_{r} the set of integers b for which there exists a 2-design (linear space) with v points and b lines. M_{v} is determined as accurately as possible. On one hand, it is shown for $v>v_{0}$ that M_{r} contains the interval $\left[v+v^{45},\binom{5}{2}-4\right]$. On the other hand for v of the form $p^{2}+p+1$ it is shown that the interval $[v+1, v+p-1]$ is disjoint from M_{v}; and if $v>v_{0}$ and p is of the form $q^{2}+q$, then an additional interval $[v+p+1, v+p+q-1]$ is disjoint from $M_{i .} \quad v 1985$ Academic Press. Inc.

Let S be a finite set, $|S|=v$, and let $\mathbf{A}=\left\{A_{1}, \ldots, A_{b}\right\}$ be a family of subsets of $S . \mathbf{A}$ is a 2 -design (or pairwise balanced design) or linear space) if every pair of elements of S occurs in exactly one A_{i} and $\left|A_{i}\right|>1$ for $1 \leqslant i \leqslant b$. The elements of S are called the points, the subsets A_{i} are called the lines or blocks of the 2-design. Doyen asked what are the possible values of b for a given v ? Let M_{v} be defined as the set of integers b for which there exists a 2 -design with v points and b lines. So the problem is the determination of M_{v}.

[^0]Clearly

$$
M_{v} \subset\left[1,\binom{v}{2}\right] \quad \text { and } \quad\binom{v}{2}-1,\binom{v}{2}-3 \notin M_{v} .
$$

Also a well-known theorem of de Bruijn and Erdös [1] states that if $b>1$, then $b \geqslant v$. Thus $\min M_{v}=v$.

Answering a question of Grünbaum, Erdös [2] proved the following: Let there be given n points in the plane. Join any two of them by a line. Denote by b the number of lines obtained. There is an absolute constant c so that every b with $c v^{3 / 2}<b \leqslant\binom{ v}{2}, b \neq\binom{ v}{2}-1, b \neq\binom{ v}{2}-3$ can occur as the number of lines. (This result is best possible apart from the value of c.) This obviously gives that with the same c every $b \neq\binom{ v}{2}-1,\binom{v}{2}-3, c v^{3 / 2}<b<\binom{v}{2}$ occurs in M_{v}. For an arbitrary 2-design the situation is different. Let $f(v)$ denote the largest integer $b<\binom{v}{2}-3$ for which there is no 2 -design on v elements and b lines. We shall prove

Theorem 1. There is an absolute constant c so that for $v>v_{0}$

$$
f(v)<v+v^{1 / 2+c},
$$

where c can be any value $>\frac{11}{40}$.
Remark. If we make plausible assumptions about the distribution of primes we can prove $f(v)<v+v^{1 / 2}(\log v)^{\alpha}$ for some fixed α. Further we conjecture that

$$
\limsup _{v} \frac{f(v)-v}{\sqrt{v}}=\infty .
$$

Theorem 1 shows that all values in the upper portion of the range $b \in[v$, $\left.\binom{v}{2}-4\right]$ are possible. For b close to v our results are quite different. To get interesting results it will be convenient to assume v is of the form $p^{2}+p+1$ (here p is not necessarily a prime or prime power).

We shall prove
Theorem 2. Let $v=p^{2}+p+1$. Then for $p^{2}+p+1<b<p^{2}+2 p+1$ there is no 2-design with v points and b lines.

Remarks. This result fails for v not of this form: projective planes from which points have been deleted provide many examples where $b-v<\sqrt{v}$.

Theorem 2 is best possible in that it is easy to construct a 2 -design with $b=p^{2}+2 p+1$ lines. To see this it suffices to consider the lines A_{1}, \ldots, A_{v} of a projective plane of order p and replace $A_{1}=\left\{x_{1}, \ldots, x_{p+1}\right\}$ by $A_{1}^{1}=$ $\left\{x_{2}, x_{3}, \ldots, x_{p+1}\right\}, A_{1}^{i}=\left\{x_{1}, x_{i}\right\}, 2 \leqslant i \leqslant p+1$.

In general we may take any projective plane and obtain a new 2-design by "breaking up" any line, i.e., by replacing it with the lines of some 2-design on the same set of points. In the above example A_{1} has been broken up into a near pencil on $p+1$ points.

We further prove

Theorem 3. If $v=p^{2}+p+1$ and $b=p^{2}+2 p+1$, then the design is obtained from a projective plane of order p by "breaking up" one of its lines into a near pencil or projective plane.

Theorem 3 is in some sense sharp; nevertheless we prove a stronger result.

