ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Voheme 15, Mumber 2, Spring 1985

PROBLEMS AND RESULTS ON CONSECUTIVE INTEGERS
AND PRIME FACTORS OF BINOMIAL COEFFICIENTS

P. ERDOS

To the memory of my old friend and coworker Ernst Straus

I have published many papers both alone and with coworkers during
my long life on these and related questions. | give a partial list of these
papers and will refer to them with roman numerals, In the last few years
two important questions on consecutive integers were settled An old
conjecture of Catalan stated that 8 and 9 are the only consecutive integers
which are powers. Tijdeman [11] proved that there is a computable con-
stant ¢ so that above ¢ there are no more consecutive powers,

Selfridge and I proved that the product of consecutive integers 15 never
a power [I]. Probably both results can be strengthened. Selfridge and 1
conjectured that for k = 4 there is a p > & for which p || [Th(n + )
(g || m denotes p | m, p2 | m). Denote by x; < x, < . . . the sequence of
powers, Presumably x., — x; > &%, but no proof of x,., — ¥, — oo has
been published as yet.

Nevertheless very many simple unsolved problems remain. In this note
I state some of my old unsolved problems which seem interesting to me
and which were neglected and which do not seem to be completely
hopeless, 1 also state some new problems and results and outlines of
proofs.

Denote by P(mt) the largest and by p(m) the least prime factor of m.
Undoubtedly P(m) and P(m + 1) are independent. but 1 can not even
prove that the density of integers for which Plm) > Pim + 1) 15 1/2,
(This problem seems very difficult and may be unattackable by our
present methods.) Pomerance and | proved some preliminary results [3].
It is & simple exercise that the density of integers for which pim) >
plm + 1)yis 172,

Letn > kand putfor | =7 = &

(1) n 1= k)b k) Platk)) = k. plhedk)) > K,

ie., (1) gives the umque decomposition of n + i as the product of two
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numbers such that all the prime factors of the first are = & and of the
second > k. Put further

{2) min {(a,. kN = fln; k).
L=k

In [0} T conjectured that il & — o then
(3 fn; K)k =0

uniformly in s I proved by a simple averaging process that fin; k) < Ck
for some absolute constant €, IT (1} holds it would be interesting to
estimate fin; k) as accurately as possible from above and below. Ruzsa
observed that a simple argument gives that for every £ and infinitely many
i

i ok
(4) Sy k)Y = Tz k"
I overlooked this and (4) disproves some old conjectures of mine [H].
Here is the outling of the simple proof of Ruzsa. Denote by &2 < g <
o< e < g, <k, 5> (¢ kilog k) the primes in the interval (&2, k).
Let m = 0 (mod [&/2]!), Then clearly for — k/2 = { = k/2,

(5) @i ) Z i], aulk) > ]—f'r p.

flat 2
Let further m satisly the congruences
(63 at 4+ f = 0 (mod go), mt — [ = 0 (mod gz04)s

(3 and (6) imply (4) by a simple argument.
| also conjectured that as k — @

2 |
{7 ; AT - o0

uniformly in », (7) would of course imply (3). Ruzsas proof clearly shows
that for every & and infinitely many n
'_';_' i log log &

— =< ¢lo -
& agidk) Bote

Perhaps (4) and (8) give the right order of magnitude, Unless | have
again overlooked an obvious argument (3) seems to me to be a nice and
non trivial conjecture,

Perhaps it would be of some interest to investigate

(8)

fin, k., 1) = min a,, (k).
1
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Clearly for ! = wik) fin; &, I) can not be estimated in terms of & and
[ alone since if py, pa, . .., Peqyy Are the primes not exceeding &, n +
can be a multiple of an arbitrarily high power of p,. On the other hand
it is easy to see that

flms k. zk) + 1) = exp ({I +nm}%k_),

For k < < (2 — )k Ruzsa's proofl gives

&
fins ke f)y =C, Yk

I have no non trivial lower bound if / = 2k. The determination of the
smallest ! for which forevery n, fln; k. 1) = | is of course 4 elassical prob-
lem. In fact it can be reformulated in the following way. Denote by
jik) the largest integer so that there are j(k) consecutive integers all of
which have a prime factor not exceeding &. Twaniee proved jik) < ck?
but perhaps j(&) < k7= 1 do not know who first formulated this con-
jecture, which seems to be out of reach for the moment.

