EXTREMAL CLIQUE COVERINGS OF COMPLEMENTARY GRAPHS

D. DE CAEN, P. ERDÓS, N. J. PULLMANN and N. C. WORMALD

Received 1 October. 1984

Abstract

Let $c c(G)$ (resp. $c p(G)$) be the least number of comylate subgraphs needed to cover (resp. partition) the edges of a graph G. We present bounds on $\mathrm{m} \times\{c(G)+c c(\bar{G})\}$, max $\{c p(G)+c p(\bar{G})\}$, $\operatorname{mxx}\{c c(G) c c(G)\}$ and $\operatorname{mxx}\{c p(G) c p(G)\}$ where the miximı are taken over all graphs G on n vertices and G is the complement of G in K_{n}. Several related open problems are also given.

Introduction

Let G be a graph on n vertices and let \bar{G} be its complement in K_{n}, the complete graph on n vertices. If f is a real valued function defined on graphs, what are the extreme values of $f(G)+f(\bar{G})$ and $f(G) f(\bar{G})$? E. A. Nordhaus and J. W. Gaddum (see e.g. [5]) considered those questions when the function is the chromatic number. D. Taylor, R. D. Dutton and R. C. Brigham [5] studied the questions for several other functions. One of those is the clique covering number. That is $c c(G)$, the least number of complete subgraphs (cliques) of G necessary to cover the edge set of G. We continue their investigation. We also consider the questions for another function the clique partition number. That is $c p(G)$, the least number of cliques needed to partition the edge set of G.

In Theorem 1, we establish the right inequality of $\left[n^{2} / 4\right]+2 \leqq \max \{c c(G)+$ $+c c(\bar{G})\} \cong\left(n^{2} / 4\right)(1+o(1))$ where the maximum is taken over all graphs G on n vertices. The bipartite graph $K_{[n / 2],[n / 2]}$ assumes the lower bound.

In Theorem 2 we modify the proof of Theorem 1 to show that $\max \{c c(G) c c(\bar{G})\} \leqq\left(n^{4} / 256\right)(1+o(1))$, where the maximum is taken over all n vertex graphs G. D. Taylor et al. [5, Theorem 5] gave an example of a graph F for which $c c(F) c c(\bar{F})=n^{2}(n+8)^{2} / 256$. The graph F is obtained from two copies A_{1} and A_{2} of $K_{n / 4}$ and two copies A_{2} and A_{3} of $\vec{K}_{n / 4}$ by joining each vertex of A_{1} to each vertex of $A_{i+1} \quad(i=1,2$ and 3$)$. When n is not divisible by 4 the construction can be modified to yield a similar graph. Hence Theorem 2 establishes the conjecture made in [5], that $\max \{c c(G) c c(\bar{G})\} \sim n^{4} / 256$ where the maximum is taken over all n-vertex graphs G.

Somewhat weaker results for the clique partition number are obtained in Theorems 3, 4 and 5 . They imply

$$
\begin{aligned}
& \frac{7}{25} n^{2}+O(n) \leqq \max \{c p(G)+c p(\bar{G})\} \leqq \frac{13}{30} n^{2}+O(n) \text { and } \\
& \frac{29}{2000} n^{4}+O\left(n^{3}\right) \leqq \max \{c p(G) c p(\bar{G})\} \leqq \frac{169}{3600} n^{4}+O\left(n^{3}\right)
\end{aligned}
$$

where the maxima are taken over all n-vertex graphs G.
We state several related open problems at the end of the paper.

Results

Theorem 1. For some $d>0$ and all graphs G on n vertices, $c c(G)+c c(G)<$ $<\left(n^{2} / 4\right)(1+d / \log n)$.
Proof. Suppose $4^{e} \leq n / 4 c^{3}$. From a sequence $\mathscr{S}=\left\{K^{1}, K^{2}, \ldots, K^{l}\right\}$ of cliques K^{J} in K_{n} by choosing K^{l} to be a clique in G or in \bar{G} which covers at least c edges uncovered by $K^{1} \cup K^{2} \cup \ldots \cup K^{i-1}$. The process halts when such a selection is no longer possible. Now $I \leqq n^{2} / c$. If a vertex has fewer than n / c incident edges in G or in \bar{G}, augment \mathscr{S} by adding these edges separately, and continue repeating this step until there are no such vertices remaining. At most $2 n^{2} / c$ new cliques have been added to \mathscr{S}. Let H_{1} (or H_{ν}) denote the subgraph of K_{n} induced by the set of edges of G (respectively \bar{G}) not contained in the union of the cliques in \mathscr{S}, and put $H=H_{1} \cup H_{2}$. Let T denote the set of vertices of H with degree at least n / c in both H_{1} and H_{2}, and let U and V denote the sets of vertices in $K_{n}-T$ with degree at least n / c in H_{1} and H_{2} respectively. Note that vertices in U and V have degree 0 in H_{2} and H_{1} respectively.

In [2] it is shown that $c c(D) \leqq k^{2} / 4$ for all k-vertex graphs D. Therefore the edges of H with both ends in U or both ends in V can be covered by at most $|U|^{2} / 4$ or $|V|^{2} / 4$ cliques respectively. We further augment \mathscr{S} by these cliques, which adds at most $n^{2} / 4$ cliques to \mathscr{S}.