Theorem 4. Let $v=p^{2}+p+1$ and $\mathbf{A}=\left\{A_{1}, \ldots, A_{b}\right\}$ a 2-design which is neither a projective plane nor a near pencil nor is obtained from a projective plane by "breaking up" one of its lines. Then $b>p^{2}+(2+c) p$ where c can be taken as 0.147899 .

A special case of interest is for $v=p^{2}+p+1$, where $p=q^{2}+q$. By Theorem 2 applied to the $p+1=q^{2}+q+1$ points on a line of a projective plane of order p, the breaking up of that line results in a 2 -design on $v=$ $p^{2}+p+1$ points with either

$$
b=\left(p^{2}+p+1\right)+p \quad \text { or } \quad b \geqslant\left(p^{2}+p+1\right)+p+q \text {. }
$$

This latter inequality must, by Theorem 4 , also be valid (when $b>v$) for 2-designs on $v=p^{2}+p+1$ points which cannot be obtained by breaking up a line of a projective plane (when $v>v_{0}$). In other words the interval $[v+p+1, v+p+q-1]$ is disjoint from M_{v}.

Remarks. In the theory of designs or extremal set theory there are two essentially different methods, the combinatorial and the linear-algebraic one. There are just a few theorems where both methods work. This is the case with Theorems 2 and 3. We give two proofs. Theorems 2 and 3 are actually consequences of Totten's classification [7, 8] of all 2 -designs satisfying $(b-v)^{2} \leqslant v$, but the proof in $[7,8]$ is substantially longer than those we give here. One of the present authors (J.C.F.) has used the algebraic approach to give a shorter proof of Totten's complete result [4]. Our combinatorial proof of Theorems 2 and 3 gives with some additional reasoning the proof of Theorem 4.

Proof of Theorem 1. First of all we restrict ourselves to the case when $v=p^{2}+p+1$, where p is a power of a prime. It is well known that in this case there is a projective plane; $\mathbf{A}=\left\{A_{1}, \ldots, A_{v}\right\}$ with $\left|A_{i}\right|=p+1,1 \leqslant i \leqslant v$
and $\left|A_{i} \cap A_{j}\right|=1$ for $i \neq j$. On the other hand, if there is such a projective plane, then v must be of the form $t^{2}+t+1$.

To prove Theorem 1, first we prove
Theorem 1*. Let $v=p_{k}^{2}+p_{k}+1, p_{k}$ be k th prime power (in natural order). Then

$$
\begin{equation*}
f\left(p_{k}^{2}+p_{k}+1\right)<p_{k}^{2}+2 p_{k}+p_{k}^{1 / 2+c}, \tag{1}
\end{equation*}
$$

where c can be any value $>\frac{11}{40}$.
Proof. Let A_{1}, \ldots, A_{v} be the lines of a finite geometry with v points. Observe that it is necessary to construct a 2-design only for $b<p_{k+1}^{2}+$ $p_{k+1}+1$. For if $b \geqslant p_{k+1}^{2}+p_{k+1}+1$ it is easy to see that we can use for our consideration the finite geometries of size $p_{r}^{2}+p_{r}+1$, where p_{r} is the least prime for which $p_{r}^{2}+p_{r}+1 \geqslant b$.

Using a well-known theorem of Heath-Brown and Iwaniec [5] we have

$$
\begin{equation*}
p_{k+1}-p_{k}<p_{k}^{(11 / 20)+\varepsilon .} \tag{2}
\end{equation*}
$$

Hence

$$
p_{k+1}^{2}+p_{k+1}+1<p_{k}^{2}+p_{k}^{(31 / 20)+\varepsilon} .
$$

Thus it suffices to consider the b 's satisfying

$$
p_{k}^{2}+2 p_{k}+p_{k}^{(31 / 40)+\varepsilon}<b<p_{k}^{2}+p_{k}^{(31 / 20)+\varepsilon} .
$$

From the result of Erdös [2], it immediately follows that the values of b satisfying

$$
p_{k}^{2}+c p_{k}^{3 / 2}<b
$$

can be taken care of by the block designs formed by breaking up the elements of L_{i} 's into pairwise balanced designs. Thus it suffices to deal with the b satisfying

$$
\begin{equation*}
p_{k}^{2}+2 p_{k}+p_{k}^{(31 / 40)+\varepsilon}<b<p_{k}^{2}+c p_{k}^{3 / 2} . \tag{3}
\end{equation*}
$$

