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PROBLEMS AND RESULTS ON ADDITIVE 
PROPERTIES OF GENERAL SEQUENCES. I 

P. ERD~S AND A. SARKOZY 

Dedicated to the Memory of E. G. Straws 

Let al -c u* < . *. be au infinite sequence of positive integers and 
denote by R(n) the number of solutions of n = ai + ai. The authors 
prove that if F(n) is a monotonic increasing arithmetic function with 
F(n) + fm and F(n) = o(n(log n)-*) then IA(n) - F(n)1 = 
o(( F( t~))“~) cannot hold. 

1. Let &= ( c1r, a*, . . . } (a, -K a2 < . . . ) be an infinite sequence of 
positive integers. Denote by R(n) the number of solutions of n = a, + aj. 
Sidon asked more than 50 years ago if there is a sequence&’ for which for 
everyn > no, 

0) R(a) > 0 but for every E z=+ 0, R(n)/n” + O? 

By use of probabilistic methods P, Erdiis proved the following much 
stronger result: 

There is a sequence &so that there are two constants c, and c2 for 
which for every n 

(2) c,logn < R(n) < c,log n. 

It is still a challenging problem to give a constructive proof of (2) or 
even of (1). We can make no contribution to this problem at the moment. 
An old conjecture of Erd6s states that for no sequence&can we have 

(3) R(n)/logn 9 c (O-a< +oo). 

We cannot attack (3) at the moment but we can prove that if G(n) is 
mono tonic, G ( n ) --j + cc and G(n) is of regular growth then 

(4) R(n)/G(n)log n + c (O-u< +cc) 

is possible. In view of the difficulty of (3) two questions are natural. Can 
one prove that for every& 

(5) limsup~R(n) -lognl= +Kl, 
?l-++CC 

and is it true that for every (0 i) c1 < 1 < c2 

(6) c,logn ( R(n) K c,logn 
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is possible? (6) which is weaker than (3) but stronger than (2) remains 
open, but we can prove (5) and in fact we can show that 

(7) II?(n) - log nl/(log n)1’2 -+ 0 

is also impossible. 
More generally, we will prove the following theorem: 

THEOREM. If F( n) is an arithmetic function such that 

(8) F’(n) + -coo, 

(9) F(n + 1) 2 F(n) fern 2 no, 

00) F(n) = o(n(log n)-“), 

and we write 

(11) 

then 

02) 

cannot hold. 

A(N) = f (R(n) - F(n)j2, 
n=l 

A(N) = o(NF(N)) 

The following corollary is a trivial consequence of the theorem above: 

COROLLARY. If F(n) is an arithmetic function sati&ng (8), (9) and 
(lo), then 

03) ypb4 - I+4 = 0((m9”) 

cannot hold. 

(So that e.g. 

R(N) - B(logN)‘= O((logN)CJ2), B>O,C>O 

or 

R(N) - I&v = o(iw2), B>O,O<C-Kl 

cannot hold.) In fact, our theorem says that (13) is impossible in square 
mean. 

Furthermore, we can show that the theorem and corollary above are 
nearly best possible. We will return to this problem also to the proof of (4) 
in Part II of this paper. 



ADDITIVE PROPERTIES OF GENERAL SEQUENCES 349 

2. Proof of the Theorem. If an arithmetic function F(n) satisfies 
(8), then we have 

04 F(N) 2 1 forN 2 NO. 

Assume first that there exist only finitely many integers A4 such that 

F(M+j) < M+j 2 
JIM) i i M 

forj = 1,2,.... 

