Preprint Iib. $47 / 1984$, Math, Inst, Huncar, Acad. Sci., Budapest PRORLEMS AND RESULTS ON ADDITIVE PROPERTIES OF GEHERAL SEQUERCES, IV.
by
P. Erdơs, A. Sárközy and V. T. Sós

1. Let $A=\left(a_{1}, a_{2}, \ldots\right)\left(a_{1}<a_{2}<\ldots\right)$ be an infinite sequence of positive integers, put $A(n)=\sum_{a \leq A} 1$, and for $n=0,1,2, \ldots$ $a \leq n$
let $R_{1}(n), R_{2}(n), R_{3}(n)$ denote the number of solutions of

$$
\begin{equation*}
a_{x}+a_{y}=n, a_{x} \in A, a_{y} \in A, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a_{x}+a_{y}=n, x<y, a_{x} \in A, a_{y} \in A \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{x}+a_{y}=n, x \leqq y, a_{x} \equiv A, a_{y} \subseteq A, \tag{3}
\end{equation*}
$$

respectively.
In Parts I and II (see [4] and [5]) Erdos and Sarkozy studied the reqularity properties of the function $R_{1}(n)$. In Part III [5], the authors of this paper stowed that under certain assumptions on $A, R_{1}(n+1)-R_{1}(n)$ cannot be bounded. The aim of this paper is to study the monotonity properties of the functions $R_{1}(n), R_{2}(n)$ and $R_{3}(n)$, respectively. (See [2], [3] and [7] for other related results and probiems.)

First we will determine those sequences A for which the furction $R_{1}(n)$ is monotonous ircreasing from a certain point onwards.

THEDREM 1.
The function $R_{1}(n)$ is monotonous increasing from a certain point onwards, i.e., there exists an integer n_{0} with

$$
\begin{equation*}
R_{1}(n+1) \geqq R_{1}(n) \text { for } n \geq n_{0} \tag{4}
\end{equation*}
$$

if and only if the sequence A contains all the integers from a certain point onwards, i.e., there exists an integer n, with

$$
\begin{equation*}
\left.A \cap\left\{n_{1}, n_{1}+1, n_{1}+2, \ldots\right\}=i n_{1}, n_{1}+1, n_{1}-2, \ldots\right\} . \tag{5}
\end{equation*}
$$

It is, perhaps, somewhat surprising that the behaviour of the function $R_{2}(n)$ is different. Namely, there are much more sequences A for which $R_{2}(n)$ is monotonous increasing. In fact, we will show that

THEOREM 2.
Let $B=\left\{b_{1}, b_{2}, \ldots\right\} \quad\left(b_{1}<b_{2}<\ldots\right)$ be a sequence of positive integers such that
(i) b is a "sidon-sequence", i.e.,

$$
b_{x}+b_{y}=b_{u}+b_{v}, b_{x} \in B, b_{y} \in B, b_{u} \in B, b_{v} \in B, D_{x}=b_{y}, b_{u} b_{v}
$$ imply that $b_{x}=b_{u}$ and $b_{y}=b_{v}$,

(ii) all the elements of B are even,
and
(iii) $b_{x} \in E, b_{y} \in E$ imply that $\left(b_{x}+b_{y}\right) / 2 \in E$.

Then the complement of E, i.e., the sequence

$$
\begin{equation*}
A=(1,2, \ldots, n, \ldots-E \tag{6}
\end{equation*}
$$

is such that the function $R_{2}(n)$ is monotonous increcsing:

$$
\begin{equation*}
R_{2}(n+1) \geqq R_{2}(n) \text { for } n=1,2, \ldots \tag{7}
\end{equation*}
$$

(Probably, a similar construction could be given also for $R_{3}(n)$ in place of $R_{2}(n)$; unfortunately, we have not been able to give such a construction.)

By using the greedy algorithm, it can be shown easily that there exists an infinite sequence B such that

$$
B(n)=\sum_{\substack{b \in B \\ b \leq n}} 1>n^{1 / 3} \quad \text { (for all } n \text {) }
$$

and it satisfies (i), (ii), (iii) and (iv) in Theorem 2. In this way, we obtain the existence of a sequence A such that

$$
A(n)<n-c n^{1 / 3}
$$

for large n and $R_{2}(n)$ is monotonous increasing from a certain point onwards.

On the other hand, we conjecture that if

$$
A(n)=o(n)
$$

then $R_{2}(n)$ and $R_{3}(n)$ cannot be monotonous increasing (from a certain point onwards). In fact, perhaps, it is enough to assume that

$$
\lim _{n \rightarrow+\infty} \inf \frac{A(n)}{n}<1
$$

holds. Unfortunately, we have not been able to prove this. Instead, we will prove the following slightly weaker assertion:

THEOREM 3. If

$$
\begin{equation*}
A(n)=0\left(\frac{n}{\log n}\right), \tag{8}
\end{equation*}
$$

then the functions $R_{2}(n)$ and $R_{3}(n)$ cannot be monotonous increasing from a certain point onwards, i.e., for $j=2$ or 3 , there
does not exist an integer ${ }^{n_{0}}$ such that

$$
\begin{equation*}
R_{j}(n+1): R_{j}(n) \text { for } n \equiv n_{0} \text {. } \tag{9}
\end{equation*}
$$

It is worth to note that by using the method of the proof of Theorem 3, we could study the more general problen when we count the solutions of (1), (2) and (3), respectively, with certain weights, i.e., we study the monotonity properties of the functions

$$
\sum_{j=1}^{n-1} \alpha_{j} a_{n-j}, \quad \sum_{j<n / 2} \alpha_{j}{ }_{n-j} \text { and } \sum_{j \leq n, 2} \alpha_{j}{ }^{a} n-j \text {, }
$$

respectively, where $\alpha_{1}, \alpha_{2}, \ldots$ are non-negative real numbers (satisfyine certain assumptions).
2. PROOF OF THEOREM 1.

