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1 . Let A= 1a,,a2,...) (a1<a2c... ) be an infinite sequence 

of positive integers, put A(n) = 7 1 , and for n = O,l,Z,... 
a% 
asn 

let R,(n), Rpln). Rx(n) denote the number of solutions of 

(11 ax + a =n, a,tA,a 
Y Y 

r:A. 

(2) a 
X 

+ a 
Y 

=n, k<y, a,c4 , a 
Y 

EA 

and 

!?! a 4 a = n 
x Y 

, XZy ,axEA ,a 
Y 

fA , 

respectively. 

In Parts ! and II (see I41 and [5]) ErdUs and Sarkbzy 

studied the regularity properties of the function R,(n) _ In 

Part III [51, the authors of this paper showed that under certain 

assunptions on A , R,(n+i)-R,(n) cannot be bounded. The aim Of 

this paper is to study the monotonity properties of the functions 

R,(n) , R,(n) and RS(n) , respectively. (See 121, !31 and !71 - 

for other related results anti nroblems.) 

Ffrst we will determine these sequences A for which the 

furlcrion 2,w is monotonous ircreasing from a certain point 

onwards. 
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TEEDREM 1. 

The function R,(n) is monotonous increasing from a certain 

point onwards, i.e., there exists an integer no with 

(4) R,(n+l) ‘; R,(n) for n?ng 

if and only if the sequence A contains all the integers from a 

certain point onwards, i.e., there exists an integer n, with 

(5) A n {n,,n,+l,n,+2,...! = In n +l,n -2,...) . 
1' 1 1 

it is, perhaps, somewhat surprising that the behaviour of 

the function R2(n) is different. Nane:y, there are nL;;h more 

seqiiences A for which R2(n) is monotonous increasing. In 

fact, tie will show that 

THEOREM 2. 

let 6 = tb,,b2,...! ;b,cb <... 
2 

integers such that 

) be a sequence of oosi tive 

(i) 5 is a "Sidon-sequence", i.e., 

bx + b 
Y 

= 5, + bv, bxt8 , byEB, buCE, bvEB, ox:b 
Y 

, bu':bv 

imply that bx=bu and by=b, , 

(ii) all the elements of 6 are even, 

and 

(iii) bxE8, b,FL imply that :bx+b 
Y 

!;2 i! E 

Then the complement of 5 , i.e., the sequence 

:5! A = il,i,..., n,...: - 6 

;s such that the function R2in) is monotonous iccre;s<ng: 

(7) R (n+i) 2 R 
2 

cn) 2‘ 
for n = 1,2,... 
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(Probably, a similar construction could be given also for 

R3(n) in place of R2(nf ; unfortunately, we have not been 

able to give such a construction.) 

By using the greedy algorithm, it can be shown easily that 

there exists an Infinite sequence % such that 

B(n) = b,rs 1 z+ n1j3 (for all n ) 

bsn 

and it satisfies (i), (ii), (iii) and (iv) in Theorem 2. In this 

way. we obtain the existence of a sequence A such that 

A(n) c n-cn"3 

for large n and R2(n) is monotonous increasing from a certain 

point onwards. 

On the other hand, we conjecture that if 

A(n) = o(n) 

then R,(n) and R3(n) cannot be monotonous increasing (from 

a certain point onwards). In fact, perhaps, it is enough t0 

assume that 

Tim inf +J- < 1 
n-f +m 

holds. Unfortunately. we have not been able to prove this. In- 

stead, we will prove the following slightly weaker assertion: 

THEOREm 3. If 

(8) A(n) 2 o(*) . 

then the functions R2(n) and R3(n) cannot be monotonous in- 

creasing from a certain point onwards, i.e., for j=2 or 3. there 
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does not exist an integer no such that 

(9) Rj{n+l) : Rj(n) for n2n0 . 