Let $L_{1}=\left\{x_{1}, \ldots, x_{p_{k}+1}\right\}$. Let q be the smallest prime power satisfying

$$
\begin{equation*}
p_{k}+1<q^{2}+q+1<p_{k}+p_{k}^{(31 / 40)+\varepsilon / 2} . \tag{4}
\end{equation*}
$$

Consider now a projective plane with the lines $B_{1}, \ldots, B_{q^{2}+q+1}$. Omit $y=$ $q^{2}+q-p_{k}<p_{k}^{(31 / 40)+\varepsilon}$ of the points of this projective plane (without destroying any of the lines). Let the remaining points be identified by $\left\{x_{1}, \ldots, x_{p_{k}+1}\right\}$. Thus we obtain a 2-design on our set $\left\{x_{1}, \ldots, x_{p_{k}+1}\right\}$ and
therefore on our set S of $p_{k}^{2}+p_{k}+1$ elements. Now the number of lines of this design is $p_{k}^{2}+p_{k}+q^{2}+q+1 ; p_{k}^{2}+p_{k}$ of the lines have size $p_{k}+1$, the other $q_{r}^{2}+q_{r}+1$ sets have size $q_{r}+1$ or less. ("Less" because we had to omit x elements which are at our disposal.)

Let $B_{1}^{*}, \ldots, B_{q^{2}+q+1}^{*}$ be the blocks which remain after the omission of the x elements and let $t_{i}=\left|B_{i}^{*}\right|$. By breaking up the lines B_{i}^{*} we get b_{i} new lines for every b_{i} satisfying $c t_{i}^{3 / 2} \leqslant b_{i}<\binom{t_{2}}{2}-3$. Choosing the values of $t_{i}(1 \leqslant i \leqslant$ $\left.q^{2}+q+1\right)$ properly we can get every value in the interval $\left(p_{k}^{31 / 40}, p_{k}^{(31 / 20)+\varepsilon}\right)$ in the form $\sum_{v=1}^{l} b_{i_{r}}$ with appropriate

$$
b_{i_{v}} \in\left[c t_{i_{v} / 2,},\binom{t_{i_{v}}}{2}-4\right] .
$$

This completes the proof of Theorem 1*.
The proof of Theorem 1 now can be completed by the same method.
We now proceed to the proofs of Theorems 2-4. Henceforth we assume that we have a 2-design with $v=p^{2}+p+1$ and $b \leqslant p^{2}+(2+c) p$ for some $c<\frac{1}{2}$. We use the following notation: $A_{1}, A_{2}, \ldots, A_{b}$ are the blocks (lines); $x_{1}, x_{2}, \ldots, x_{v}$ are the points; $\left|A_{i}\right|=l_{i}=$ length of $A_{i} ; r_{j}=\mid\left\{i: x_{j} \in A_{i}\right.$, $1 \leqslant i \leqslant v\} \mid=$ degree of x_{j}.

Lemma 1. No line of length $>p+1$ exists unless the design is a near pencil.

Proof. From [6] we have $b \geqslant 1+\left(l^{2}(v-l) /(v-1)\right)$ if a line of length l exists. Let l be the maximum length of a block A. Suppose $l \geqslant p+2$.

Case 1. $l \leqslant \frac{2}{3} v$. Note that $l^{2}(v-l)$ is increasing for $0 \leqslant l \leqslant \frac{2}{3} v$. Thus

$$
b \geqslant \frac{(p+2)^{2}\left(p^{2}+p+1-(p+2)\right)}{p^{2}+p+1-1}=p^{2}+3 p+1-4 / p,
$$

a contradiction for $p \geqslant 2$.
Case 2. $I>\frac{2}{3} v$. If there are two points off A then the line through them and A both meet at least $(l-1) 2$ other lines. Thus $b \geqslant(l-1) 2+2>\frac{4}{3} v=$ $\frac{4}{3} p^{2}+\frac{4}{3} p+\frac{4}{3}$, a contradiction for $p \geqslant 1$. Hence no more than one point lies off of A. So the design is either degenerate (only one line) or a near pencil.

In view of Lemma 1 we may assume that the maximum length of a block is $p+1$. Given this and $v=p^{2}+p+1$ we have the useful fact that a point has degree $p+1$ if and only if it lies only on lines of length $p+1$.

We will refer to blocks of length $p+1$ as long and $<p+1$ as short. Clearly if all blocks are long the design is a projective plane. Thus we assume that some short blocks exist.

Lemma 2. If $v=p^{2}+p+1, b \leqslant p^{2}+2 p+1$, and there exists a block A all of whose points have degree $p+1$, then $b=v$.