Assume that (5) holds and denote the complement of A by $B=\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}:$

$$
B=\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}=\{1,2, \ldots\}-\left\{a_{1}, a_{2}, \ldots \vdots .\right.
$$

(Clearly, (5) implies that E is finite.) Then for $n>2 b_{t}$ we we have

$$
\begin{aligned}
& R_{1}(n)=\sum_{a_{x}+a_{y}=n} 1=\sum_{i+j=n} 1-2 \sum_{b_{x}+a_{y}=n} 1= \\
& =(n-1)-2 \sum_{b \in B} 1=(n-1)-2 t
\end{aligned}
$$

so that, obviously, $R_{1}(n)$ is monotonous increasirg for $n>i t$. Assume now that for some n_{0}, (4) holds. We hive to show thet this implies the existence of $\overline{e n}$ integer n_{1} setisfying (5). In order to prove this, we start out from the foilowing trivial fact (which was used also by Dirac in [1]): if nizf
then $R_{1}(n)$ is even while if $n / 2 \in A$ then $R_{1}(n)$ is odd. (In case of the functions $R_{2}(n)$ and $R_{3}(n)$, such an assertion does not hold. This is the reason of that that the study of the functions $R_{2}(n)$ and $R_{3}(n)$ is more difficult.) Thus (4) implies that for $2 a_{k}>n_{0}$ we have

$$
\begin{aligned}
& R_{1}\left(2 a_{k}+1\right)-R_{1}\left(2 a_{k}-1\right)=\left(R_{1}\left(2 a_{k}+1\right)-R_{1}\left(2 a_{k}\right)\right)+\left(R_{1}\left(2 a_{k}\right)-R_{1}\left(2 a_{k}-1\right)\right) \geq \\
& \approx 1+1=2,
\end{aligned}
$$

hence for $n>n_{0}$,

$$
\begin{aligned}
& R_{1}(n): R_{1}(2[(n-1) / 2]+1): \sum_{n_{0} / 2<j \leq[(n-1) / 2]}\left(R_{1}(2 j+1)-R_{1}(2 j-1)\right) \geq \\
\geq & \sum_{n_{0} ; 2<j \leq[(n-1) / 2]}\left(R_{1}(2 j+1)-R_{1}(2 j-1)\right) \geq \sum_{n_{0} / 2<j \leq[(n-1) ; 2]} \sum_{j \in A} 2=
\end{aligned}
$$

$$
=2\left(A([(n-1) / 2])-A\left(n_{0} / 2\right)\right) \geq 2\left(A(n / 2)-1-A\left(n_{0} / 2\right)\right)=2 A(n / 2)-c_{1}
$$

(where c, depends on A and n_{0} but it is independent of n) so that

$$
\begin{equation*}
R_{1}(n)>2 A(n / 2)-c_{2} \text { for } n=1,2, \ldots \text {. } \tag{10}
\end{equation*}
$$

Let $B=\left\{b_{1}, b_{2}, \ldots\right\}\left(b_{1}<b_{2}<\ldots\right)$ denote the complement of A:

$$
B=\left\{b_{1}, b_{2}, \ldots\right\}=\{1,2, \ldots\}-A,
$$

and put

$$
E(n)=\sum_{\substack{b \leq n \\ b \in B}} 1 .
$$

CASE 1.
Assume first that

$$
\lim _{n \rightarrow+\infty} \sup (B(2 n)-E(n))=+\infty .
$$

Let us write

$$
D=\lim _{n \rightarrow+\infty} \inf \frac{A(n)}{n}
$$

Let us define an infinite sequence $N_{1}<N_{2}<\ldots$ of porifive integers in the following way:
(11) if $\rho=0$ then let $\lim _{k \rightarrow+\infty} \frac{A\left(2 N_{k}\right)}{2 N_{k}}=0$,
(12) if $0>0$ then let $\lim _{k \rightarrow+\infty}\left(B\left(2 N_{k}\right)-B\left(N_{k}\right)\right)=+\infty$.

Let k be a large integer, put

$$
\begin{array}{ll}
\max _{k}<n \leqq 3 N_{k} & \begin{array}{l}
i \\
a+b=n \\
a \leqq N_{k}<b \leqq 2 N_{k} \\
a \in A, b \in B
\end{array} \\
&
\end{array}
$$

and let N be an integer with $N_{k}<N \leqq 3 N_{k}$ for which this maximum is assumed:

$$
\begin{aligned}
& \quad \begin{array}{l}
\sum_{i}^{i} b=N \\
a+b=M . \\
a \leqq N_{k}<b \leqq 2 N_{k} \\
a \in A, b \in B
\end{array}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& 2 N_{k} M=\sum_{k}<n \leqq 3 N_{k} M Z \\
& \geqq N_{k} \sum_{\substack{ }}^{\sum_{\substack{a+b=n \\
a \leq N_{k}<b \leqq 2 N_{k} \\
a \in A, b \in B}} 1=\sum_{\substack{a \leqq N_{k}<b \leqq 2 N_{k} \\
a \in A, b \in E}} 1=} \\
& =\left(\sum_{\substack{\leq \leq N_{k} \\
a \in A}} 1\right)\left(\sum_{N_{k}<b \leq 2 N_{k}} 1\right)=A\left(N_{k}\right)\left(B\left(2 N_{k}\right)-B\left(N_{k}\right)\right)
\end{aligned}
$$

hence

$$
\begin{equation*}
M \geq \frac{1}{2} \frac{A\left(N_{k}\right)\left(B\left(2 N_{k}\right)-B\left(N_{k}\right)\right)}{N_{k}} . \tag{13}
\end{equation*}
$$

