Edited by Y. Alavi et al.
Copyright © 1985 by John Wiley \& Sons, Inc.

PROBLEMS AND RESULTS ON CHROMATIC NUMBERS IN FINITE AND INFINITE GRAPHS

P. Erdös
Hungarian Academy of Science

During my long life I wrote many papers of similar title. To avoid repetitions and to shorten the paper I will discuss almost entirely recent problems and will not give proofs.

First of all I discuss some problems which came up during a recent visit to Calgary. An old problem in graph theory states that if G_{1} and G_{2} both have chromatic number $\geq \mathrm{k}$ then $G_{1} \times G_{2}$ also has chromatic number $\geq \mathrm{k}$. The product $G_{1} \times G_{2}$ is defined as follows: If $x_{1}, \cdots, x_{u} ; y_{1}, \cdots, y_{v}$ are the vertices of G_{1} and G_{2}, then $\left(x_{i}, y_{j}\right), 1 \leq i \leq u ; 1 \leq j \leq v$ are the vertices of $G_{1} \times G_{2}$. Join $\left(x_{i}, y_{j}\right)$ to $\left(x_{i_{1}}, y_{j_{1}}\right)$ if and only if x_{i} is joined to $x_{i_{1}}$ and y_{1} to $y_{j_{1}}$. (Observe $\left(x_{i}, y_{j}\right)$ and $\left(x_{i_{1}}, y_{j_{1}}\right)$ are joined only if $i \not i_{1}$ and $\left.j \neq j_{1}.\right)$

This conjecture was known (and easy) for $k \leq 3$ and Sauer and El-Zahar proved it for $k=4$ not long ago. The proof was surprisingly difficult and does not seem to generalize for $k>4$. Hajnal proved that if G_{1} and G_{2} both have infinite chromatic number then their product also has infinite chromatic number.

Perhaps more surprisingly he showed that there are two graphs of chromatic number \mathfrak{r}_{k+1} whose product has chromatic number \mathfrak{T}_{k}^{r}. The following two problems remain open: Are there two graphs of chromatic number $\boldsymbol{N}_{\mathbf{k}+2}$ whose product has chromatic number $\leq \boldsymbol{\lambda}_{\mathbf{k}}^{\mathbf{S}}$ are there two graphs of chromatic number \mathbb{C}_{ω} whose product has chromatic number $\left\langle\boldsymbol{N}_{\omega}^{\prime}\right.$? These problems are analogous to some old problems of Hajnal and myself. We proved [4] that for every α there is a graph of power $\left(\hat{2}^{\mathbf{N}}\right)^{+}$and chromatic number $\geq \hat{\lambda}_{\alpha+1}^{\text {p }}$ so that every subgraph of power $\mathfrak{N}^{\mathfrak{N}} \hat{2}^{\mathfrak{N} \alpha}$ has chromatic number \mathfrak{N}_{α}. We did not know (even assuming G.C.H.) if there is a graph of power and chromatic number $\mathbb{N}_{\alpha+2}$ so that each subgraph of power $\overbrace{\alpha+1}^{s}$ has chromatic number $\overbrace{\alpha}^{5}$. Recently Baumgartner proved that the existence of such a graph is consistent. In fact he proved that it is consistent with the generalised continuum hypothesis there is a graph of power and chromatic number 2 all of whose subgraphs of power $\leq \lambda_{1}^{5}$ have chromatic number $\leq \sum_{0}^{5}$. At the moment it seems hopeless to find a graph of power and chromatic number \mathbf{N}_{3} all of whose subgraphs of power $\leq \boldsymbol{N}_{3}$ have chromatic number $\leq \underset{\sim}{\mathbb{S}_{0}}$. Laver and Foreman showed that it is consistent (relative to the existence of a very large cardinal) that if every subgraph of power \boldsymbol{a}_{1}^{2} of a graph of size has \mathfrak{N}_{2} chromatic number \mathcal{F}_{1} then the whole graph has chromatic number $\leq \lambda_{1}^{\mathbf{s}}$. Thus it is consistent that our example is best possible.