Proof. All blocks on a point of degree $p+1$ have size $p+1$. Thus A and the $(p+1) p$ blocks which meet A provide a set of $p^{2}+p+1$ blocks of size $p+1$. These cover $\left(p^{2}+p+1\right)\binom{p+1}{2}=\binom{v}{2}$ pairs, so there can be no other blocks.

Lemma 3. $r_{i} \geqslant p+1$ for all i.
Proof. Since $v=p^{2}+p+1$, a point of degree p or less would lie on some line of length $p+2$ or more.

Lemma 4. Some point of degree $p+1$ exists.
Proof. Suppose that $r_{i} \geqslant p+2$ for all i. Note first that a block, A_{1}, of length $p+1$ exists since otherwise

$$
b p \geqslant \sum_{i=1}^{b} l_{i}=\sum_{i=1}^{v} r_{i} \geqslant(p+2) v=(p+2)\left(p^{2}+p+1\right)
$$

implying $b \geqslant p^{2}+3 p+2$, a contradiction.
Since min $r_{i} \geqslant p+2$, the number of lines intersecting A_{1} of length $p+1$ is at least $(p+1)(p+1)$. But any point not contained in A_{1}, is contained in a line not intersecting A_{1}. So we get at least $p^{2} /(p+1)=p-1+(1 /(p+1))$ lines which do not intersect A_{1}. By this, $b \geqslant\left(p^{2}+2 p+1\right)+p$.

Lemma 5. Every two lines of length $p+1$ meet.

Proof. Let $\left|A_{1}\right|=\left|A_{2}\right|=p+1, A_{1} \cap A_{2}=\varnothing$. Then together A_{1} and A_{2} both meet $(p+1)^{2}=p^{2}+2 p+1$ blocks. Now any point contained in A_{1} or A_{2} is of degree $\geqslant p+2$. Therefore for $x \in A_{1}$ there is a line $B(x)$ containing x and $|B(x)|<p+1$; any point contained in $B(x)$ has degree $\geqslant p+2$. Hence we have at least $|B(x)|-1$ lines intersecting $B(x)$ but not intersecting A_{1}.

If $|B(x)|>p / 2$ for some $x \in A_{1}$ then $b \geqslant p^{2}+\frac{5}{2} p$. If $|B(x)| \leqslant p / 2$ for every $x \in A_{1}$, then x is of degree $\geqslant p+3$ if $x \in A_{1}$. In this case we have, by counting the lines meeting $A_{1}, b \geqslant(p+1)(p+2)>p^{2}+3 p$.

Algebraic Proof of Theorem 2. To prove Theorem 2, let N be the $v \times b$ incidence matrix of the design and U its row space. It is well known that $N^{\mathrm{T}}\left(N N^{\mathrm{T}}\right)^{-1} N$ is the matrix of the orthogonal projection from \mathbb{R}^{h} (with the standard inner product) onto U, provided that N has rank v, or equivalently, $\left(N N^{\mathrm{T}}\right)^{-1}$ exists.

In our case, $N N^{\top}=\Delta+J$, where $\Delta=\operatorname{diag}\left(r_{x}-1: x \in S\right)$ and r_{x} denotes
the degree of the point x; and it is easily checked that $(\Delta+J)^{-1}=$ $\Delta^{-1}+\sigma \Delta^{-1} J \Delta^{-1}$, where $\sigma=1 /\left(1+\alpha_{S}\right)$ and $\alpha_{S}=\sum_{x \in S}\left(1 /\left(r_{x}-1\right)\right)$. The $b \times b$ matrix

$$
Q=I-N^{\mathrm{T}}\left(N N^{\mathrm{T}}\right)^{-1} N=I-N^{\mathrm{T}} \Delta^{-1} N+\sigma N^{\mathrm{T}} \Delta^{-1} J \Delta^{-1} N
$$

is evidently the matrix of the orthogonal projection from \mathbb{R}^{b} onto U^{\perp}, a subspace of dimension $b-v$. In particular, Q has rank $b-v$.