On the other hand, in view of (10) we have
hence

$$
\begin{equation*}
M<\frac{1}{2} c_{2} . \tag{14}
\end{equation*}
$$

(13) and (14) yield that

$$
\begin{equation*}
c_{2}>\frac{A\left(N_{k}\right)\left(B\left(2 N_{k}\right)-B\left(N_{k}\right)\right)}{N_{k}} . \tag{15}
\end{equation*}
$$

By (11) and (12), for $\rho=0$ and $k \rightarrow+\infty$ we have

$$
\begin{aligned}
& \frac{A\left(N_{k}\right)\left(B\left(2 N_{k}\right)-B\left(N_{k}\right)\right)}{N_{k}}=\frac{A\left(N_{k}\right)\left(N_{k}-A\left(2 N_{k}\right)+A\left(N_{k}\right)\right)}{N_{k}} \\
\geqq & \frac{A\left(N_{k}\right)\left(N_{k}-A\left(2 N_{k}\right)\right)}{N_{k}}>\frac{A\left(N_{k}\right) \cdot N_{k} / 2}{N_{k}}=\frac{A\left(N_{k}\right)}{2}++\infty
\end{aligned}
$$

$$
\text { while for } 0>0 \text { and } k \rightarrow+\infty \text {, }
$$

$$
\begin{aligned}
& 2 A(N / 2)-c_{2}<R_{1}(N)=\sum_{a_{x}+a_{y}=N} 1 \leq 2 \sum_{a_{x}+a_{y}=N} 1= \\
& a_{x} \in A, a_{y} \in A \\
& a_{x} \in A, a_{y} \in A \\
& { }_{a} \leq N / 2 \\
& =2\left(\sum_{a_{x} \in A} 1-a_{x} \in A,{ }^{\sum} N-a_{x} \notin A^{1}\right)= \\
& a_{x} \leq N / 2 \quad a_{x}=N / 2 \\
& =2\left\{A(N / 2)-\sum_{\substack{a+b=N \\
a \in A, b \in B \\
a<b}} 1\right\} \leq \\
& \leqq 2\left(A(N / 2)-\sum_{\substack{a+b=N \\
a \in A, b \in B \\
a \leq N_{k}<b \leqq 2 N_{k}}} 1\right)=2(A(N / 2)-M)
\end{aligned}
$$

$$
\frac{A\left(N_{k}\right)\left(B\left(2 N_{k}\right)-B\left(N_{k}\right)\right)}{N_{k}}>\frac{f}{2}\left(B\left(2 N_{k}\right)-B\left(N_{k}\right)\right) \rightarrow+\infty .
$$

In either case, (15) cannot hold for large k, and this contradiction shows that in Case $1, R_{1}(n)$ cannot be monotonous increasing.

CASE 2.
Assume now that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sup (B(2 n)-B(n))<+\infty \tag{16}
\end{equation*}
$$

and assume first that B is infinite:
(16) implies that there exist constants $L>0, s>0$ and j_{0} such that

$$
\begin{equation*}
B(2 x)-B(x)<L \text { for } x>0 \tag{17}
\end{equation*}
$$

and

$$
B(n)=O(\log n)
$$

so that

$$
\begin{equation*}
b_{j}>(1+\delta)^{j} \text { for } j>j_{0}: \tag{18}
\end{equation*}
$$

Furthermore, (16) implies that if t is large enough then

$$
\begin{equation*}
b_{t(j+1)}>2 b_{t j} \tag{19}
\end{equation*}
$$

Let us fix such an integer j, and let k be a large integer. For $j=1,2, \ldots, k^{2}$, put

$$
N_{j}=\dot{b}_{t k^{3}}+b_{t\left(k^{2}+j\right)}
$$

We are going to show that there exists an integer j such that
(20)

$$
1 \leqq j \leqq k^{2}-1 \text { and } B \cap\left(N_{j} / 2, N_{j+1} / 2\right\}=\emptyset .
$$

In fact, if such an integer j does not exist then we have (21) $B\left(N_{k} 2 / 2\right)-B\left(N_{1} / 2\right)=\sum_{j=1}^{k^{2}-1}\left(B\left(N_{j+1} / 2\right)-B\left(N_{j} / 2\right)\right) \geqq \sum_{j=1}^{k^{2}-1} 1=k^{2}-1$ Here

$$
\begin{aligned}
& \frac{N_{1}}{2}=\frac{b_{t k^{3}}+b_{t} t\left(k^{2}+j\right)}{2}>\frac{1}{2} b_{t k^{3}}=\frac{1}{4}\left(b_{t k^{3}}+b_{t k^{3}}\right)> \\
& >\frac{1}{4}\left(b_{t k^{3}}+b_{2 t k^{2}}\right)=\frac{1}{4} N_{k^{2}}
\end{aligned}
$$

so that

$$
\begin{align*}
& B\left(N_{1} / 2\right) \geqq B\left(N_{k} 2 / 4\right) \\
& B\left(N_{k} 2 / 2\right)-B\left(N_{k} 2 / 4\right) \geqq B\left(N_{k} 2 / 2\right)-B\left(N_{1} / 2\right) . \tag{22}
\end{align*}
$$

(21) and (22) yield that

$$
B\left(N_{k} 2 / 2\right)-B\left(N_{k} 2 / 4\right) \geqq k^{2}-1 .
$$

But by (17); tnis inequality cannot hold for large k which proves the existence of an integer j satisfying (20).