It is worth to note that by using the method of the proof 

of Theorem 3, we could study the more general problem when we 

count the solutions of (;), (2) and (3), respectively, with cer- 

tafn weights, i.e., we study the monotonity properties of the 

functions 

nyl 

L =j'n-j ' 1 'j"*-j and 
j=l j<n:2 

I 2:c 
jsn;2 

,! n-j ' 

respectively. where 01,a2,.,, are non-negative real numbers 

[satisfying certain assumptions). 

2. PROOF OF THEOREM 1. 

Assume that (5) holds and dencte the complement of A by 

8= (b,,b2,...,btj : 

B = ib,.b2,...,bti - !1,2,...) - 'al,a2,...l . 

(Clearly, (5) implies that 8 is finite.) Then for n> 3bt se 

we have 

RI(n) = 1 7 = 1 j-2 1 t = 
ax+a =n 

Y 
i+j=n b,*ay=n 

= (n-l) - 2 1 1 = (n-t)-2t 
bEB 

so that, obviously, R,(n) is monotonous increasing fcr n> ic_ . 

Assume now that for soae no , (4) holds. li'e 'Eve tc shov, 

that this implies the exfstence of an integer n, sctcsfying 

(5). in order to prove this, we start out from the fo;;o'v.ing 

trivial fact (which kas used also by Dirac in [ 12). if n 2<A 
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then RI(n) is even while if n;ZEA then R,(n) is odd. 

(In case of the functions R2(n) and R,(n) , such an assertion 

does not hold. This is the reason of that that the study of the 

functions R2(n) and Rx(n) is more diffjcolt.) Thus (4) im- 

plies that for 2ak > nD we have 

R,(2ak+l)-R,(2ak -1) = (R,(2a,~l)-R,(2a,))+(R,(2ak)-R,(2ak-1))L 

2 1+1 = 2 , 

hence for n>n* , 

R,(n) 2 R,(2I(n-1)/21+7) L 1 (R,(2j+l)-R,(2j-1))2 
n0/2cjsIIn-1)/21 

2 z (Rt(2j+l)-R,(2j-1)) 2 1 2 = 
nGi2<j:[(n-1)/21 n0/2<jSI(n-l);21 

= 2(A(L (n-t)i21)-A(n0/2 

(where c. depends on A 

so that 

jEA jcA 

12 2(A(n/2)-l-A(n0/2)) = 2A(n/2)-c, 

and no but it is independent of n ) 

(10) R,(n) > 2A(nj2) - c2 for n = 1,2,... . 

Let B = Ib,,b2,...) (b,<b2'... ) denote the complement of 

A : 

8 = !bl,b2,...J = {1,2,.,.?- A , 

and put 

E(n) = z 1 . 
bin 
bE6 

CASE 1. 

Assume first that 

lim sup (B(2n)-S(n)) = +- . 
n-b+- 
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Let us write 

Let us define an infinite sequence N1<NZ<... of posi- 

tive integers In the fbllowing way: 

(11) if 0=0 then let 
A(2Nk) 

,I;" ygy- = 0 , 

(12) if o>O then let lim (3(2Nk)-B(Nk)) = +e . 
k++- 

Let k be a large irlceger, put 

max i 1 = M 
Nk<ns3Nk a+b=n 

asNk<bS'2Nk 

a-=A, bfB 

and let N be an integer with Nk<Ns3Nk for which this 

maximum is assumed: 

z l=M. 
a+b=N 

a5Kk<bSZNk 

aEA, bGB 

Then we have 

2NkM = 1 M 2 
Nk<n$3Nk 

5 z 7 1 = I 1 = 
Nk<ns3Nk aib=n 

a<hk<bj?Nk 
asNk<by2Nk 

ac4, bfB 
aEA, bfE 

= = A(Nk)(B(2Nk)-E(Nk)j 

aEA KR 



(13) Hz+ 
WkHBWkf-BMk)) 

N& 

On the other hand, in view of (IO) we have 

2A(W2)-c2<Rl(N) = z a +a 

x Y 

=n 1s 2 1 1 = 
ax+a =N 

Y 
axEA,ayEA axfA,ayeA 

a,@/2 

=2jl l- 
ja,EA axEA, 

1 l= 
N-a$A 1 

a,sN/2 axA/ 2 

g 2 A(N/2) - 1 i 1 = 2(A(N/2)-M) 

L a+b=N 
aEA,M8 
asNk<bs2Nk 

hence 

(14) H<$C2. 

