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Abstract

Let G be a simple graph . Its clique covering
(partition) number cc(G) (cp(G)) is the least
number of complete subgraphs needed to cover
(partition) its edge-set . We study the funct-
ion o(G)

	

cp(G) - cc(G) of graphs G .

l . Introduction and Summary

Let G be a simple graph on n ? 1 vertices .

The clique partition [covering] number co(G) [cc(G)] is the least

number of cliques (complete subgraphs of G) needed to partition [cover]

the edge-set of G . Evidently

(1 .1)

	

cc(G) < cp(G)

	

.

In a personal communication in 1982, P . Erdös asked how large the

difference cp(G) - cc(G) can be as a function of n .

Let us call this difference the spread of G and denote it by a(G) .

In [3, Theorem 4] Erdös, Goodman and Pósa proved that the edge-set of

G can be partitioned into Ln z/4~ or fewer edges and triangles . Thus

for n >- 3

(1 .2)

	

O(G) < Ln z/4J- 2 .

We obtain a lower bound on a
n

, the maximum

spread of all graphs on n vertices

4z - c n3/z , for some constant c . In this paper, we make

their bound a little more precise by showing that

> nz

	

1

	

/z

	

n
an-4 -Z n3 +4
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Thus for all n >_ 3

(1 .3)
4
2-2n3/2 +4 <_6n <_ Inn/4j- 2

Let

n2 - 2n 3/2 + n
Sn

	

4

In Theorem 2, we construct a graph G(n, j) with spread j for each

•

	

? 1 and each integer j between 0 and a , where a agrees with ~
n

	

n

	

n
when n is a perfect square . In an earlier preliminary report [2] we

showed that for fixed n >_ 1, each integer value in the closed interval

[0, (n-1)(n-2)/6] is the spread of a connected graph on n vertices .

Let us call a clique partition P of the edge-set of G minimum if

PI = cp(G) . The graphs that we construct in Theorem 2 have this

curious property : each has a minimum clique partition consisting

entirely of edges and triangles .

2 .

	

Preliminaries

We denote that vertex set of a graph G by V(G) and the edge set of

•

	

by E(G) . For vertex-disjoint graphs G and H, we use the notation

•

	

v H to denote the graph whose vertex set is the union of the vertex

sets of G and H, such that a is an edge of G v H if and only if (i) e

is an edge of G or of H, or (íí) one end of e is in G while the other

end is in H . As is customary, Kn denotes the complete graph on n

vertices and Kn denotes the edge-free graph on n vertices . The edge

chromatic number of G is denoted by X'(G) . In particular (see e .g .[1],

p . 96) :

(1 .4)

	

X'(K
2k) = X'(K2k - 1 ) = 2k - 1 for all k >_ 1 .

THEOREM 1 . [4, Corollary 1, p210]. Suppose G is a graph on n vertices

and e edges having an independent set Z of q vertices, and that H is

the subgraph on p vertices and m edges obtained by deleting Z and all

its adjacent edges from G .

If at least X'(H) vertices of Z are adjacent to every vertex of H,
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then cp(G) = e-2m and any clique partition of G using cliques of

order exceeding 3 is not minimal .

LEMMA 1 [4, Inequality(5), p211] .

For all q ? 1

q < cc(H v Kq
) < q cc(H) .

The union G U H of graphs G and H is the graph whose vertex set is

V(G) U V(H), the union of the vertex sets of G and H and whose edge-set

is E(G) U E(H), the union of the edge-sets of G and H . When G and H

are disjoint, we denote their union by G + H . p We write pH for the

graph consisting of p copies of H, í .e . pH = E H .

	

The intersection
i=1

G n H of graphs G and H is the graph whose vertex set is V(G) 0 v(H)

and whose edge-set is E(G) n E(H) .

LEMMA 2 . If G n H has no edges, then

O

o

o(G U H) = Q(G) + G(H)

	

o

3 .

	

Main Results

Let S
n
denote the set of integers j such that Q(G) = j for some

connected graph G on n vertices .

LEMMA 3 . For all n ? 1

	

Sn c Sn + 1

Proof . If 6 (H) = j and the connected graph H has k vertices, then

j e S
n

for all n ? k . This is true because we can augment H by a path

of length n - k sharing exactly one vertex with H .