Let us fix such an integer j. We are going to show by induction on i that for $i=N_{j}, N_{j+1}, \ldots, N_{j+1}{ }^{-1}$,
(23) i can be written in the form $b_{x}+b_{y}$ with $b_{x} \in B, b_{y} \in B$, $x \neq y$

$$
\begin{aligned}
& \text { For } i=N_{j} \text {, we have } \\
& i=f_{j}=b_{t k^{3}}+b t\left(k^{2}+j\right)
\end{aligned}
$$

So thet (23) holdis.
Assume now that (23) holds for some $N_{j} \leqq i<N_{j+1}{ }^{-1}$.
Then we have
(24) $\quad R_{1}(i+1)-R_{1}(i)=$

$$
=1-2(B(i)-B(i-1))+\sum_{\substack{u+v=i+1 \\ u \in B, v \in B}} 1-\sum_{\substack{u+v=i \\ u \in B, v \in B}} 1 \leqq
$$

$$
\leq 1+\sum_{\substack{u+v=i+1 \\ u \in B, v \in S}} 1-2=-1+\sum_{\substack{u+v=i+1 \\ u \in B, v \in S}} 1 .
$$

By (4), we have

$$
\begin{equation*}
R_{1}(i+1)-R_{1}(i) \geqq 0 \tag{25}
\end{equation*}
$$

(provided that k is large so that $i \geq N_{j}>b_{t k}>n_{0}$). (24) and (25) imply that

$$
\sum_{\substack{u-v=1+1 \\ u \in E, v \in B}} 1 \geqq 1
$$

se that it car be writer in the form

$$
b_{x}+b_{y}=i+i, b_{x} \in E, b_{y} \in B .
$$

$$
\begin{aligned}
& \left.=\sum_{i v+v=i+1} 1-\sum_{\substack{v+i=i+1 \\
u \in B}} 1-\sum_{\substack{u+v=j+1 \\
v \in B}} 1+\sum_{\substack{v+v=i+1 \\
v \in B, v \in B}} 1\right\}- \\
& \left.-\sum_{\substack{u+v=i}}=\sum_{\substack{i+v=i \\
u \in B}}^{1}-\sum_{\substack{u+\frac{v}{v}=i \\
v \in B}} 1+\sum_{\substack{v+v=i \\
v \in B, v \in B}} 1\right)^{\prime}= \\
& =\left\{(i+1)-2 \sum_{\substack{v+v=i+1 \\
u \in S}} 1+\sum_{\substack{u+k=i+1 \\
u \in E, v \in B}} 1\right\}- \\
& -i-2 \sum_{\substack{u+v=i \\
u \in B}} 1+\sum_{\substack{u+v=i \\
u \in E, v \in B}} 1 \mid=
\end{aligned}
$$

Furthermore, by (20), here we cannot have $b_{x}=b_{y}$ which proves that (23) holds also with $i+1$ in place of i.

By (28), (19) and (23) we have

$$
\begin{equation*}
\sum_{i=N_{j}}^{N_{j+1}^{-1}} \sum_{\substack{b_{x}+b_{y}=i \\ b_{x} \in B, b_{y} \in B}}^{1 \geqq} \sum_{i=N_{j}}^{N_{j+1}^{-1}} 2=2\left(N_{j+1}-N_{j}\right)= \tag{26}
\end{equation*}
$$

$$
=2\left(b_{t\left(k^{2}+j+1\right)^{-b} t\left(k^{2}+j\right)}\right)>2\left(b_{\left.t\left(k^{2}+j+1\right)^{-\frac{1}{2}} t_{t\left(k^{2}+j+1\right)}\right)=}=\right.
$$

$$
=b_{t\left(k^{2}+j+1\right)}>(1+\delta)^{t\left(v^{2}+j+1\right)} .
$$

On the other hand, by (17) we have

$$
\begin{equation*}
\sum_{i=N_{j}}^{N_{j+1}^{-1}} \underset{ }{b_{x} \in b_{y}=i} \sum_{b_{y} \in B}^{1}=\sum_{N_{j} \leq b_{x}+b_{y}<N_{j+1}}^{b_{x} \in B, b_{y} \in B} \tag{27}
\end{equation*}
$$

$$
\leqq \sum_{\substack{b_{x}+b_{y} \leq N_{j+1} \\ b_{x} \in B, b_{y} \in B}} 1 \leq \sum_{b_{x} \leq N_{j+1}, b_{y} \leq N_{j+1}}^{b_{x} \in B, b_{y} \in B}<1=\left(\sum_{\substack{b_{x} \leq N_{j+1} \\ b_{x} \in B}} 1\right)^{2}=
$$

$$
\left.=\left(B\left(N_{j+1}\right)\right)^{2}=\left(B_{t k^{3}}^{t\left(b^{2}+j\right)}\right)\right)^{2} \leqq\left(B\left(2 b_{t k^{3}}\right)\right)^{2}=
$$

$$
=\left(B\left(b_{t k^{3}}\right)+\left(B\left(2 b_{t k^{3}}\right)-B\left(b_{t k^{3}}\right)\right)\right)^{2}<\left(t k^{3}+L\right)^{2}
$$