For a subset T of the set S of points, let

$$
\alpha_{T}=\sum_{x \in T} \frac{1}{r_{x}-1} .
$$

The rows and columns of Q are indexed by the blocks A, B, \ldots, of the design, and with the above notation,

$$
Q=I-\left(\left(\alpha_{A \cap B}\right)\right)+\sigma\left(\left(\alpha_{A} \alpha_{B}\right)\right) .
$$

Let \mathbb{F} be the set of $r_{x_{0}}$ blocks on a fixed point x_{0} and consider the $r_{x_{0}}$ by $r_{x_{0}}$ principal submatrix Q_{0} of Q whose rows and columns are indexed by the members of \mathbb{F}. For distinct $A, B \in \mathbb{F}, \alpha_{A \cap B}=\left(1 /\left(r_{x_{0}}-1\right)\right)$. Writing β_{A} for $1-\alpha_{A}+\left(1 /\left(r_{x_{0}}-1\right)\right)$, we have

$$
Q_{0}=\operatorname{diag}\left(\beta_{A}: A \in \mathbb{F}\right)-\frac{1}{r_{x_{0}}-1} J+\sigma\left(\left(\alpha_{A} \alpha_{B}\right)\right)_{A, B \in \mathbb{F}} .
$$

So far, this holds for any design.
With our hypothesis, Lemmas 1 and 3 show that all blocks have size $\leqslant p+1$ and all points have degree $\geqslant p+1$. Then

$$
\beta_{A}=1-\sum_{\substack{x \in A \\ x \neq x_{0}}} \frac{1}{r_{x}-1} \geqslant 1-\sum_{\substack{x \in A \\ x \neq x_{0}}} \frac{1}{p} \geqslant 0
$$

and $\beta_{A}=0$ if and only if $|A|=p+1$ and all points of $A-\left\{x_{0}\right\}$ have degree $p+1$. Suppose, for contradiction, that $\beta_{A}>0$ for all $A \in \mathbb{F}$. Then $\operatorname{diag}\left(\beta_{A}\right)+\sigma\left(\left(\alpha_{A} \alpha_{B}\right)\right)$, being the sum of a positive definite and positive semidefinite matrix, is positive definite and hence has rank $r_{x_{0}}$. Subtracting the rank 1 matrix $\left(1 /\left(r_{x_{0}}-1\right)\right) J$ can reduce the rank by at most one, so

$$
r_{x_{0}}-1 \leqslant \operatorname{rank} Q_{0} \leqslant \operatorname{rank} Q=b-v \leqslant p-1,
$$

which gives a contradiction $r_{x_{0}} \leqslant p$ to Lemma 3 .
To summarize, there exists a block A on x_{0} such that all points of $A-\left\{x_{0}\right\}$ have degree $p+1$. We now take x_{0} to be any point of degree $p+1$ and Lemma 2 completes the proof.

Algebraic Proof of Theorem 3. Let $Y=\left\{x \in S: r_{x}=p+1\right\}, Z=\{x \in S$: $\left.r_{x}>p+1\right\}$. By Lemma 2, there are no blocks $A \subseteq Y$. But let us call A good when A is long and all but one of its points is in Y. Because of Lemma 2 we may assume that each block on a point $y_{0} \in Y$ contains at least one point of Z, so $|Z| \geqslant p+1$.

The argument involving Q_{0} in the previous theorem shows in this case, that each point of Z is contained in at least one good block. Any two long blocks intersect. Let \mathbf{G} be a set of blocks consisting of one good block containing z for each $z \in Z$ and consider the principal submatrix Q_{1} of Q whose rows and columns are indexed by the members of \mathbf{G}. For distinct $A, B \in \mathbf{G}, \alpha_{A \cap B}=1 / p$ (since A, B intersect in a point of Y). Also, for $A \in \mathbf{G}$ containing $z \in Z, \alpha_{A}=\left(1 /\left(r_{z}-1\right)\right)+(p / p)<(1 / p)+1$. Then

$$
Q_{1}=\operatorname{diag}\left(1+\frac{1}{p}-\alpha_{A}\right)-\frac{1}{p} J+\sigma\left(\left(\alpha_{A} \cdot \alpha_{B}\right)\right)_{A, B \in \mathbf{G}},
$$

being the sum of a positive definite, a positive semidefinite, and a rank 1 matrix, is seen to have rank $\geqslant|\mathbf{G}|-1=|Z|-1$. So

$$
|Z|-1 \leqslant \operatorname{rank} Q_{1} \leqslant \operatorname{rank} Q=b-v=p .
$$

We have now proved that $|Z|=p+1$.
Recall that all blocks containing a point of Y are long. Consider two good blocks A, A^{\prime} containing $z, z^{\prime} \in Z$. There are p^{2} blocks other than A containing points of $A-\{z\}$, all of which are long. There are p blocks (including A) on z containing a point of $A^{\prime}-\left\{z^{\prime}\right\}$ and these too must be long. Thus there are at least $p^{2}+p$ long blocks. These cover $\left(p^{2}+p\right)\binom{p+1}{2}$ pairs, leaving only (${ }^{p+1}$) pairs uncovered. The remaining $p+1$ blocks are short and cover these $\left({ }^{p+1}\right)$ pairs. But all short blocks are contained in Z, and $|Z|=p+1$. Evidently, the short blocks form a (possibly degenerate) projective plane on Z.