Shelah showed that in the constructible universe for every regular K that is not weakly compact, there is a graph of size K and chromatic number \mathcal{S}_{1} all of whose subgraphs of size < K have chromatic number $\leq \lambda \int_{0}^{\$}$.

As far as we know, our old problem is still open: If G has power $\curvearrowright \checkmark_{\omega+1}$ and chromatic number $\cap \widehat{S}_{1}$, then it is consistent that it must hve a subgraph of power \vec{c}_{ω} and chromatic number \mathbf{N}_{1}.

An old theorem of Hajnal, Shelah and myself [5] states that if G has chromatic number $\boldsymbol{\lambda}_{1}$, then there is an $n_{0}=n_{0}(G)$
so that G contains a circuit C_{n} for every $n>n_{0}$. On the other hand, we know almost nothing of the 4 -chromatic subgraphs that must be contained in G. In particular we do not know if G_{1} and G_{2} have chromatic number ${ }_{1}$ whether there is an H of chromatic number 4 which is a subgraph of both G_{1} and G_{2}. It seems certain that this is true and perhaps it remains true if 4 is replaced by any finite n and perhaps by $\overbrace{0}$. Hajnal, on the other hand, constructed $\overbrace{1}$ graphs $G_{\alpha}, 1 \leq \alpha \leq \omega 1$ of power $\chi^{2} 0$ and chromatic number $\overbrace{}^{2}$, no two of which contain a common subgraph H of chromatic number $\overbrace{2}^{2}$.

Now we have to state the fundamental conjecture of W. Taylor which, unfortunately, Hajnal and I missed (probably due to old age, stupidity and laziness): Let G be a graph of chromatic number \mathbf{N}_{1}. Is it then true that for every cardinal number m there is a graph G_{m} of chromatic number m all finite subgraphs of which are also subgraphs of G ? No real progress has been made with this beautiful conjecture. Hajnal, Shelah and I investigated the following related problem: We call a family F of finite graphs good if there is an at least \mathbf{N}_{1}-chromatic graph G all whose finite subgraphs are in F. (We write at least $\lambda^{\prime} \mathbf{1}_{1}$-chromatic instead of \hat{N}_{1}^{2}-chromatic since Galvin [8] observed more than 15 years ago that it is not at all obvious that every graph of chromatic number greater than \mathbb{N}_{1} contains a subgraph of chromatic number ${\underset{N}{1}}^{J_{1}}$. In fact he proved that it is consistent that there is a graph of chromatic number N_{2} that does not contain an induced subgraph of chromatic number $\stackrel{\rightharpoonup}{C}_{1}$.) We call F very good if for every cardinal number m there is a graph G_{m} of chromatic number $\geq m$ all of whose finite subgraphs are in F. Hopefully good = very good. We observed that the set of all finite subgraphs of our [3] old r-shift graphs are very good for every r. The r-shift graph is defined as follows: Let $\left\{x_{\alpha}\right\}$ be a well ordered set. The vertices of the r-shift graph are the r-tuples
$\left\{\mathrm{x}_{\alpha_{1}}, \cdots, \mathrm{x}_{\alpha_{r}}\right\} \quad \alpha_{1}<\alpha_{2}<\cdots<\alpha_{r}$. Two such r-tuples
$\left\{x_{\alpha_{1}}, x_{\alpha_{2}}, \cdots, x_{\alpha_{r}}\right\},\left\{y_{\beta_{1}}, y_{\beta_{2}}, \cdots, y_{\beta_{r}}\right\} \quad$ are joined if and only if $y_{\beta_{1}}=x_{\alpha_{2}}, \cdots, y_{\beta_{r-1}}=x_{\alpha_{r}}$.