(26) and (27) imply that

$$
(1+\varepsilon)^{t\left(k^{2}+j+1\right)}<\left(t k^{3}+L\right)^{2} .
$$

But for large k, this inequality cannot hold. This contradiction proves that if $R_{1}(n)$ is monotonous increasing, then the sequence. B cannot be infinite.

Thus (4) implies that B must be finite which is equi-
valent to (5) and this completes :it proof of Theorem 1. 3. PROOF OF THEOREM 2.

Let

$$
\begin{aligned}
& B(n)=\sum_{\substack{b \leq B \\
b \leq n}} 1, \\
& n(1)=\left\{\begin{array}{lll}
1 & \text { if } i \in B \\
0 & \text { if idE }
\end{array}\right.
\end{aligned}
$$

and let us denote the number of solutions of

$$
b_{x}+b_{y}=n, b_{x} \in B, b_{y} \in B, x<y
$$

by $R^{*}(n)$
Then we have
(28) $R_{2}(n)=\sum_{a_{x}+a_{y}=n} 1=\sum_{1 \leqslant i<n / 2}(1-n(i))(1-n(n-i))=$ $a_{x} \in \mathcal{A}, a_{x<y} \in A$
$x<y$

$$
=\sum_{1 \leq i<n / 2} 1-\sum_{\substack{1 \leq i<n / 2 \\ i \in B, i \neq n / 2}} 1+R^{*}(n)=
$$

$$
= \begin{cases}k-1-B(k-1)+R^{*}(2 k) & \text { for } n=2 k \\ k-B(k)+R^{*}(2 k+1) & \text { for } n=2 k+1 .\end{cases}
$$

Thus for $k=1,2, \ldots$ wee have
(29) $R_{2}(2 k+1)-R_{2}(2 k)=1-(E(k)-E(k-1))+R^{*}(2 k+1)-R^{*}(2 k) \geqq$ $\geqq 1-(B(k)-E(k-1))-R^{*}(2 k)$.

Clearly,

$$
E(k)-E(k-1) \leq 1,
$$

and by (i),

$$
R^{*}(2 k) \leq 1 .
$$

Furthermore, by (iii),

$$
B(k)-B(k-1)=1
$$

and

$$
R^{*}(2 k)=1
$$

cannot nold simultaneously so trat

$$
(B(k)-B(k-1))+R^{*}(2 k) \leq 1 .
$$

Thus we obtain from (29) that

$$
\begin{equation*}
\left.R_{2}(2 k+1)-R_{2}(2 k) \geq 1-1=0 \text { (for } k=1,2, \ldots\right) \text {. } \tag{30}
\end{equation*}
$$

Similariy, we oet from (28) that

$$
\begin{equation*}
R_{2}(2 k)-R_{2}(2 k-1)=R^{*}(2 k)-R^{*}(2 k-1) \geq R^{*}(2 k) \geq 0 \tag{31}
\end{equation*}
$$

since $R^{*}(2 k-1)=0$ by (ii).
(30) and (31) yield (7) which completes the proof of Theoren 2.
4. PROOF OF THEOREI 3.

We start out from the indirect assumption that (8) holds, however, for $j=2$ or 3 and for some integer n_{0}, (9) holds.

First we show that there exist infinitely many integers N satisfying

$$
\begin{equation*}
A(H+j)<A(n)\left(\frac{1-j-j}{1}\right)^{2} \text { for } j-1,2, \ldots . \tag{32}
\end{equation*}
$$

in fact, if (32) holds for finitely many N, then there exists an integer N_{0} such that

$$
A\left(N_{0}\right)>1
$$

and for $N \sum^{\prime} H_{0}$, there exists an integer $N^{\prime}=1 H^{\prime}(H)$ satisfying $N^{\prime}>N$ and

$$
A\left(N^{\prime}\right) \geq A(N)\left(\frac{N^{\prime}}{N}\right)^{2} .
$$

Then we get (by induction) that there exist integers $N_{1}<\mathrm{N}_{2}<$ $<\ldots<i_{j}<\ldots$ such that

$$
A\left(N_{j+1}\right) \geq A\left(N_{j}\right)\left(\frac{N_{j+1}}{N_{j}}\right)^{2} \text { for } j=0,1,2, \ldots,
$$

hence

$$
\begin{align*}
& A\left(N_{k+1}\right)=A\left(!_{0}\right) \prod_{j=0}^{k} \frac{A\left(N_{j+1}\right)}{A\left(!_{j}\right)}=A\left(N_{0}\right) \prod_{j=0}^{k}\left(\frac{N_{j+1}}{N_{j}}\right)^{2}= \tag{33}\\
& =A\left(N_{0}\right)\left(-\frac{H_{k+1}}{N_{0}}\right)^{2}>\left(\frac{N_{k+1}}{\prod_{0}}\right)^{2}>N_{k+1}^{3 / 2}
\end{align*}
$$

for large enough k. On the other hand, clearly we have

$$
\begin{equation*}
A\left(N_{k+1}\right)=\sum_{\substack{a \in A \\ a \leq N_{k+1}}} 1 \leq \sum_{a \leq H_{k+1}^{\prime}} 1=N_{k+1} \tag{34}
\end{equation*}
$$

(33) and (34) cannot hold simultaneously and this contradiction proves the existence of infinitely many integers N satisfying (32).