Then there exists an integer MO such that for M 2 MO, there exists an 
integer M’ = M’(M) satisfying M’ > M and 

Then writing Ml = max(N,, MO), we get (by induction) that there exist 
integers Ml -C M2 i . . . < Mj < + 1 * such that 

F(M,+J M,+, = 
F(M,) 2 1M, i i 

(forj= 1,2,...) 

hence 

Fwk+l) 
f-W,) 

for large enough k. Obviously, 

R(n)= c 15 c l=n--l<n 
u,+ti,=n k+:=n 

for all IZ. Thus for large k we have 

A(M,+,) = M!bRb) - F(& 2 @(M,+,) - F(M,+,))’ 
tl=l 

= (F(M,+,))2 1 - ;iz+l; I2 ’ (W&+,)).(I - cMT+;;;?)1 i c-1 X+1 

which proves that (12) cannot hold. 
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(15) 

3. Assume now that there exist infinitely may integers M such that 

F(M+j) < M+j 2 
F(M) i 1 M 

forj = 1,2,.... 

We start out from the indirect assumption that F(n) satisfies the 
assumptions (8), (9) and (10) in the theorem but for a sequence .Q?= { a, 
ia2< *-- } (12) holds. We need the following lemma: 

LEMMA 1. Assume that F(n) satisfies (8), (9) and (lo), (12) holds, M is 
large enough and if satisfies (15). Put N = 2M. Then there exists an integer 
d such that 

(16) 0 < d I 106F( N) 

and 

Proof of Lemma 1. First we give a lower bound for 

A(N) = 11. 
asN 
aed 

In view of (12), (15) and the assumptions on F(n), and by using Cauchy’s 
inequality, we obtain for large M that 

(18) (A(N))” = ( c a;)‘= c 1 r c 1 
q<N a,sN.a,sN U,iUjSN 

= $ R(n)= 5 F(n)+ 5 (R(n)--(n)) 
n=l n=l n=l 

2 2 F(n)- 5 IR(n)-F(n)] 
n=M+l n=l 

2 5 F(M) -(A(N)N)‘/’ = MF(M) - o(~(F(~))1/2) 
n=M+l 

> 4 (&)*F(2M) - N( F( N))“2 

= :F(N)(~ -(F(N))-“*) > $NF(N) 

hence 

A(N) > $(NF(N))“*. 
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Thus if we denote the number of solutions of 

(1% a, - ay = d, a, I N 

(for fixed d) by q(d), and d does not satisfy (17), then we have 

(20) q(d)= c 1= cl- c 1 

U~.J$-NEsd USN usd a -&?-Ned 

=A(N)- c 

o E.$~4$-Nd6M 

1 2 $W(N))‘? 

Starting out from any of the ($d)) pairs (axI, ayl), (axz, ah), x1 < x2 of 
solutions of (19), we have 

a Xl - aYl =a 
x2 - aY*’ Yl -c Xl < x27 

i.e., 

ax1 + ay2 = ax2 + a, ( 5 2N>, Yl < Xl < x2 

so that in this way we get a pair (a,, au), (a,, a,) satisfying 

(21) a, + a, = a, + a, (< 2N), t<u<z. 

Furthermore, any pair (a,, a,), (a,, a,) satisfying (21) can be obtained 
twice in this way (from the pairs (a,, a,), (a,, a,) and (a,, a,), (a,, a,)). 
Thus if there does not exist a d satisfying (16) and (17), then in view of 
(20), the number of solutions of (21) must be at least 

(22) 

= $pF( N)[106P(N)] b- lOOON( P(N))2. 

On the other hand, for fixed n, the equation 

a, + a, = a, + a, = n, t<u<z, 

determines one of the (“p)) pans (a,, a,), (a,, a,), u < z of solutions of 
a, + ay = n. Thus the number of the pairs (a,, a”), (a,, a,) satisfying 
(21) is at most 

f/J iRF)) I y +(R(n))‘s F (F(n))* + F (R(n) - F(n))2 
n=l n=l n=l n=l 

I 2N( F(2N))2 + A(2N) = 2N( F(2N))’ + o( NF(2N)) 

< 3N(f’(2N))* = 3N(F(4M))2 < 3N( F(M)( $9’)’ 

< 768N( F( M))* s 768N( F(N))2. 
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This upper bound for the number of pairs satisfying (21) is smaller than 
the lower bound obtained in (22), and this contradiction proves the 
existence of an integer d satisfying (16) and (17), which completes the 
proof of Lemma 1. 