Surely further non trivial upper and lower bounds can be obtained
for f{n; k, /) but I have not investigated this question.

Another old and related conjecture of ming states that if ¢ > 0 and
k = kyle) then the integers a (k). | =7 = (|l + £}k can not all be
distinct. Here Basil Gordon and | proved this for | = ¢ < (2 + {1k
[T¥]. Finally | conjectured that there is an absolute constant ¢ so that
the number of distinet integers among the a, k), | =7 = k is always
greater than ek [II1]. It is very annoying that 1 got nowhere with this
attractive conjecture and 1 only proved it with ¢ k2 log & instead of ck,
but perhaps 1 overlooked a simple argument.

Several further questions can be asked. First of all observe that “usual-
Iy fin: k) = 1. More precisely the density of integers o for which fin; k) >
| tends to 0 very fastas & — oo, Inother words let | = ) < wp < 40 <
Uoety = k! — 1 be the integers relatively prime to &1 Then the number
of indices § for which v — w, = k is very much smaller than k!/kt
K = kolt) 1 expect that for every fixed f. its order of magnitude is about

—ck
il EKP( _Il:ig_k)
I am very far from being able to prove this. Here again I perhaps over-
look a simple argument.
Here T would like to call attention to a rather striking old conjecture
of mine: Let | = wy < up < +++ < by, = n—1 be the integers relatively
prime to 1, Then
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o lmp=1 ne
(%) M fupy —wP < C—.
Py (e — o)
There seems to be no doubt that for every o
old) =1 o py
I:”]} ,§ i_If,'_l = hl',-} = (ﬂmi.

and perhaps for every sufficiently small 3

¥, N |
{11 4 r}__‘_ll explforiy —w)) < n exp(Cﬁ?’L;—),
The last inequality is perhaps a bit too optimistic. Hooley [5] has many
interesting results about these problems, In fact he proved (10) for every
e = 2, but (%) is still open and 1 offer 300 dollars for a proof or disproof
of (4},

Denote by [{n: k) the largest integer for which all the values a, (&),
0 =i = {(n; k) are distinct. Determine or estimate as accurately as possi-
ble the mean value, vanance, and the distnbution of the stze of [{n; &)
Denote by Lin: &) the largest integer for which the equation a, (k) = |,
| =1 = Lin: k) has only one solution. Clearly Lin; &) = Im: k), but
onewould expect that “asually™ L{n: k) is not much larger than [({n; k),
but 1 could not obtain any significiant results on these problems.

Some of these problems may change character if, e.g., we consider the
squarefree part gla,-{k)) of a,.4k). Perhaps very many fewer of the
qlag Ak} will be distinet. | did not investigate these and the many related
questions but perhaps interesting results can be obtained.

Further questions can be asked about the distribution of the a,.{k).
It is not hard to prove by the second moment method that if 7 15 fixed
and & — oo then for almost all n the number of indices 7 for which
i dk) = 115

(1 + nm}%m - %)

I have not worked out the details of how long this formula holds if ¢
increases with k. Perhaps more interesting 15 the following question; For
every n and & there is a smallest 1 = ry(n; &) which does not occur as an
@,k). One could try to determine the distribution of the value of this r.
It is ¢asy to see that il & — oo then for almost all # the number of indices
{ for which a, (k) > k= is

(1 + ﬂ“‘”f,i}pl;l}( - :;j

On the other hand I can not determine
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max ]F = flk, a).

R P
Fora > 1, flk, a) < k i5 easy to see.
1t is not difficult to show that for almost all n (as & — =)

(1) max ay (k) = ko0 leabsoglon 4,
&

j -

The upper bound in (117 [I] follows easily from the asymptotic
formula of de Bruijn [1] for ¢{x. 3} (the number of integers not exceeding
x all whose prime factors are £ y) and the lower bound [urther needs
the second moment method. 1 overlooked this in [II].