We also stated the following problem: A family F_{r} of finite graphs is called r-good if there is a graph G_{r} of power $\leq \lambda_{r+1}$ and chromatic number $\geq \chi_{1}$ all of whose finite subgraphs are in F_{r}. It is called r-very good if (for every cardinal $\boldsymbol{\sim}_{\alpha}$) there is a graph G of chromatic number $\leq \lambda_{\alpha}$ and power $\leq \lambda_{\alpha+r}^{\prime}$ all of whose finite subgraphs are in F_{r}. Hopefully r-good $=r$-very good. We proved that for $r<\omega F_{r+1} \subset F_{r}$ and the inclusion is proper. We do not know what happens for $r>\omega$.

We proved that the number of vertices of an at least $\imath_{1}{ }^{-}$ chromatic graph all whose finite subgraphs are subgraphs of the r-th shift-graph must have power $\exp _{r}\left(\lambda_{1}\right)^{+}=\lambda_{r+1}$. This last equation holds if the generalised continuum hypothesis is assumed.

We formulated as a problem that every good family must contain for some r the finite subgraphs of the r-th shift-graph. We expected that the answer to this question will be negative, but we could not show this. Recently A. Hajnal and P. Komjath [10] showed that the answer is negative. Hajnal conjecture that if F_{n}, $\mathrm{n}=1,2, \cdots$ is a good family for all n then there is good family F satisfying $F \supset F_{n}, n=1,2, \cdots$. A much stronger (but also much more doubtful) conjecture is that there is a good family F which is almost contained in F_{n} for every n. Perhaps one should first try to disprove this. The answer is unknown even for the finite subgraphs of the r-th shift-graph.

The intersection of two good families is perhaps always good, but we cannot even exclude the possibility that there are c families of almost disjoint good families of finite graphs. We are, of course, interested only in finite graphs of chromatic number
≥ 4, since our old result with Shelah implies that every G of chromatic number $\geq \boldsymbol{\chi}_{1}$ contains all odd circuits for $n>n_{0}$. Hajnal and I proved that every graph of chromatic number $\boldsymbol{\chi}_{1}$ contains a tree each vertex of which has degree $\boldsymbol{\chi}_{0}$, and we also proved that it contains for every n, a $K\left(n, \mathcal{N}_{1}\right)$ but it does not have to contain a $K\left(\mathcal{X}_{0},{\underset{\sim}{2}}_{0}\right)$. Hajnal [9] showed that if $c=\underset{\sim}{r} r_{1}$, it does not have to contain a $K\left(\mathbb{N}_{0}, \mathbb{N}_{0}\right)$ and a triangle. The problem is open (and is perhaps difficult) whether there is graph
 has no triangle and no pentagon (and in fact no $C_{2 r+1}$ for $\mathrm{r} \leq \mathrm{K}$).

Hajnal and Komjath [10] recently proved the following result of astonishing accuracy: Every G of chromatic number $\overbrace{1}{ }_{1}$ contains a half-graph (i.e. a bipartite graph whose white vertices are x_{1}, x_{2}, \cdots and whose black vertices are y_{1}, y_{2}, \cdots, where x_{i} is joined to y_{j} for $\left.j>i\right)$ and another vertex which is joined to all the x_{i}. On the other hand, if $c=\overbrace{S_{1}}$ is assumed, it does not have to contain two such vertices.

To end this short excursion into transfinite problems, let me state an old problem of Hajnal and myself: Is it true that every G of chromatic number $\overparen{\sim} \mathfrak{S}_{1}$ contains a subgraph G^{\prime} which also has chromatic number \mathfrak{r}_{1} and which cannot be disconnected by the omission of a finite number of vertices? We observed that, if true, this is best possible; we gave a simple example of a graph of chromatic number $\mathfrak{\aleph _ { 1 }}$ every subgraph of which has vertices of degree $\imath^{〔}{ }_{0}$.
P. Komjath recently proved that every graph G of chromatic number $\mathfrak{N} \Im_{1}$ contains for every n, a subgraph G_{n} of chromatic number $\gtrsim \Im_{1}$ which cannot be disconnected by the omission of n vertices and he informed me that he can also insure that there is such a G_{n} all vertices of which have infinite degree.