Finally, the long blocks together with Z form a projective plane of order p on x, which proves Theorem 3 .

Now we present combinatorial proofs of Theorems 2-4. Note that it suffices to prove Theorem 4 only since (using the de Bruijn-Erdös Theorem) the breaking up of a line in a projective plane immediately results in $b \geqslant p^{2}+2 p+1$. Equality holds only if the line is broken into a projective plane or near pencil.

We show first that the number of lines of length $p+1$ is at least $p^{2}+1$ and then show that this implies that exactly one line was broken up.

Let $q=$ (number of lines length $p+1$) and let the longest line not of length $p+1$ be \hat{A}, of length $\alpha p, 0<\alpha \leqslant 1$. Thus every line has length $p+1$
or $\leqslant \alpha p$. By counting triples $\left(x_{i}, x_{j}, A_{k}\right)$ with $x_{i} \in A_{k}, x_{j} \in A_{k}, x_{i} \neq x_{j}$; we have

$$
(b-q) \alpha p(\alpha p-1)+q p(p+1) \geqslant v(v-1) .
$$

Using $v=p^{2}+p+1$ and $b \leqslant p^{2}+(2+c) p$ we have

$$
q \geqslant p^{2}+p\left(\frac{1-2 \alpha^{2}-c \alpha^{2}}{1-\alpha^{2}}\right)+\frac{(1+\alpha c) p+1}{p\left(1-\alpha^{2}\right)+1+\alpha} .
$$

So $q \geqslant p^{2}+1$ for $\alpha \leqslant \sqrt{1 /(2+c)}$. We now take care of larger α.
Let x be a point of degree $p+1$. Then $x \notin \hat{A}$. Since \hat{A} is short there exists a line of length $p+1$ through x missing \hat{A}. Denote this line by A and the lines through x meeting \hat{A} by $A_{1}, A_{2}, \ldots, A_{x n}$.

Consider now A_{1} and A. Together both meet $(p+1-1)(p+1-1)+$ degree $(x)=p^{2}+p+1$ lines.

Through each point $y \in \hat{A} \backslash A_{1}$ there is at least one line meeting A and missing A_{1} (i.e., at least one of the $p+1$ lines from y to A must miss A_{1}, since \hat{A} through y meets A_{1} and misses A). Thus there are at least $\alpha p-1$ lines meeting A and missing A_{1}. Similarly if A^{*} is a line meeting A and missing A_{1} there are at least $\left|A^{*}\right|-1$ lines meeting A_{1} and missing A.

Adding these up, we have

$$
b \geqslant\left(p^{2}+p+1\right)+(\alpha p-1)+\left(\left|A^{*}\right|-1\right) .
$$

Hence $\left|A^{*}\right| \leqslant(1+c-\alpha) p+1$.
Thus any line meeting A but missing A_{1} has length $\leqslant(1+c-\alpha) p+1$. This same argument holds for any $A_{i}, 1 \leqslant i \leqslant \alpha p$. Now suppose A^{\prime} is any block meeting A. If A^{\prime} misses some $A_{i}, 1 \leqslant i \leqslant \alpha p$ then $\left|A^{\prime}\right| \leqslant$ $(1+c-\alpha) p+1$ by above. If A^{\prime} meets every $A_{1}, A_{2}, \ldots, A_{\alpha p}$ in addition to A then $\left|A^{\prime}\right| \geqslant \alpha p+1$. So $\left|A^{\prime}\right|=p+1$ by maximality of \hat{A}.

We have shown that every block meeting A has length $p+1$ or $\leqslant(1+c-\alpha) p+1$. Let u be any point on A and

$$
N_{u}=\text { No. of lines of length } p+1 \text { through } u \text { other than } A \text {. }
$$

Then

$$
\binom{\text { No. of lines through } u \text { of }}{\text { length } \leqslant(1+c-\alpha) p+1} \geqslant \frac{p^{2}-p N_{u}}{(1+c-\alpha) p+1-1}=\frac{p-N_{u}}{(1+c-\alpha)} .
$$

So

$$
\operatorname{degree}(u)-1 \geqslant N_{u}+\frac{p-N_{u}}{(1+c-\alpha)}
$$

Summing over $u \in A$ then gives

$$
b-1 \geqslant \sum_{u \in A}(\operatorname{degree}(u)-1) \geqslant(q-1)\left(1-\frac{1}{1+c-\alpha}\right)+\frac{p(p+1)}{1+c-\alpha}
$$

since $q-1=\sum_{u \in A} N_{u}$. Solving for q gives

$$
q \geqslant p^{2}+p\left(\frac{1-(2+c)(1+c-\alpha)}{\alpha-c}\right)+\frac{1}{\alpha-c} .
$$