Now we are going to estimate $P_{j}(n)$ in terms of $A(2 n)$. In view of (9), for $n_{i} n_{0}$ we have

$$
\begin{aligned}
(A(2 n))^{2}= & \sum_{i} \in A \\
& a_{i} \leq 2 n
\end{aligned}=\sum_{a_{i} \in A, \bar{c}_{j} \subseteq A} 1=
$$

$$
=\sum_{a_{i}+a_{j} \leq 2 n}^{a_{i} \in A, a_{j} \in A} 1 \geq \sum_{i=1}^{2 n} R_{j}(i) \geq \sum_{i=n+1}^{2 n} R_{j}(i) \geq \sum_{i=n+1}^{2 n} R_{j}(n)=n R_{j}(n)
$$

hence

$$
\begin{equation*}
R_{j}(n) \leq \frac{(A(2 n))^{2}}{n} \text { for } n \geq n_{0} \text {. } \tag{35}
\end{equation*}
$$

Furthermore, by (9), for large n we have $R_{j}(n)=1$ so that we obtain from (35) that

$$
\begin{equation*}
(A(2 n))^{2} \geq n \text { for large } n \text {. } \tag{36}
\end{equation*}
$$

5. Throughout the remaining part of the proof of Theorem 3, we use the following notations:
N denotes a large integer satisfying (32). We write $e^{2-i \alpha}=e(\alpha)$, and we put $r=e^{-1 / N}, z=r e(\alpha)$ where α is a real variable (so that a function of form $p(z)$ is a function of the real variable $\alpha: p(z)=p(r e(\alpha))=P(\alpha)$). We write

$$
f(z)=\sum_{j=1}^{+\infty} z_{j} .
$$

(By $r<1$, this infinite series and all the other infinite series in the remaining part of the proof are absolutely convergent.) Then we have

$$
\frac{1}{2}\left((f(z))^{2}-f\left(z^{2}\right)\right)=\sum_{n=1}^{+\infty} R_{2}(n) z^{n}
$$

and

$$
\frac{1}{2}\left((f(z))^{2}+f\left(z^{2}\right)\right)=\sum_{n=1}^{+\infty} R_{3}(n) z^{n}
$$

so that for both $j=2$ and $j=3$,

$$
\left.f(z)\right|^{2}-\left|f\left(z^{2}\right)\right| \leqq 2\left|\sum_{n=1}^{+\infty} R_{j}(n) z^{n}\right|
$$

hence

$$
\begin{equation*}
\int_{0}^{1}|f(z)|^{2} d \alpha-\int_{0}^{1} f\left(z^{2}\right)\left|d \alpha \leqq 2 \int_{0}^{1} \sum_{n=1}^{+\infty} R_{j}(n) z^{n}\right| d \alpha . \tag{37}
\end{equation*}
$$

Writing

$$
J_{1}=\int_{0}^{1} f(z) \quad{ }^{2} d a, J_{2}=f_{0}^{1} f\left(z^{2}\right), d \alpha \text { and } \quad J=\int_{0}^{1} \sum_{n=1}^{+\infty} R_{j}(n) z^{n} d a \text {, }
$$

(37) can be rewritten in the form

$$
\begin{equation*}
J_{1}-J_{2} \leqq 2 J . \tag{38}
\end{equation*}
$$

We will give a lower bound for $J_{1}-J_{2}$ and an upper bound for 2J. The lower bound for $J_{1}-J_{2}$ will be greater than the upper bound for $2 \mathrm{~J} \geqq \mathrm{~J}_{1}-\mathrm{J}_{2}$. This contradiction will prove that the indirect assumption (9) cannot hold, and this will complete the proof of Theorem 3.
6. In this section, we give a lower bound for $J_{1}-J_{2}$. First we estimate J_{1}. By the Parseval formula, we have

$$
\begin{align*}
& J_{1}=\int_{0}^{1}|f(z)|^{2} d a=\sum_{a \in A} r^{2 a} \geqq \sum_{\substack{a \in A \\
a \leq N}} r^{2 N}= \tag{39}\\
& =e^{-2} \sum_{\substack{a \in A \\
a \leqq N}} 1=e^{-2} A(N)>\frac{1}{10} A(N) .
\end{align*}
$$

Now we are going to estimate J_{2}. By (32), the Cauchy inequality and the Parseval formula, for large N we have

$$
=A(N)+A(N) N^{-2} \cdot 2 r^{4}\left(1-r^{4}\right)^{-2}{ }^{1 / 2}<A(N)+2 A(N) N^{-2}(1-r)^{-2}{ }^{1 / 2}=
$$

$$
\left.=A(N)+2 A(N) N^{-2}\left(1-e^{-1 / N}\right)^{-2} \int^{1 / 2}<A(N)+2 A(N) N^{-2}(1 / 2 N)^{-2}\right)^{1 / 2}=
$$

$$
=(9 A(N))^{1 / 2}=3(A(N))^{1 / 2} .
$$

$$
\text { (39) and (40) yield for lorge } N \text { that }
$$

$$
\begin{equation*}
J_{1}-J_{2}>\frac{1}{20} A(N)-\because(A(N))^{1 / 2}>\frac{1}{21} A(N) . \tag{41}
\end{equation*}
$$