As far as I know the following Taylor-like problem has not yet been investigated: Determine the smallest cardinal number m for which if G has chromatic number m, then there is $a G^{\prime}$ of
arbitrarily large chromatic number all of whose denumerable subgraphs are also subgraphs of G. Hajnal observed that it is consistent that every G of chromatic number \mathbf{R}_{2} contains a $K\left(\lambda_{0}^{\prime}, \chi_{0}\right)$. Thus it is consistent that $m>\mathfrak{N}_{1}$. He suggests that perhaps one can prove (assuming G.C.H.?) that every G of chromatic number 2 contains the Hajnal-Komjath graph as a subgraph. Thus the analog of Taylor's conjecture is perhaps $m=\boldsymbol{\lambda}_{2}$.

Now I discuss some finite problems. El-Zahar and I considered the following problem: Is it true that for every k and t there is an $n(k, l)$ so that if the chromatic number of G is $\geq n(k, \ell)$ and G contains no $K(\ell)$, then G contains two vertex-disjoint k-chromatic subgraphs G_{1} and G_{2} so that there is no edge between G_{1} and G_{2} ? We proved this for $k=3$ and every λ, but great difficulties appeared for $k=4$, and Rödl suggested that the probability method may give a counterexample. It seems to me that this method just fails.

For $k=3$ the simplest unsolved problem is: Let G be a 5 -chromatic graph not containing a $K(4)$. Is it then true that G contains two edges e_{1} and e_{2} so that the subgraph of G induced by the 4 vertices of e_{1} and e_{2} only contains these edges? The answer is certainly affirmative if we assume that the chromatic number of G is ≥ 9.

During a recent visit to Israel, Bruce Ruthschild was there and we posed the following problem:

Denote by $G(k ; f)$ a graph of k vertices and l edges. We say that the pair n, e forces $k, \ell,(n, e) \rightarrow(k, l)$, if every $G(n ; e)$ contains a $G(k ; \ell)$ or a $G\left(k ;\left(\frac{k}{2}\right)-l\right)$ as an induced subgraph. It seems that the most interesting problems arise if $t=\frac{1}{2}\left(\frac{k}{2}\right)$. In this case we can of course assume that $c \leq \frac{1}{2}\left(\frac{n}{2}\right)$. We have unfortunately almost no positive results. We observed that if $e>\frac{2 n}{3}$ then $(n, e) \rightarrow(4,3)$. This clearly does not hold for $e \leq \frac{2 n}{3}$. This unfortunately is our only positive result. On the
other hand, we observed that if $n>n_{o}$, then $(n, e) \rightarrow(5,5)$ for every e (and $n>n_{o}$). In other words, for every e there is a $G(n ; e)$ which does not contain a $G(5 ; 5)$ as an induced subgraph and the same holds for a $G(8 ; 14)$. Graham observed the same method gives that $(\mathrm{n}, \mathrm{e}) \rightarrow(12,33)$. We convinced ourselves that for $\mathrm{k}>12$ our method no longer will give a counterexample. The simplest unsolved problem is, unless we overlooked a trivial idea, perhaps interesting and non-trivial: Are there any values of n and e for which $\left(\mathrm{n}, \mathrm{e}_{\mathrm{n}}\right) \rightarrow(9,18)$? Further and determine all these values of n and e_{n}.

Fan Chung and I spent (wasted?) lots of time on the following problem: Denote by $f(n ; k, \ell)$ [1] the smallest integer for which every $G(n, f(n ; k, l))$ contains a $G(k ; \ell)$ as a subgraph. Here we of course do not insist that the subgraph should be induced. Also we do not prescribe the structure of our $G(k ; l)$. The first interesting and difficult case seems to be: Is it true that

$$
\begin{equation*}
\frac{\mathrm{f}(\mathrm{n} ; 8,13)}{\mathrm{n}^{3 / 2}} \rightarrow \infty \quad ? \tag{1}
\end{equation*}
$$