Thus $q \geqslant p^{2}+1$ for $1+c-\alpha \leqslant 1 /(2+c)$, i.e., $\alpha \geqslant\left(c^{2}+3 c+1\right) /(c+2)$. Previously $q \geqslant p^{2}+1$ for $\alpha \leqslant \sqrt{1 /(2+c)}$. We choose c so that these ranges overlap, i.e.,

$$
\frac{c^{2}+3 c+1}{c+2} \leqslant \sqrt{1 /(2+c)} .
$$

Equivalently $0 \geqslant c^{4}+6 c^{3}+11 c^{2}+5 c-1$. To within six decimal places we can take $c=0.147899$.

We now complete the proof by showing that $q \geqslant p^{2}+1$ implies one line was broken up. Let $A_{1}, \ldots, A_{p^{2}+i}$ be the lines of length $p+1, t \geqslant 1$. Here we use the following theorem of Vanstone [9]: Let $|S|=p^{2}+p+1, \mathbf{B}=$ $\left\{B_{1}, \ldots, B_{m}\right\}, m \geqslant p^{2}$ be a family of subsets of $S,\left|B_{i}\right|=p+1$ for $i=1,2, \ldots, m$. If $\left|B_{i} \cap B_{j}\right|=1,1 \leqslant i<j \leqslant m$ then \mathbf{B} is embeddable into a finite projective plane of order p.

We apply this theorem to the system $\left\{A_{1}, \ldots, A_{p^{2}+1}\right\}$. Let $B_{1}, \ldots, B_{p^{2}+p+1}$ be the finite projective plane into which we embed our system, and B_{i}, $1 \leqslant i \leqslant p-t+1$ the lines not belonging to our system. Then the pair covered by the lines $B_{i}, i \leqslant p-t+1$ must be covered by our lines A_{j}, $j>p^{2}+t$.

Observe that to every line $B_{i}, i \leqslant p-t+1$ there is an $x_{i}, x_{i} \in B_{i}$ and $x_{i} \notin B_{j}, j \leqslant p-t+1, j \neq 1$. This is obvious because $p-t<p+1$ and $\left|B_{i} \cap B_{j}\right|=1$ for $i \neq j$. Now for every $A_{j}, j>p^{2}+t$ which contains x_{i} we have $A_{j} \subset B_{i}$ since for $y \notin B_{i}\left(x_{i}, y\right)$ is covered by a line $A_{v}, v<p^{2}+t$. Since all the pairs $\left(x_{i}, y\right), y \in B_{i}$ must be covered by such a line A_{j}, and $\left|A_{j}\right|<p+1$, we have at least two lines which are contained in B_{i}. The short lines meeting some B_{i} induce a sub 2-design on the $p+1$ points of B_{i}. So by the de Bruijn-Erdös theorem the number of short lines which meet a B_{i} is at least $p+1$. Fixing B_{1} we have at least $p+1$ short lines meeting B_{1}. The remaining $p-t$ lines B_{i} each contain at least two short lines. Thus

$$
b \geqslant p^{2}+t+(p+1)+2(p-t) \geqslant p^{2}+2 p+1
$$

and equality holds iff $p=t$, i.e., exactly one line of a projective plane of order p was broken up.

If $t=1$, we have $b \geqslant p^{2}+3 p-1$. Now we suppose $2 \leqslant p+1-t \leqslant p-1$. In this case every $B_{i}, 1 \leqslant i \leqslant p+1-t$ contains at least $t+1$ points not contained in any other $B_{j}, i \neq j, 1 \leqslant j \leqslant p+1-t$. Thus the short lines containing these points lie entirely within the given B_{i}.

Let $B_{i}=C_{i} \cup D_{i}, 1 \leqslant i \leqslant p+1-t$ where

$$
\begin{aligned}
C_{i} & =\left\{x_{j}: x_{j} \in B_{i}, x_{j} \notin \bigcup_{\substack{v \neq i \\
1 \leqslant v \leqslant p+1-t}} B_{v}\right\} \\
D_{i} & =B_{i} \backslash C_{i} .
\end{aligned}
$$

Case a. For an $i, 1 \leqslant i \leqslant p+1-t$, the pairs of C_{i} are covered by one short line $A_{\mu_{i}}$. Then for any $x_{j} \in C_{i}$ we need at least one line to cover each of the pairs $\left(x_{j}, y\right), y \in B_{i} \backslash A_{\mu_{i}}(\neq \varnothing)$. For different x_{j} 's we have different lines. This gives at least $\left|C_{i}\right| \geqslant t+1$ different short lines within B_{i}.