7. In this section, we give an upper bound for J anc we complete the proof of Theorem 3. We rewrite J in the foilowing way:

$$
\begin{aligned}
& \text { (40) } J_{2}=\int_{0}^{1}\left|f\left(z^{2}\right)\right| d a=\left\{\int_{0}^{1}\left|f\left(z^{2}\right)\right|^{2} d a\right)^{1 / 2}=\left(\sum_{a \in A} r^{4 a}\right)^{1 / 2}= \\
& =\left(\left(1-r^{4}\right)\left(\frac{1}{1-r^{4}} \sum_{a \in A} r^{4 a}\right)^{1 / 2}=\left(\left(1-r^{4}\right)\left(\sum_{n=1}^{+\infty} A(n) r^{4 n}\right)\right)^{1 / 2}=\right. \\
& =\left(\left(1-r^{4}\right) \sum_{n=1}^{N} A(n) r^{4 n}+\sum_{n=1}^{+\infty} A(n) r^{4 n}\right)^{1 / 2}< \\
& <(1-r)\left(1+r+r^{2}+r^{3}\right) N A(N)+\left(1-r^{4}\right) \sum_{r_{1}=\mathbb{N}+1}^{+\infty} A(N)\left(\frac{n}{N}\right)^{2} r^{4 n} ; \\
& \left.<\left(1-e^{-1 / N}\right) N A(N)+\frac{A(N)}{N^{2}}\left(1-r^{4}\right) \sum_{n=1}^{+\infty} n^{2} r^{4 n}\right)^{1 / 2}< \\
& \left.<N^{-1} \cdot N A(N)+A(N) N^{-2} \sum_{n=1}^{+\infty}\left(n^{2}-(n-1)^{2}\right) r^{4 n}\right)^{1 / 2}< \\
& <\left\{A(N)+A(N) N^{-2} \sum_{n=1}^{+\infty} 2 n \cdot r^{4 n} ; 1 / 2<A(N)+A(N) N^{-2} \cdot 2 r^{4} \sum_{n=1}^{+\infty} n r^{4(n-1)}\right\}^{1 /}
\end{aligned}
$$

(42) $J=\frac{1}{b}\left|\sum_{n=1}^{+\infty} R_{j}(n) z^{n}\right| d a=\int_{0}^{1}\left|(1-z) \sum_{n=1}^{+\infty} R_{j}(n) z^{n}\right||1-z|^{-1} d a$.

In view of (9), (32) and (35), we have

$$
\begin{align*}
& \left|(1-z) \sum_{n=1}^{+\infty} R_{j}(n) z^{n \mid}\right|=\mid \sum_{n=1}^{+\infty}\left(R_{j}(n)-R_{j}(n-1)\right) z^{n} \leqq \tag{43}\\
& \leqq \sum_{n=1}^{n} R_{j}(n)-R_{j}(n-1)\left|r^{n}+\sum_{n=n_{0}+1}^{+\infty}\right| R_{j}(n)-R_{j}(n-1) \mid r^{n}< \\
& <\sum_{n=1}^{n_{0}} \mid R_{j}(n)-R_{j}(n-1)+\sum_{n=n_{0}+1}^{+\infty} R_{j}(n)-R_{j}(n-1) i r^{n}= \\
& =\sum_{n=1}^{n_{0}}\left|R_{j}(n)-R_{j}(n-1)\right|+\sum_{n=n_{0}+1}^{+\infty}\left(R_{j}(n)-R_{j}(n-1)\right) r^{n}< \\
& <2 \sum_{n=1}^{\sum_{0}} R_{j}(n)-R_{j}(n-1)+\sum_{n=1}^{+\infty}\left(R_{j}(n)-R_{j}(n-1)\right) r^{n}= \\
& =c_{1}+\sum_{n=1}^{+\infty} R_{j}(n)\left(r^{n}-r^{n+1}\right)=c_{1}+(1-r) \sum_{n=1}^{+\infty} R_{j}(n) r^{n}< \\
& <c_{1}+\sum_{n=1}^{n_{0}^{-1}} R_{j}(n)+(1-r) \sum_{n=n_{0}}^{+\infty} R_{j}(n) r^{n}< \\
& <c_{2}+\left(1-e^{-1 / N}\right)\left(\sum_{n=n_{0}}^{N} R_{j}(N)+\sum_{n=N+1}^{+\infty} R_{j}(n) r^{n}\right)< \\
& <c_{2}+N^{-1}\left\{N \frac{(A(2 N))^{2}}{N}+\sum_{n=N+1}^{+\infty} \frac{(A(2 n))^{2}}{n} r^{n}\right)< \\
& <c_{2}+N^{-1}\left((A(N))^{2} \cdot\left(\frac{2 N}{N}\right)^{4}+\sum_{n=N+1}^{+\infty}\left(A(N)\left(\frac{2 n}{N}\right)^{2}\right)^{2} \cdot \frac{1}{n} r^{n}<\right. \\
& <c_{2}+(A(N))^{2\left(16 N^{-1}+4 N^{5} \sum_{n=1}^{+\infty} n^{3} r^{n}\right)=} \\
& =c_{2}+(A(N))^{2}\left\{16 N^{-1}+4 N^{-5}(1-r)^{-1} \sum_{n=1}^{+\infty} n^{3}\left(r^{n}-r^{n+1}\right)\right\}= \\
& =c_{2}+(A(N))^{2}\left(16 N^{-1}+4 N^{-5}(1-r)^{-1} \sum_{n=1}^{+\infty}\left(n^{3}-(n-1)^{3}\right) r^{n}\right)<
\end{align*}
$$