Mow | discuss some problems on the prime factors of binomial coel-
ficients, A well known theorem of Sylvester and Schur asserts that P
(%)) = & holds forall i = 2k, 1 proved [VI] in fact that

(12) P((;:)J > min(n — k + 1, ¢ k log k).

In (12} very likely ek log & can be replaced by ke and perhaps even by
exp (k%0 but this, if true, is centainly out of reach at present. Put

(1) = utmvatn) where Plaa)) < k. plrdm) > .

A well known theorem of Mahler implies that, for k = kgle), vin) =
fit+<. Unfortunately Mahler's theorem is not effective. 1 conjecture with
some trepidation that in Fact

(13) wiln) < nilog nyek - pck

where ¢, must tend to infinity together with &, (13) is hopelessly out of
teach. ¢, — o0 is also far from being known. Stewart [10] recently proved
that for every r if k = kqlr) then for infinitely many »

(14) wglny = n logn log log n -+« log ()

where log (i) is the r-times iterated logarithm,

Stormer and Polya proved that P{n(n + 1)) — oo and Chowla proved
that P(n(n + 1)) > ¢ log log ». Perhaps P(nin + 1)) > (log nf*~ but for
infinitely many », Plnln + 1)) < (log #)**%. These conjectures which are
certainly vnot ery well motivated were conjectured in [11] and [1V]. Schinzel
proved that for infinitely many »

Pinin + 1)) < expllog aflog log log ).
Selfridge and T conjectured that if n > k%, n +# 62 then

s ()54
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We only proved (15) with & replaced by ke(a < 1), We easily proved
that (15) holds for fixed & if n > my(k). To see this just observe that n — §
= 0 (mod &) for some O = 7 < Kk, Ifn — i = kip forsome p = & then
plY and p < affc. If on the other hand P{n = i} £ & then. for suffici-
ently large i, () clearly has a prime factor p = & = n/k. It would be casy
to determine the largest n = ng(k) for which p((f)) > & and, lor some
0=1i<k Pln—1i)=k, bul we leave this for the interested reader. Also
it is easy to see that the density of the integers n for which

p((;f)) =k is exp (t—c + o(l)) %)

Our conjecture p((f)) = n/k for n > k% is probably best possible.
Schinzel conjectured that for every k and infinitely many n

{16) n—i=k—-pun, i=0L:..., k= 1.

{16} Follows from hypothesis H of Schinzel (see [9]) and shows that (I5)
is the best possible. (16) is of course completely out of reach of the
methods at our disposal. A slightly weaker form of Schinzel's conjecture
states that for every & theére are infinitely many n for which

(:) = P Piy o P K< Po= 00 = P

Selfridge and | defined the deficiency of (§) as rif (}) is the product of
&k — r distinct primes greater than k. It is easy to see that for every &
there wre only 4 finite number of integers n for which the deficiency of
(7) is positive, but perhaps the following very much stronger result holds.
The number of pairs n and & for which the deficiency of (%) is positive is
fimite. ({]) has deficiency 4, it is the preduct of 7 distinct primes > 11.
This is the larpest deficiency we have found. On the other hand we could
not exclude the existence of a ¢ = 0 so that for infinitely many pairs n
and & () has deficiency > ck. It is extremely unlikely that this is possible
and | outline the proof that for sufficiently small £ > 0 the deficiency
must be less than (| — gk, First of all observe that we can assume n > klte
since it is easy to see that otherwise p((1)) < & [IV]. If n = &kl and the
deficiency is > (1 — &)k then (§) would be the product of < ek primes =
kor{l — 2k of the intepers n.n — 1, ..., n =k + | would entirely be
composed of primes = &, Thus by a simple computation their product
would be greater than k! and thus again p((])) < & an evident contradic-
tion. In [IV] | conjectured that i’ p(¥) = & then n = & for every c il & =
kgle) and this, if true, would imply by the above argument that the
deficiency must be a(k).