(13) and (14) yield that 

(15) c2 ' 

AWk)WNk)-B(Nk)) 

Nk 

By (11) and (12), for c=O and k-*+o~ we have 

A(Nkj(B(ZKk)-B(Nk)) 
= 

A(N,11Nk-A(2Nk)+A(N,)) 

hk Nk 
2 

>= 
A(Nk)(Nk-A(2$)) 

hk 
> 

A(Nkj.Nk/2 A(Nk) 

hk 
=-T-+*+O 

while for e>O and k-++ , 
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A(Nk)(B(2Nk)-B(Nk)) 
'k 

> f(B(2N,)-B(Hk)) + +o . 

In either case, (15) cannot hold for large k , and this rontra- 

diction shows that in Case 1, RI(n) cannot be monotonous in- 

creasing. 

CASE 2. 

Assume nok that 

and 

9, 

(17 

assume firs t 

(16) imp1 

suctl ttlat 

: B(2x) 

and 

(16) lim sup (B(2n)-B(n)) < +- 
n++.= 

that B is infinite: 

es that there exist constants L?O. s>o and 

- B(x) < L for x10 

B(n) = O(log n) 

so that 

(18) bj > 

furthermore, (16 

(hE)j for j>jo : 

) implies that if t is large enough then 

(IO) bt(j+l) ' zbtj w 

Let us fix such an integer j , and let k be a iarge integer. 

for j=l,2,...,k2 ~ put 

K.=b A-b 
J +,kj t(k2+j) 

Ke are going to show that there exists an integer j 

such that 

f29) 1 6 j s k2-1 and 6 n (Nj/2, Nj+1/21 = @ . 



In fact, if such an integer j does not exist 

2- 
(2 1) B(N 

k2 
/2)-B(N1/2) = Jlli(B(lj,l/2)-B(Nj/2 

Here 

-9- 

then we have 

1) 2 ]f;‘l =k2-1 

2 = -b+ > ; btk3 = i (btk3ibtk3) > 

> $ibtk3+b2tk2) = 4 hk2 

so that 

B(N1/2) 2 B(N 
k* 

/4) , 

(22) B(N 
k2 

/2)-B(N 
k* 

/4) 2 B(Nk2/2)-B(N1/2) . 

(21) and (22) yfeld that 

B(N 
k2 

/2)-B(N 
k2 

/4) 2 k2 - 1 . 

But by (17); tnis inequality cannot hold for large k which 

proves the existence of an integer j satisfying (20). 

Let us fix such an integer j . We are going to show by 

induction on i that for i= Nj,Nj+l,..-.Nj+l -1 * 

(23) i can be written in the form bx+by with bxE6, by'8 , 

X#Y 

For i=Nj , we have 

is!<. I b 
tit3 

-Lb 
J t(k2+j) 

so tha: :23) holds. 

assume now that (23) holds for some WjSi <Nj+l-l . 