Case b. The pairs of C_{i} are covered by more than one line. In this case the de Bruijn-Erdös theorem gives at least $\left|C_{i}\right| \geqslant t+1$ different short lines within B_{i}.

The lines we considered are different for different i 's. This gives, that the number of short lines is at least $(p+1-t)(t+1)$. Hence $b \geqslant p^{2}+t+$ $(p+1-t)(t+1) \geqslant p^{2}+3 p-1$ for $2 \leqslant t \leqslant p-1$. This completes the proof.

Before closing with several open problems we remark that a forthcoming paper by Erdös, Mullin, Sós, and Stinson [3] contains related results.

Problem 1. Theorem 4 is not best possible. We conjecture that Theorem 4 holds with

$$
b \geqslant p^{2}+3 p+0(1) .
$$

Remark. Let $|S|=v, \mathbf{A}=\left\{A_{1}, \ldots, A_{b}\right\}$ a 2-design. Assume $1 \leqslant\left|A_{i}\right| \leqslant$ $v-2$. We can prove that the number of A_{i} 's not containing x for every $x \in S$ is greater than $v-\sqrt{v}$. We have equality for finite geometries. This might be connected with the following conjecture of Dowling-Wilson.

Problem 2. Let $x \in S$, and $x \notin A_{i}$. Assume that there are t lines through x not meeting A_{i}. Then $b \geqslant v+t$.

This is equivalent to the assertion that the number of lines not containing x is never less than the number of points not on A_{i}.

Problem 3. Assume again $\mathbf{A}=\left\{A_{1}, \ldots, A_{b}\right\}$ is a 2 -design, $1 \leqslant\left|A_{i}\right| \leqslant$ $v-2$ and that the 2-design is not a finite geometry, further that b is minimal satisfying this condition. Furthermore assume there is no finite geometry of
order v and $v_{1}>v$ is the least integer $>v$ for which there is a finite geometry. Is it true, that we obtain our 2-design by omitting elements from the finite geometry of size v_{1} (perhaps we can completely omit some lines if $\left.v_{1}-v>\sqrt{v}\right)$?

Problem 4. Let b be the minimal number of blocks of a design on v elements satisfying $\left|A_{i}\right| \leqslant v-2$. Is it true that

$$
\varlimsup_{v \rightarrow \infty} \frac{b-v}{\sqrt{v}}=\infty \text { ? }
$$

Problem 5. Let $\left\{A_{i}\right\}$ be a design on $v=p^{2}+p+1$ elements for which $\left|A_{1}\right|=\left|A_{2}\right|=p+1, A_{1} \cap A_{2}=\varnothing$. We proved in Lemma 6 that $b \geqslant p^{2}+\frac{5}{2} p$. Determine the smallest possible value of b or give a better estimation.

References

1. N. G. de Bruiun and P. Erdörs, On a combinatorial problem, Nederl. Akad. Wetensch. Proc. Sect. Sci. 51 (1948), 1277-1279.
2. P. Erdös, On a problem of Grünbaum, Canad. Math. Bull. 15 (1972), 23-25.
3. P. Erdös, R. C. Mullin, V. T. Sós, and D. Stinson, Finite linear spaces and projective planes, to appear.
4. J. C. Fowler, A short proof of Totten's classification of restricted linear spaces, to appear.
5. D. R. Heath Brown and H. Iwaniec, On the difference between consecutive primes, Invent. Math. 55 (1979), 49-69.
6. R. G. Stanton and J. G. Kalbfleisch, The $\lambda-\mu$ problem, $\lambda=1, \mu=3$, in "Proc., Second Chapel Hill Conf. on Combinatorics," pp. 451-462, Chapel Hill, 1972.
7. J. Totten, Basic properties of restricted linear spaces, Discrete Math. 13 (1975), 67-74.
8. J. Totren, Classification of restricted linear spaces, Canad. J. Math. 28 (1976), 321-333.
9. S. Vanstone, The extendability of ($r, 1$)-designs, in "Proc., Third Manitoba Conf. on Numerical Math.," pp. 409-418, 1973.

[^0]: * The work of these authors was supported in part by National Science Foundation Grant MCS-8217596.
 ${ }^{\text {' }}$ Permanent address: Eötvös University of Budapest, Hungary.