We could not prove (1); the probability method seems to fail. Probably $f(n ; 8,13)>n^{3 / 2+\varepsilon}$ also holds. It is well known and easy to see that $f(n ; 8,12)<c n^{3 / 2}$ holds, since every $G\left(n ; c_{r} n^{3 / 2}\right)$ contains for sufficiently large c_{r}, $a K(r, 2)$, and thus a $K(6,2)$ of 8 vertices and 12 edges. Completely new and interesting questions come up if we also consider the structure of $G(k ; \ell)$, e.g., Simonovits and I [7] proved that every $G\left(n ; c n^{8 / 5}\right)$ contains a cube - the proof is quite difficult. We believe that our exponent $8 / 5$ is best possible but could not even show that for every c and $n>n_{0}(c)$ there is a $G\left(n ; \mathrm{c}^{3 / 2}\right.$) which contains no cube as a subgraph. A more general conjecture of Simonovits and myself states that if G is bipartite then the necessary and sufficient conditions of

$$
\begin{equation*}
\frac{\mathrm{f}(\mathrm{n} ; G)}{\mathrm{n}^{3 / 2}} \rightarrow \infty \tag{2}
\end{equation*}
$$

is that G should have no induced subgraph each vertex of which has degree greater than 2 . Perhaps this condition already implies

$$
\begin{equation*}
\mathrm{f}(\mathrm{n} ; G)>\mathrm{n}^{3 / 2+\varepsilon} . \tag{3}
\end{equation*}
$$

Conjectures (2) and (3), if true, will probably require some new ideas.

During a recent visit to Calgary, Sauer told me his conjecture: Let C be a sufficiently large constant. Is it true that for every k there is an $f_{k}(C)$ so that every $G\left(n ; f_{k}(c) n\right)$ contains a subgraph each vertex of which has degree $\mathrm{v}(\mathrm{x}), \mathrm{k}<\mathrm{v}(\mathrm{x})<\mathrm{Ck}$. In other words, the subgraph is quasiregular. Related problems were also stated in our paper with Simonovits and we used the concept of quasiregularity to prove our $G\left(n ; c n^{8 / 5}\right.$) theorem, but as far as I know the conjecture of Sauer is new and is very interesting.

During the 1984 international meeting on graph theory in Kalamazoo, Toft posed the following interesting question: Is there a 4-chromatic edge critical graph of $c_{1} n^{2}$ edges which can be made bipartite only by the omission of $c_{2} n^{2}$ edges? It is not even known if for every c there is a 4 -chromatic critical graph of $c n_{1}^{2}$ edges which can not be made 2-chromatic by the omission of $C n$ edges.

Perhaps I might be permitted to make a few historical remarks: A k-chromatic graph is called edge critical if the omission of every edge decreases the chromatic number to $k-1$. This concept is due to G. Dirac. When I met him in London early in 1949 he told me this definition. I was already at that time interested in extremal problems and immediately asked: What is the largest integer $f(n ; k)$ for which there is a $G(n ; f(n ; k))$ that is
k-chromatic and edge critical? In particular, can $f(n ; k)$ be greater than $\mathrm{c}_{\mathrm{n}}{ }^{2}$? To my surprise Dirac showed very soon that for $k \geq 6, f(n ; k)>c_{k} n^{2}$ and, in particular $f(n ; 6)>\frac{n}{4}+c n$. This result has not been improved for more than 35 years, and left the problem open for $k=4$ and $k=5$. In 1970 Toft [15] proved that $f(n ; 4)>\frac{n^{2}}{16}+c n$. Simonovits and I easily proved that $f(n ; 4)<\frac{n^{2}}{4}+c n$. It would be very desirable to determine $f(n ; k)$, or, if this is too difficult, to determine