Then we have 
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(2C) R (i+l)-RI(i) = 1 

= l-2(8(i)-E(i-1)) + 1 1 - 1 16 
u+v= 1 Al u+v=i 
UE8, VEB ufB,v~B 

6Y i4?, we have 

(25) Rl(i+l) - RI(i) 2 0 

(provided that k is large so that i sKj> b 

tk2 
> no j- (24) and 

:25: I I imply that 

bx + by = -;+; , b,E6 , by0 . 
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Furthermore, by (20). here we cannot have b,=by which proves 

that (23) holds also with i+l in place of i . 

fly (18). (19) and (23) we have 

N. 
J+l 

-1 

(26) 1 1 
i=N, b,+by=i 

12 '$;-I 2 = 2(Nj+l-Nj) = 

J 3 
bxE8,by!= 

= 2(b 
t(k*+j+l) 

-b 
t(k2+j] 

1 > 2(b 
t(k2+j+l) 

'b 
-7 t(k'+j+l)) = 

=b 
t(k2*j*l) 

:, (s+61t1~2+j+l) 

On the other hand, by (17) we have 

r (5(Nj+l))’ = (‘(btk3+b H2 s (8(2b 
- t(k'+j) 

tk'))2 = 

f (5!b 
tk3 

)+(5(2btk3)-51btk3)))2 < W3+L12 

(26) 2nd (27) jmply that 

Is+c)t(k2+j+l) 
1 < (tk3+lj2 , 

5~7 fcr large k , this inequality cannot hold. This contra- 

diction proves that if R,(n) is monotonous increasing, then 

the sequence. B cannot be infinite. 

Thus (4) implies that B must be finite which is equi- 
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valent to (5) and this completes :rlt proof of Theorem 1. 

3. PROOF OF ?HECREK 2. 

Let 

v(l) = j 1 if iE6 

i 0 if iC6 

and let us denote the WzDer of solutions of 

(26) R2(n) = 1 1 = 1 jl-n(i))(l-nfn-i)) = 

ax*aY=" 
&i<n/2 

axEA, ayEA 

X<Y 

= 1 
&i<n/2 

1 - ljisn,2 1 + R*(n) = 

iEB, i-/n/2 

r 
I k-l-5(k-l)+R*(Zk) for 

=i 
n=2k , 

; k-B(k)+R*;Pk+l: for n=ik+: . 

Thus for k-:,2,... we have 

(29) R2(2k+l)-R212r:=1-(E(g:-5(k-ij)+R"(2kil)-R~~(2~) 2 

2 l-!E(kj-e(k-l))-R"(ik) . 

Clearly. 

B(k) - Ejk-1) s 1 , 
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and by (i). 

Rf(2k) s 1 . 

Furthermore, by (iii), 

and 

B(k)-B(k-I) = 1 

rP(2k) = 1 

cannot hold simultaneously so tnat 

(B(k)-B(k-1)) + R$z(2k) < 1 . 

Thus ue obtain from (29) that 

(30) R2(2k+l)-R2(2k) 2 l-l = 0 (for k=1,2,...) . 

Similarly, we pet from (26) that 

(31) R2(2k) 

since R*f2k-1) 

(30) and (3 

Theorem 2. 

-RI! 

= 0 

1) 

2k-1) = R'(2k)-R*(2k-1) i R*(2k) z C 

by (ii). 

ield (7) which completes the proof of 

4. PROOF CF THEOREt 3. 

Lre start out from the indirect assumution that (8) holds, 

however, for j-2 or 3 and for some integer no , (9) holds. 

First we show that there exist infinitely many integers 

C satisfyin 

('2) A(f!+j) c A(li)($$)' for j;l,Z,... . 

in fact, if (32) holds for finitely many N , then there 

exists an integer KC such that 
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A(N0) 5 1 

and for WLC O , there exists an integer N'=H'(f!) satisfyino 

K'>N and 

Then k'e get (by induction) that there exist integers H,<N2e 

<. . .<Nj<. . . uch that 

for j=O,t,*.... , 

hence 

(33) 
k A(hj,l ( 1 

A&+,) = AC!$ I: 
j-0 T 

k "j+~lZ = 
2 NN,)jfc(T 

+'k+l * 
= AtNO) (-+ ?r (kj* , N3j2 

1, 0 k+l 

for large enough k . On the other hand, clearly we have 

(34) R(Nk+,) = 1 1 S 1 
aCA aStlk+, 

1 = Nk+, 

alNk+l 

(33) and (34) cannot hold simultaneously and this contradiction 

OroveS the existence of infinitely many integers N satisfyfnc 

(32). 

t!Ow we are going to estimate RjCn) in terms of A(2n) . 