4. Throughout the remaining part of the proof, we use the following 
notations: 

M denotes a large integer satisfying (15) and we put N = 2M. d 
denotes an integer satisfying (16) and (17) in Lemma 1. We write 
e2mo = e(a), and we put Y = eM1jN, z = re( CX) where cy is a real variable 
(so that a function of form p(z) is a function of the real variable (Y: 
p(z) = p(re(a)) = P(a)). We write 

f(z) = ‘G”z? 
J=l 

(By Y < 1, this infinite series and all the other infinite series in the 
remaining part of the proof are absolutely convergent.) Then we have 

f’(z) = y%(n)z” = ‘c”F(n)z” + &R(n). 
n=l n=l ?Z=l 

F(n))z”; 

hence 

(23) If(z)@ - z”)l* I FF(n)z” 11 - zdi2 
I I n=l 

J:~ I1 (f(z)(l - z”>I” da 
0 +.X3 

I CF( 1 I/ n zn 1 - zd12da 
n=l 

+ j-l 1 +Cm(R(n) - F(n))z../ 11 - zd12dcx 
0 n=l 

= J1 + J2. 

We will give a lower bound for J and upper bounds for J1 and J2, and thus 
also for J I J1 + J2. The lower bound for J will be greater than the upper 
bound obtained in this way, and this contradiction will prove that the 
indirect assumption (12) cannot hold, and this will complete the proofs of 
Theorems 1 and 2. 
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5. In this section, we give a lower bound for J. We write 

f(z){1 - 2”) = Fb,z”. 
n=l 

Then for n E ~8, n - d E .&we have b, = 1, thus by the Parseval formula 
and (17) we get 

(24) J = Jbif(z)(l - z”)i’da = yb,fr2” 2 f b:r2” 
n=l n=l 

6. In this section, we give an upper bound for J,. Clearly, 

(25) J1 = 6 &‘(n)z’ 11 - zd12da 
I I n=l 

= /,‘1’1 - z) -&(n)zj 1+=&I 11 - zdlda. 
n=l 

By (8) and (9), here we have 

(26) (1 - z) +CmF(n)? = 
I I 

F(l)z + +&n) - F(n - 1))z” 
n=l n = 2 

5 F(1) -t- C IF(n) - F(n - l)lr” 

I cj + C IF(n) - F(n - l)l+ C IF(n) - F(n - 1)Ir” 
n=2 n=n,,+l 

+Xi 

= cd + C (F(n) - F(n - 1))r” 

= c4 + C F(fl)(r” - r’+l) - F(n,)r”O+’ 

-c cd +(l -r) 
i 

y F(n)r” 
n=n,,+1 1 

=c,+(l -r) i F F(n)r”+ y F(n)r”‘j 
n=N+l I 

(continues) 
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= Cd +(1 - r)NF(N) + N-V(N) n2(r” - rn+l) 
n=N+l 

= cq -t-(1 - r)NF(N) 

+N-V(N) y (n’ -(n - 1)2)r” + N2rNrN+l 
n=N+l 

< Cd +(1 - r)NIqN) + N-*F(N) 
n=N+l 

-c cd 4(1 - r)NF(N) + N-*F(N) 
n=l 

= cd +(l - r)NF(N) + 2NA2F(N)(1 - r)-” + F(N) 

= c,+(l -e- ““)NF(Nj + 2N-2P(N)(1 - e-l/“)-* + F(N) 

< cq + N-lNF(N) + 2N-*F(N)(1/2N)-* + F(N) 

= cd + lOF(N) < llF(N). 