$$
\lim \frac{f(n ; k)}{n^{2}}=c_{k} .
$$

The graph of Toft has many vertices of bounded degree. I asked: Is there a 4 -chromatic critical graph $G(n)$ each vertex of which has degree $>\mathrm{cn}$. (Dirac's 6-chromatic critical graph has this property.) Simonovits [14] and Toft [16] independently found a 4-chromatic critical graph each vertex of which has degree $>\mathrm{cn}^{1 / 3}$. The following question occurred to me: Is there a 4-chromatic critical $G\left(n ; c n^{2}\right)$ which does not contain a very large $K(t, t)$? All examples known to me contain a $K(t, t)$ for $t>c n$, but perhaps such an example exists with $\mathrm{t}<\mathrm{C} \log \mathrm{n}$. (Rödl in fact recently constructed such an example).

To end this paper I want to mention some older problems which I find very attractive and which I have perhaps neglected somewhat and which have both a finite and an infinite version. First an old conjecture of Hajnal and myself:

Is it true that for every cardinal number m there is a graph G which contains no $K(4)$ and if one colors the edges of G by m colors there always is a monochromatic triangle. For $m=2$ this was proved by Folkman and for every $m\left\rangle_{0}^{\rangle}\right.$it was proved by Nesetril and Rödl [11]. For $m \geq \gtrless_{0}^{2}$ the problem is open. The strongest and simplest problem which is open is stated as
follows (where we assume that the continuum-hypothesis holds): Is it then true that there is a G of power \mathbb{N}_{2} without a $K(4)$ so that if one colors the edges of G by $\mathbb{\mho}_{0}$ colors there always is a monochromatic triangle. If $c=\lambda_{1}$ is not assumed, then \mathfrak{N}_{2} must be replaced by c^{+}. I offer a reward of 250 dollars for a proof or disproof (perhaps this offer violates the minimum wage act).

An interesting finite problem remains. For $m=2$ Folkman's
graph is enormous, it has more than $10^{10^{10^{10} 10^{10^{10}}}}$ vertices and the graph of Nesetril and Rödl is also very large. This made me offer 100 dollars for such a graph of less than 10^{10} vertices (the truth in fact may be very much smaller, there very well could exist such a graph of less than 1000 vertices). Rödl and Szemerédi found such a graph which has perhaps < 10^{12} vertices which does not fall very short of fulfilling my conditions and perhaps can be improved further.

Another old conjecture of Hajnal and myself states that for every k and r there is an $f(k, r)$ so that if G has chromatic number $\geq f(k, r)$, then it contains a subgraph of girth $>k$ and chromatic number $>r$. For $k=3$ this was answered affirmatively by Rödl [12]. The infinite version of our problem states: Is it true that every graph of chromatic number m contains a subgraph of chromatic number m the smallest odd circuit of which has size $>2 \mathrm{k}+1$? This problem is open even for $\mathrm{k}=1$.

Our triple paper with Hajnal and Szemerédi [6] contains many interesting unsolved finite and infinite problems. Is it true that every graph G of chromatic number \mathfrak{N}_{1} contains for every C a finite subgraph $G(n)$ which cannot be made bipartite by the omission of $C n$ edges? Perhaps one can further assume that our $\mathrm{G}(\mathrm{n})$ has chromatic number 4. The difficulty again is that so little is known about the critical 4 -chromatic graphs.

Let $f(n)$ be a function that tends to infinity as slowly as we please. Is it true that for every k there is a k-chromatic graph so that for each n every subgraph of n vertices of G can be made bipartite by the omission of fewer than $f(n)$ edges. Lovász and Rödl [13] proved this for $f(n)=O\left(n^{(1 / k)-2}\right.$) and Rödl settled the conjecture for triple systems.

Let $F(n)$ tend to infinity as fast as we please. Is there an $\overbrace{1}$-chromatic G so that for each n every n-chromatic subgraph of G has more than $F(n)$ vertices?

Hajnal, Sauer and I asked in Calgary recently: Let G be n-chromatic and the smallest odd circuit of which is $2 k+1$. Is it then true that the number of vertices of G is greater than $n^{c} k$, where c_{k} tends to infinity together with k ? Perhaps we overlooked a trivial point, but we could not even show that the number of vertices of G must be greater than $n^{2+\varepsilon}$. It seems clear that this must hold if we only assume that G has no triangle and pentagon.