In view of (9), for nhn, we have 



hence 

(35) Rj(n) 5 (A(in))2 for nsn9 . 

Furthermore, by (9), for large n we have R.(n): 1 so that 
J 

we obtain from (35) that 

(36) (A(2n))' 2 n for large n . 

5. Throughout the remaining part of the proof of Theorem 3, 

we use the following notations: 

W denotes a large integer satisfying (32). kle write 

e2-it 
= eta) , and we put r = ,-lilt , .z = retu) where a is 

a real variable (SQ that a function of form p(t) is a function 

of the real variable a : p(z) = p(re(a)) = P(a) ). WC write 

+OJ a. 
f(z) = j;,z 3 * 

(By rel , this infinite series and all the other infinite 

series in the remaining part of the proof are absolutely con- 

vergent,) Then we have 

i((f(z))*-f{z2)) = JR2(n)zn 

and 

;((f(z))2cf(z2)] = ;=R3(n)zn 
n-1 

so that for both j-2 and j=3 , 
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if( -lf(221i i 21n~~Rj[n)2”I 
E 

hence 

1 
(37) i!f(zj12do 

I 1 +- 
- ;jf(z')jdo 6 2 : ! 1 R.(n)z"/do 

0 o’n=l J 1 
. 

Writing 

1 
J1=i i 

0 

3 1 1 *m 
f(z).&da, J2=l;f(z2),da 

0 

and J=/i 1 Rj(njznida , 
0 n=l 

(37) can be rewritten in the form 

(38) J1 - J2 5 25 . 

Ue GiTYgive a lower bound for J1.-J2 and an upper bound for 

23 . The lower bound far J1-32 will be greater than the upper 

bound for 23 2 J1-J2 . This contradiction will prove that the 

indirect assumption (9) cannot hold , and this will CODpiete the 

proof of Theorem 3. 

6. In this section, we give a lower bound for J1-J2 . 

first we estimate J1 . By the Parseval formula, we have 

(39) J1 = :jf(z),'da = 7 r2a 2 1 r*' = 
0 a&4 a64 

= e -2 7 

a&k 
1 = e-*A(N) > &A(N) . 

Now we are gcing to estimate 32 . By (32), the Cauchy 

inequality and the Parseval formula, for large N we have 
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r N 
= /(l-r4): 1 A(n)r 4n + +E \\1/2 

, A(n)r""'i < 
I :"=I n=ktl 

)J 

+S 
2 4n < ~(l-r)(l+rtr2*r3)f~A!f~) t (1-r') 7 A(ft}(i) r 

r,=Gtl 
lj2 < 

j 

I 

+% ,2,4n l/2 
< '(1-e-1'f'):~A(N)+~(l-r4) 1 < 

l?=l J 

I +C+ -112 i 
~A:N)+A~N)N-~ i 2n.r4n: A(tG)+A(N)N-2.2r" rnr4(n-1j' 

11 
< 

i $1 n=l : 

-l/2 
= jA(K)+A(N)k-2.2r4(1-r4)-21 

l/2 

J 
< ;A(N)+2A(N)N-2(1-r)-2 = 

= ;A(N)+2A(fi)N-2(1-e-"N)-2j 
l/2 . 

< jA(W)+2A(N)N-2(l,2N)-2j 
l/2 

= 

= !9A(f4))"2 = 3(A(R))-"2 . 

(39) and (AO) yield for large K that 

(43) J1 
- J2 > ,&A(K) - ?A(N))1'2 > &A(") . 