Furthermore, we have 

11 - .Z = ((1 - z)(l - Z))“’ = (1 +[.z/’ - 2Res)l’* 

= (1 + P* - 2rcos2~a)‘/~ = ((1 - r)2 -t- 2r(l - cos2sc~))~‘* 

b- (2r(l - cos2aru))“* = (2es1jN - 2Sin2 m.x)l’* 

2 2.L 
i 2 

* 2 .(24y2 = (8t1*)l’~ 2 2cx for 0 5 (Y I + 

so that 

- (27) I ~ 1 Zd I _< l+lzdl 2 1 
l-z 11 - 4 -%=cr 

forO<ru& 
2 

and 

(28) (1 - zd( I 1 + Iz”I < 2 for all LY. 
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By (8), (lo), (16), (18) (26), (27) and (28) we obtain from {25) that for 
large N, 

(29) J, I i1 IIF(N)l++ 2&x = 44F(N)~1’21+u 

= 44F(N)( /O1’d~~lda + ~;~++!a) 

< 44F(N)(l + log d) I 44F(N)(l + loglO%‘( 

< 45F(N)logF(N) < 45F(N)log9(A(N))2N-’ 

I 45F( N ) log 9N 2 - N-’ < 46F(N)log N 

= 46( NF( N))““( F( N)N-‘(log N)2)1’2 = 46(NF( N))“‘o(l) 

= o( NF( N))“‘. 

7. In this section, we estimate J2 and we complete the proof of the 
theorem. 

By using (8), (9), (15) the indirect assumption (12) Cauchy’s inequal- 
ity and the Parseval formula, we obtain that if N is large enough in terms 
of t then 

(30) J1 = /‘l “c” (R(n) - F(n))z~‘l 11 - zdi2 da 
0 II = 1 

l I Jl 0 

‘c” (R( n) - F(n))z” (1 + ,zi,)2 da 
,I = 1 

;z;(A(n) - A(n - 1))~~‘~ +fA(+‘l’ - r2’,+2 “* 
n=l 

(continues) 
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= 4 (1 - Y”) +Cmp(n)r2” 
i 

l/2 

n=l i 

< 4 (1 - r’) c* + +fE%F(n)r2” 
i i ii 

l/2 

n=l 

< 4 (1 - Y”) c5 + E2 5 NF(N)r”” + &* 
( ( 

E nF(n)r2” 
il 

l/2 

n=l n=N+i 

< 4 (1 - e-*qc, + E2N2F(N)) 
i 

n=N+l 

< 412 - $N2F(N) + &2(1 - t-2) ‘c” nF(M)( ;)2r2n)‘” 
n=N+l 

4&2NF(N) + 4&2F(N)N-2 +f n3(r2n - r2n+2 
l/2 

n=N+l 

(where c5 = c~(E)). Here we have 

+c” ,,3@2n _ ++2) = ~3+N+l) + y ( n3 -(n - l)3)r2” 
n=N+l n=N+l 

<N3+ ‘c” 4 n2r2” = N3 + 4(1 - Y”)-’ “c” n2(r2n _ y2n+2) 

n=N+l n=N+l 

= N3 -I 4(1 -e -2/N -l N2r2(N+1) + 

) ( 

‘c” (n” -(n - 1)2)r’“) 

n=N+l 

4-X 

< N3+4N N2+2 c 
i 

nr2n 
n=N+l i 

= 5N” + 8N(l - r”)-’ y n(r2n - y2n+2) 

n=N+l 

= 5N3 + j3N(1 _ e-*/N -’ Nr2(N+l) + 

) i 

+X 

c r2n 

n=N+l 

< 5N3 + 8N2(N + 42(N+1)(l - r’)-‘) 

< 13N3 + 8N2(1 - ~~‘~)-l 

< 13N3 + 8N3 = 213v3. 
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Thus we obtain from (30) that for N large enough 

(31) J2 < 4(4e2NF(N) + 4e2F(N)W2 . 21N3)l’* 

= 4(88~*NF( N))‘/’ < 4O&VF( IV))“*. 

By (23), (241, (29) and (31), we get that if iV is large enough (in terms 
of E) then 

&vF(N))“’ < J i J1 + J2 < E(NF(N))~‘* + 40~(iW(N))“~ 

= 418( NF( N))““. 

But for E = l/2500 (and if N is large so that F(N) > 0 by (14)) this 
inequality cannot hold. This contradiction proves that (12) cannot hold 
which completes the proof of the theorem. 
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