An old problem of mine which has been neglected [2] is stated as follows: Is it true that for every small $\varepsilon>0$ and infinitely many n there is a regular $G(n)$ with degree $v(x)=\left[n^{(1 / 2)+\varepsilon}\right]$ so that $G(n)$ has no triangle and the largest stable set of which has size $v(x)$. I expect that the answer is negative and offer 100 dollars for a proof or disproof.

Here is a final question of mine which I had no time to think over carefully and which might turn out to be trivial. Let $G(n)$ be a k-chromatic graph. Then clearly $G(n)$ always has a subgraph of $\leq \frac{n+1}{2}$ vertices which has chromatic number $\geq \frac{k+1}{2}$. Can this be strengthened if we assume say that G has no triangle? (Without some assumption the complete graph shows that the original result is best possible.) As a matter of fact I now believe that no such strengthening is possible. The probability
method seems to give that to every $\varepsilon>0$ there is a $k_{0}(\varepsilon)$ so that for every $k>k_{0}(\varepsilon)$ and $n>n_{0}(\varepsilon, k)$ there is a k-chromatic $G(n)$ of girth $\&$ so that every set of εn vertices of which spans a graph of chromatic number (1+o(1)) εn, but I may be wrong since I did not check the details.

References

1. P. Erdös, Extremal problems in graph theory. Theory of Graphs and its Applisations, Proc. Symp. Smolenice (1963) 29-36.
2. P. Erdös, On the construction of certain graphs, J. Combinatorial Theory 1(1966) 149-153.
3. P. Erdös and A. Hajnal, Some remarks on set theory IX. Combinatorial problems in measure theory and set theory. Michigan Math. Journal 11(1964) 107-127. See also [2].
4. P. Erdös and A. Hajnal, On chromatic number of infinite graphs. Theory of Graphs, Proc. Coll. Thinay Hungary Acad. Proc. (1968) 83-98.
5. P. Erdös, A. Hajnal and S. Shelah, On some general properties of chromatic numbers. Topics in Topology, Proc. Coll Kezszthely (1972), Coll. Math. Soc. T. Bolyai Vol. 8 North Holland, Amsterdam (1974) 243-255.
6. P. Erdös, A. Hajnal and E. Szemerédi, On almost bipartite large chromatic graphs. Annals Discrete Math. 12(1982) 117-123.
7. P. Erdös and M. Simonovits, Some extremal problems in graph theory. Combinatorial Theory and its Applications, Proc. Coll. Balatorfured 1969. North Holland, Amsterdam (1970) 377-390.
8. F. Galvin, Chromatic numbers of multigraphs. Periodica Math. Hungarica, 4(1973) 117-119.
9. A. Hajnal, A negative partition relation. Proc. Nat. Acad. Sci. U.S.A. 68(1971) 142-144.
10. A. Hajnal and P. Komjath, What must and what need not be contained in a graph of uncountable chromatic number, Combinatoria 4(1984) 47-52.
11. J. Nesetril and V. Rödl, Ramsey properties of graphs with forbidden complete subgraphs. J. Combinatorial Theory 20B (1976), 243-249.
12. V. Rödl, On the chromatic number of subgraphs of a given graph. Proc. Amer. Math. Soc. 64(1977) 370-371.
13. V. Rödl, Nearly bipartite graphs with large chromatic number. Combinatoria 2(1982) 377-383.
14. M. Simonovits, On colour initial graphs. Studia Sci. Math. Hungar. 7(1972) 67-81.
15. B. Toft, On the maximal number of edges of critical k-chromatic graphs. Studia Sci. Math. Hungar. 5(1970) 469-470.
16. B. Toft, Two theorems on critical 4-chromatic graphs. Studia Sci. Math. Hungar. 7(1972) 83-89.