7. !n this section. we 57~~ an uljper bound for J ant 

we complete the proof of Theoru-. 3. KE rewrite 3 in the foi- 

lowing way: 
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(42) J = al,?, Rj(")zn/do = :'(i-z)nGRj("j~nll~-21-1 da , 
01 

In view of (9), (32) and (35), we have 

(43) 1 (l-z)ni;Rj(njzn; = jn~l(Rj(n)-Rj(n-l))~"; 2 

~n$Rj(n)-Rj(n-l)irn4 f" 
n=;io+l 

jRj(n)-Rj(n-ljjr" < 

< n~~;Rj(nj-Rj("-l);+ f 
n=no+l 

iRj(n)-Rj(n-1)ir" = 

= ni:/Rj(n)-Rj(n-i)l+ Em (Rj(")-Rj(n-l))rn < 
n=n,+l 

“0 
< 2n~1~Rj(n)-Rj(n-l)i+n~~(Rj(n)-Rj(n-~)jrn = 

r 

= c 1 + j; Rj(n)(rn-r"*l) = 
= 

54(1-r) i=R.(njr" < 
n=l J 

ilo- +n, 
< ~~4~~~ Rj(n)+(l-r) 1 Rj(n)rn r: 

n=n 

< c2+(l-e-1iN)[nfn Rj(Ni4 ;" Rj(n)rn' < 

I 

< c24~-dNtAt;*ill.+ nwi-;=;::;nj)2 rj < 

< c2+N -I (A(N))2.($4, 

i 

:" ! 2n 212 
n=fj41 iAIN) (-id j 

. Lrni < 
n i 

r) 

< c~+(A(N))~!~~N-~+~N~ ?,3,nj = 
! $1 ! 

= ~,+(A(N))~;16N-lin~-~(h)-~ ;cn3(r”-r”+lJ~ _ 

n=l i 

=_c2+(A(N))'116N-'*4H-~(l-~)-' ?[n3-(n-1)3)rn'i < 

61 ; 



= c,+(A(N))~ 

= c2+(A(W))2[16N-'+16N-5(l-r)-2 
4-m 

1 (n2-(n-l)')rn' 
n=I J < 

< c +(A(N))2j16N-'+32W-5 
2 

fl-r)-2 imn,n-ll = 
fi=? , 

= c2+[A(N))2(16N-1+32N-5(i-r)-4) < 

< c2+!A(N))2(16N-'~32ff-5(i-~-1~~)-4) < 

< c,+(A(N))*(~~N-~+~~N-~!~N)~) < 

c c2+600(A(Nj)2k-1 < c3(A(N))*N-l . 

Furthermore, we have 

(44) :1-z =((l-t)(l-Q/2 = !l+tz;* -2Re z)l'* = 

((l-r) 2 +2r(l-cos 27~1))~'~ > = (l+r2-2r CDS 2?~) l/2 = 

> (*r(l-cos 2 ~a))~'* = (2e-i'N-2 sin*i;o)l'* 2 

112 
j 2 23 for 020. 5 l/2 

and (for large k ) 

(45) ,I-.2 = ((l-r)2tZr(l-cos2T3))i’2 :, {(l-r)*)li2 = l-r = 1-e-l” 2 

> l/2 1. for all 0 . 
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(42). (43), (44) and (45) yield that 

(46) J r : c (A(N))'N-1 . 
-0 

3 jl-1i-l da = 

l/2 
= 2c3(A(N))2N-1 I I-z? do = 

= c 4 (A(N))2#-' 

< c 4 (A(N))2N-' 
f/N 112 

I 2N do+ ! 
0 1lN 

< c4(A(N))2N-1{2* log Nj < c5(A(Njj2Nm1 log N . 

By (38), {41) and (46), we have 

< c6(A(N))2N-1 lag N & A(N) < J1-J2 d 25 

hence 

N 
c7 log < A(N 

By (81, this inequality cannot hold, so that the indirect assump- 

tion (9) leads to a contradiction which completes the proof of 

Theorem 3. 
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