Hence Snc Sn + 1 for all n >- 1 .

	

o

For n >_ 1 we define pn [v/n--] ,

	

qn = I,/n-/2I and

(3 .1)

	

an - gn(Pn - 1) (n - pn (4n + 2)) •
Note that a = 0 for n <_ 3 .n
The main objective of this section is to establish the following

theorem .
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Theorem 2 . For each n >_ 1 and every integer m in the interval [0, X n I
there is a connected graph on n vertices with spread m having a
minimum clique partition consisting solely of edges and triangles .

Our strategy will be to exhibit for each n, a family of connected
graphs G(n) such that each integer m in the closed interval
[fin - 1' Xn' is the spread of some member of the family G(n) . Each of
our graphs will have a minimum clique partition consisting solely of
edges and triangles . Theorem 2 will then follow because of Lemma 3 .

To begin with we note that a n = 0 for n < 3 and 6(K n ) = 0 for-
n < 3 . In describing our graphs for n ? 4 its convienent to suppress
the subscripts on p and q . That is, we write p for pn and q for q n .
Let

Then for n x 5

G = (qK ) v Kn

	

p

	

n-pq

G(G n) = q a(Kp v K n - pq )

	

(by Lemma 2)

q (p - 1)(n - p(q + 2)) (by Theorem 1 and
Lemma 1)

Note that a(G5) = 2 and 15 = 1 .

In the following diagrams a circled k denotes a Kk , a rectangle
enclosing m indicates a K m . Further, a line with no label joining two
graphs indicates that every possible edge between the graphs is present
(í .e, every vertex of one graph is joined to all vertices of the other
graph), whilst a line labelled i joining a vertex to a complete graph
indicates that i edges join the vertex to the graph . Thus the diagram
of Figure 1(a) represents the graph of Figure 1(b) .

1 00



and

(a)
Figure 1 .

n-pq- 1

(b)

Let Q(n, j) denote the graph exhibited in the diagram of Figure

2, where j = sp + r (0

	

r < p - 1) . Let Q'(n, j) be the

s+1

Figure 2 . Q(n, j)

graph obtained from Q(n, j) by replacing q(=q n ) by q' = qn - 1'

Define

1(n) _ {o(Q(n, j)) : 1 < j < pq}

I'(n) _ {6(Q'(n, j)) :

	

1 -< j < pq'} .

1 0 1

If pn - pn - 1 and qn = qn - 1' then Q(n, 1) differs from Gn-1



by an edge with one end (v) of degree 1 . Hence

o (Q(n, 1)) = o(Gn - 1 ) - Xn - 1'

Also, Q(n, Pn qn) = Gn and so o(Q(n,
Pn qn)) = xn

Moreover, if 1 _<_ j < pq, then

(3 .2)

	

o(Q(n, j + 1)) = e~ + o(Q(n, j))

where c j is 0 or 1 according to whether or not j - 0(mod p) (i .e . r=0) .

Thus

(3 .3)

	

1(n) _ [Xn - l' ~n - 1
+ l ' an - 1 + 2,

	

an ]

when (pn' qn ) - (pn - 1' qn - 1)' We denote the set in brackets on the

right hand side of (3 .3) by [xn - 1' fi n ] '

If (2k) 2 < n S (2k + 1) 2 , then I(n) _ [a n
- 1' an

], since

~n - 1 = ~'n for n = (2k) 2 + 1 and for (2k) 2 + 1 < n <_(2k + 1) 2 ,

(p n' qn ) - (pn - 1' qn - 1) '

If (2k + 1) 2 + 1 < n < (2k + 2) 2 , then I(n) _ [fin
- 1 , fin] since

(pn'
q
n

)
= (pn - 1' qn - 1)

. For n = (2k + 1) 2 + 1, o(Q(n, 1)) _

o(Q(n, pq)) _ X
n

and,for 1 <_ j < pq,

	

o(Q(n, j + 1)) satisfies (3 .2) .

Hence I(n) _ [ Xn - 1' ~n] for (2k) 2 < n < (2k + 2) 2 .