Let »n be such that p((§)) > &. | wanted an » such that p((7)) > & and
for which, for all 0 £ F < &k, p(n — 7) > |. Lacampagne and Selfridge
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found many such s in fact they probably can find such n for every k& # p=.
It seems much more difficult to prove that for every = 0 there is an »
and a & for which p({({)) > &k and pln — iy > tforevery 0 2= i< k. In
fact this question is still open,

Denote by win) the number of distinet prime factors of n. Perhaps if
k= kyand @) = &k then () is squarcfree. This is certainly False for
k=2 and k =3 since () = 5.3 and (¥) = 24577, Perhaps for sul-
ficiently large & (§) always has a prime factor k < p < wfk ifn = fAk).

We [V] conjectured that for n > 4, (3 i5 never sguarefree. This was
proved by Sarkidzy for n = pg [7]. Probably for a = my(k), (379 is always
divisible by the k-th power of a prime,

In [¥] we proved that for any two primes p and g there are infinitely

many integers a for which (p () = |, We could not extend this to
every set of three primes and in fact we could not decide whether

y L

=P

w3

is bounded. Denote by g{n) the number of integers | < & < n for which
7 is squarefree. gin) = 0 lor infinitely many n and g(n) = o{n} is easy;
probably much better upper bounds for g{n) can be obtained, Is it truc
that g(n) = o(n®) for every ¢ = 07

Denote by n; the smallest integer = 24 for which p{{(})) = k. ny surely
tends to infinity with & very quickly, no doubt nearly exponentially, but
| could not even prove that log my/log k — oo, ie., n, > k¢ for every ¢
if k& > kyle). Denote by &, the largest integer &, < n/2 for which p((£)) >
k. k,= 215 of course possible, c.g., for n = 2¢, but, for almost all »,
ko — oo, It is easy to see that &, = o{n). No doubt very much better
upper estimates are possible. Perhaps &, can tend to infinity legarithmical-
ly but not laster.

About 23 years ago | conjectured that for every k and n such that
| =&k = w2, (n =05 forsome 0 = § < k. Schinzel lfound a counter-
example and then Schinzel and T [8] disproved it for infinitely many &
and Schinzel conjectured that it fails for every & = 33, & # p*, Probably
the smallest ny for which the conjecture fails tends to infinity nedrly
exponentially in &. After the failure of my conjecture perhaps the fol-
lowing question could be considered : Denote by din; &) the largest divisor
not exceeding n of (). Is it true that there is an absolute constant ¢ for
which d(n; k) = ¢ n and if not how small can d(n; k) be?

“MNow | state a few problems and results on the least common multiples
of consecutive integers. | conjectured some time ago that forevery k > 1,
I=1l.m>=n+k

{17 [+ ..., +&l#&m+1.....m+ 1]
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I am sure that (17) holds with possibly very few exceptions. A stronger
conjecture of mine stated that the two sides of (17) can not have the same
prime factors if & = 2, { > 2. Here there are certainly many exceptions
but perhaps for sufficiently large & and / there are none. Probably for
sufficiently large kand f ifm = n + &

k )
(18) [Ttn + i) # [] tm + )
e Jiu]

but (18) seems hopelessly oul of reach.

Denote for every nand &
(19) A(n: k) = max [m,m—1,..., m — k+ 1]
kyin) is the smallest k for which A(n; &) equals the least common multiple
of the integers = n. It is easy to see that for n > n, the integers A(n; k),
Il = &k = kyln), can not all be different and it would be easy to determine
the largest sy for which these numbers are all distinet, e.g., for n = 10,
Afn; 1) = 10, 4ln; 2) = 90, A(n; 3} = 360, A(10; 4) = 2520. It would
perhaps be of some interest to determine or estimate the least & = kyn)
for which A(n; &) = Aln; k + 1). Al present T do not even have a good
estimate for the order of magnitude of kyn), kqln) = (1 + al{11(n/2) 15
easy to see, &¢n) < cnflog n is also easy but probably ky(m) is much
smaller.

| expect that for # = my the m defining A(n; &) can not always be n.
In other words if # > g then for some & there is a ¢ < n for which

(20) o —1looocon—k+ <t —=1,....0=k+1]

| expect (20) to be easy but | probably overlooked a simple argument
and did not find a proof.