$$
\begin{aligned}
& <c_{2}+(A(N))^{2}\left(16 N^{-1}+4 N^{-5}(1-r)^{-1} \sum_{n=1}^{+\infty} 4 n^{2} r^{n}\right)= \\
& =c_{2}+(A(N))^{2}\left(16 N^{-1}+16 N^{-5}(1-r)^{-2} \sum_{n=1}^{+\infty} n^{2}\left(r^{n}-r^{n+1}\right)\right]= \\
& =c_{2}+(A(N))^{2}\left(16 N^{-1}+16 N^{-5}(1-r)^{-2} \sum_{n=1}^{+\infty}\left(n^{2}-(n-1)^{2}\right) r^{n}\right)< \\
& <c_{2}+(A(N))^{2}\left\{16 N^{-1}+32 N^{-5}(1-r)^{-2} \sum_{n=1}^{+\infty} n r^{n-1} ;=\right. \\
& =c_{2}+(A(N))^{2}\left(16 N^{-1}+32 N^{-5}(1-r)^{-4}\right)< \\
& <c_{2}+(A(N))^{2}\left(16 N^{-1}+32 N^{-5}\left(1-e^{-1 / N}\right)^{-4}\right)< \\
& <c_{2}+(A(N))^{2}\left(16 N^{-1}+32 N^{-5}(2 N)^{4}\right)< \\
& <c_{2}+600(A(N))^{2} N^{-1}<c_{3}(A(N))^{2} N^{-1} . \\
& \text { Furthermore, we nave }
\end{aligned}
$$

(44) $\quad 1-z=((1-z)(1-\bar{z}))^{1 / 2}=\left(1+z^{2}-2 \operatorname{Re} z\right)^{1 / 2}=$
$=\left(1+r^{2}-2 r \cos 2 \pi a\right)^{1 / 2}=\left((1-r)^{2}+2 r(1-\cos 2 \pi a)\right)^{1 / 2}>$
$>(2 r(1-\cos 2 \pi a))^{1 / 2}=\left(2 e^{-1 / N} \cdot 2 \sin ^{2} \pi a\right)^{1 / 2} \geqq$
$\geq\left(2 \cdot \frac{1}{2} \cdot 2(2 a)^{2)}\right)^{1 / 2}=\left(80^{2}\right)^{1 / 2} \geq 2 a$ for $0 \leq a \leq 1 / 2$
and (for large N)
(45) $\quad 1-2=\left((1-r)^{2}+2 r(1-\cos 2+a)\right)^{1 / 2}>\left((1-r)^{2}\right)^{1 / 2}=1-r=1-e^{-1 / N}>$ $>1 / 2 \mathrm{~N}$ for alla.
(42), (43), (44) and (45) yield that

$$
\begin{align*}
& J \leqq \int_{0}^{1} c_{3}(A(N))^{2} N^{-1} \cdot|1-2|^{-1} d \alpha= \tag{46}\\
& =2 c_{3}(A(N))^{2} W^{-1} \int_{0}^{1 / 2} 1-z^{-1} d a= \\
& \left.=c_{4}(A(N))^{2} N^{-1} \int_{0}^{1 / N} 11-z^{-1} d a+\int_{1 / N}^{1 / 2} 1-z a^{-1} d a\right\}< \\
& \left.<c_{4}(A(N))^{2} N^{-1} \int_{0}^{1 / N} 2 N d \alpha+\underset{1 / N}{1 / 2}(2 \alpha)^{-1} d \alpha\right)< \\
& <c_{4}(A(N))^{2} N^{-1}(2+\log N)<c_{5}(A(N))^{2} N^{-1} \log N . \\
& \text { By (38), (41) and (46), we have } \\
& \frac{1}{21} A(N)<J_{1}-J_{2} \leqslant 2 J<c_{6}(A(N))^{2} N^{-1} \log N
\end{align*}
$$

hence

$$
c_{7} \frac{N}{\log N}<A(N) .
$$

By (8), this inequality cannot hold, so that the indirect assumption (9) leads to a contradiction which completes the proof of Theorem 3.

REFERENCES

1. G. A. Dirac, Note on a protlem in additive number theory, J. London Math. Soc. 26 (1951), pp. 212-313.
2. P. Erdos, Problems and results in additive number theory, Colloque sur la Theorie des Nombres (CBRM) (Bruxelles, 1956), pp. 127-137.
3. P. Erdbs and A. Rényi, Additive properties of random sequences of positive integers, Acta Arithmetica 6 (1960): pp. 83-110.
4. P. Erdobs and 4. Särkëzy, froblems and results on additive properties of gerieral sequences, ; Pacific journal, to appear.
5. P. Erdbs and A. Sarközy, -"', II, to appear.
6. P. Erdos, A. Sărközy and V. T Sos, "̈n $^{\prime \prime}$, to appear
7. H. Halberstam and K. F. Roth, Sequences, Springer-V€rlag, 1983.