When n = (2k) 2 , Pn = 2k, qn = k, Pn - 1 - 2k and qn - 1 = k - 1 .

By an argument similar to that used in establishing (3 .3) we get

I' (n) _ [fin - 1 ' Xn - 1 + 1 ' Xn -
1 + 2, . . , x]

where

	

x = an
- 1 + q' (p - 1) - Xn -

1 + (k - 1) (2k - 1) .

From (3 .1) we get

~n - 1 - (k - 1) (2k - 1)(4k 2 - 1 - 2k(k - 1 +-2 ) )

_ (k - 1) (k + 1) (2k - 1)'

and
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Note that Xn - xn - 1 + (2k - 1) 2 > x .

	

1]

Now

an = k(2k - 1)(4k 2 - 2k(k + 2))

= k2 (2k - 1) 2

a(Q(n, 1)) = G((k K2k ) v K2k2
- 1 )

= k a(K2k v K2k2 - 1 )

	

(by Lemma 2 )

= k[2k(2k2 - 1)- k(2k - 1)-(2k2 - 1)] (by

= x .

Also, G(Q(n, pq)) = G(Gn) = an and,for 1 <_ j < pq, c(Q(n, j + 1))

satisfies (3 .2) .

Hence

I(n) _ [x, x + 1, x + 2, . .

	

a ]n

Consequently, for n = (2k) 2

V (n) U I(n) _ [fin - 1' xn ]

Thus we have constructed the required graphs for each integer i

with (2k)2 < i < (2k + 2) 2 for every k ? 1 .

	

For n

	

3 we have already

noted that a(K ) = a = 0 . Hence Theorem 2 follows from Lemma 3 .
n

	

n

Remark

	

When n is a perfect square

X = n2 - 2n3/2 + n
=

	

.

n

	

4

	

n
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4 .

	

Some Special Constructions

For some n we can construct graphs having a spread greater than

an . Table 1 below exhibits such graphs for some small n .

TABLE 1 .

In the previous section we observed that an = Xn - 1 whenever

n = (2k) 2 + 1 . It is reasonable to expect that one could do better

than a in this case . The graphn

G* (4 . 2 + 1) - (k K2k) v K2k2 + 1
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n an Graph G* (n)

	

I un = a(G* (n))

13 21 (2K3) v K 7 or K5 v K8 22

14 24 (K3 + K4 ) v K7 or K 5 v K9 26

15 27 (K3 + K4 ) v K8 31

17 36 (2K4 ) v K9 42

18 44 (2K4) v K 10 48

19 52 (2K4 ) v K 1

	

(K4 + K5 ) v K10 54

20 60 (K 4 + K5 ) v K11 61

30 150 (K6 + K7) v K17 151

34 190 (K6 + K5 + K5) v K 18 199

35 200 (K6 + K6 + K5 ) v K 18 i

	

212

37 225 (3K6) v K19 240

38 243 (3K6) v K20 255



has, for every k >_ 1, spread

u4k2 + 1 - o(G*(4k2 + 1))

•

	

k a(K2k v K2k 2 + 1) (by Lemma 2)

•

	

4k" - 411-3 + 3k2 - k (by Theorem 1 and Lemma 1) .

-~4k2+ 1 +21:2 -k .

Moreover, the graph Q *(4k 2 + 1, j) exhibited in the diagram of

Figure 3, where j = s(2k) + r (0 <- r <- 2k - 1) provides graphs

realizing the spreads

[~ 4k 2 + 1 + 1 ' X4k2 + 1 + 2, ~4k 2 + 1 +
3,

' '
u4k2

+
I]-

• •

	

o0

2k 2

Figure 3 .

	

Q*(4k 2 + 1, j)

We note that u
4k 2 + 1 -> ~4k 2 + 1 (In fact, u4k2 + 1 - S4k2 + 1 ) '

For values of n in the vicinity of 4k 2 + 1 we can, by augmenting

the graph G *(4k2 + 1), obtain graphs with spread greater than an .
For example, the graphs G *(34), G *(35) and G x(38) given in Table 1
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are obtainable by augmenting G * (37) . Whilst improvements are possible

for some n, we have not been able to improve on an
when n is a perfect

square .
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