In a paper with Eggleton and Selfridge [4] we define
(25 Lin: k) = max [ay, aq. .. ., gy

Fafl
and study various properties, of L{n: k). Clearly Lin: &) = Aln: k)il
k& = 4and n = nylk). Several interesting problems remain unsolved in our
paper and we hope to return to them at another oceasion.

I would like to call attention to a recent interesting paper of Pleasants
[6] on al((PMWawlm) is the number of distinct prime factors of m), He
proves among others that if 1 <= & = »/2 then w((})) = w{r). Many other
results are proved in this paper and interesting problems are stated.
Perhaps on¢ could try to determine all integers 5 for which it's < k = /2
then ed{(D) = wi(?).

To end this paper | state a few older problems which have never been
published, I hope the reader will forgive me if some of them are simpler
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than | expecied. Selfridge define hin) = min (g; — ay) where b > |, a4y <

- < a, and ajay -+ - ay/n! is an integer all of whose prime factors are <
n. It is surprisingly difficult to estimate filn). We could not even prove
that h{n) = 2, Tor n = ny. Probably i{n) — @ as n — oo, The difficultics
are caused by the very large values of a;. It is a well known unsolved
problem that n! = x{x + 1} has no solutions for # > 3. and that n! =
{x — I)(x + 1) has no solutions for n > 7. C. Spiro pointed it out to me
that for infinitely many n n! # x(x 4+ 1), but as far as | know 1t is not
yet known that this is troe for all # if we neglect a sequence ol density
. hin) = n — 2 is trivial and #{n) = n — 3 certainly holds and perhaps
for infinitely many » there is equality here. Foralmostall m, fiin) < n — ¢
log n; this is not hard, but we are not sure to what extent it can be im-
proved.

Are there infinitely many x for which x(x + 1) = []; p# where all the
e/'s are distinct? In fact are there infinitely many x for which there is a &
for which all exponents in the representation of []Lq(x+{) are distinet?
| expect that certainly for & > | the number of sclutions is finite, for
k = 1 the number of solutions is probably infinite, e.g., 1 expect that
there are infinitely many primes g, for which p; + | = 8¢% There does
not seem to be much hope of proving this, Put

{21} ]!]l{'r + ) = w{xhve(x), (wlx), vilx)) = 1

where v{x}) is squarefree and all prime flactors of wx) occur with an
exponent greater than 1. The representation in (21} is clearly unigue,
Clearly for & = ky(x), uy(x) = vy(x). Perhaps one can estimate the smallest
Kolx) so that wx) > vx) for all & > kglx) quite well. 1 have not done
this, For small values of & usually vy(x) = w,{x). I thought that for every
x there is a k& for which vy{x) > wx). ¥ = 7 seemed a likely counter-
example but if & = 7, wd{7) = 2738 < w(7) = 5-7+11-13. On the other
hand a simple computation shows that n = 23 is a counterexample, i.e..
for every &, vy(23) = ny(23). The reason for this is the existence of 24, 25,
27 and 32. | would not be surprised if 23 is the only counterexample.
Perhaps in fact there is a &g so that lor every k& > &y and all n > m(k)

(22} vln) = udn),

(22) is perhaps too optimistic, My reason for the conjecture is that, by a
well known theorem of Mahler, the contribution of the primes p = & to
fgln + 0) 1s for m > my(k, &) less than n'+=. Put

(x I k) = U x)Ve(x), (Vilx), Udx)) = 1
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where Fi(x) is sguarelree and all prime lactors of Uyx) occur with an
exponent > 1. Here 1 am sure that for almest all x and all &

{23) Fix) = Lix).

| do net think that the proof of (23) will be difficult but 1 may be wrong
in this since | have not in fact proved (22). Now this paper, like every good
and bad thing {except Mathematics itsell’) must end and 1 leave it to the
{1 hope) merciful judgment of the (1 hope) non empty set of readers to
judge in which class this paper belongs.

AppENpUM: Montgomery and Vaughan have proved conjecture (9),
and, in faect, (10) for all ¢ = 2.
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