We next show that $|T| \leqq n / c$. Assume $|T|>n / c$. Then at least $n^{2} / 2 c^{2}$ edges of H_{1} have at least one end in T. It follows that some set E of at least $n / 2 c^{2}$ such edges are all incident with some vertex p. Let $T^{\prime}=\{v \in T: p v \in E\}$. Then $\left|T^{\prime}\right| \geqq n / 2 c^{2}$, so at least $n^{2} / 4 c^{3}$ edges of H_{2} have at least one end in T^{\prime}. Then a set F of $n / 4 c^{3}$ or more such edges are all incident with some vertex q. Let $T^{\prime \prime}=\left\{v \in T^{\prime}: q v \in F\right\}$. Then $\left|T^{\prime \prime}\right| \geqq n / 4 c^{3}$. By the bound for Ramsey's Theorem given for example in [1, Theorem 7.5], G of \bar{G} contains a clique K with c vertices in $T^{\prime \prime}$. Therefore the clique spanned by K and p (or K and q) covers c edges of H_{1} (respectively H_{2}) incident with p (respectively q). But this contradicts the definition of $\mathscr{\mathscr { S }}$. Thus $|T| \leqq n / c$ as claimed. Hence we can further augment the cliques in \mathscr{S} by adding all edges of H incident with vertices in T as separate cliques. There are at most n^{2} / c such edges.

The cliques in \mathscr{S} now form a clique covering of G and a clique covering of \bar{G}, and $|\mathscr{S}| \leqq n^{2} / 4+4 n^{2} / c$. For large n we can take $3 c>\log n$, which gives the theorem.

Theorem 2. For some $d>0$ and all graphs G on n vertices, $c c(G) \cdot c c(\bar{G})<$ $<n^{4}(1+d / \log n) / 256$.
Proof. In the proof of Theorem 1, we obtained a clique covering of G using at most $4 n^{2} / c+|U|^{2} / 4$ cliques, and a clique covering of G using at most $4 n^{2} / c+|V|^{2} / 4$ cliques, where $4^{4} \leqq n / 4 c^{3}$ and $|U|+|V| \leqq n$. Hence $c c(G) c c(\bar{G}) \leqq\left(4 n^{2} / c+a^{2} / 4\right)\left(4 n^{2} / c+b^{2} / 4\right)$ where each of these factors is at most $n^{2} / 2$, and $a+b \geqq n$. This product is at most $4 n^{4} / c+a^{2} b^{2} / 16$, which is maximised when $a=b=n / 2$. Hence $c c(G) c c(\bar{G}) \leq$ $\leqq 4 n^{4} / c+n^{4} / 256$. Taking $3 c>\log n$ as in Theorem 1 , we obtain the result. Corollary. For each graph G on n vertices $\min (c c(G), c c(\bar{G})) \leqq n^{2} / 16(1+o(1))$.

If G_{1} and G_{2} are vertex-disjoint graphs, then $G_{1} \vee G_{2}$ is the graph formed from the union of G_{1} with G_{2} by adding edges joining each vertex of G_{1} to each vertex of G_{2}.
Lemma 1. [3, Theorem 3]. Let $G=A \vee \bar{K}_{q}$. If A has p vertices and e edges, and the edge-chromatic number $\chi^{\prime}(A)$ of A is at most q, then $c p(H)=p q-e$.

We note that $\chi^{\prime}\left(K_{m}\right)=m$ or $m-1$ according as m is odd or even. Therefore for all $m \geqq 1$,
(1) $c p\left(K_{m} \vee \bar{K}_{m}\right)=m^{2}-\binom{m}{2}$
and
(2) $c p\left(K_{m+r} \vee \bar{K}_{2 m}\right)=2 m(m+r)-\binom{m+r}{2}$ when $0 \leqq r \leqq m$.

Let A and B be replicas of K_{m} and let H_{m} be the graph diagrammed in Figure 1. There, as in all figures below, a double line joining two graphs G_{1} and G_{2} indicates that every vertex in G_{1} is adjacent to every vertex in G_{3}.

Fig. 1
Lemma 2. For all $m \geqq 1, c p\left(H_{m}\right) \geqq \frac{7}{4} m^{2}+m$.
Proof. Let \mathscr{C} be a clique partition of $H=H_{m}$ of least cardinality (so that $|8|=$ $=c p(H))$. Denote the subfamily $\left\{K^{1}, K^{2}, \ldots, K^{\sigma}\right\}$, consisting of those cliques in ${ }^{8}$ with vertices in both $£$ raphs A and B, by \mathscr{S}. From sub $£$ raphs A^{\prime} and B^{\prime} of A and B by deleting the edges of all cliques in \mathscr{S} from A and B respectively. Let d_{i} and e_{i} be the number of vertices of K^{\prime} in A and B respectively. Denote the clique partitions of $\bar{A} \vee A^{\prime}$ and $\bar{B} \vee B^{\prime}$ induced by $\mathscr{C}-\mathscr{S}$ by \mathscr{C}_{A} and \mathscr{C}_{B} respectively. Thus $c p(H)=$ $=\left|\mathscr{C}_{A}\right|+\left|\mathscr{C}_{B}\right|+\sigma$. But

$$
\left|8_{A}\right| \geqq c p\left(\bar{A} \vee A^{\prime}\right)=m^{2}-\binom{m}{2}+\sum_{i=1}^{\sigma}\binom{d_{i}}{2}
$$

by Lemma 1 . Similar statements for B imply that

$$
c p(H) \geqq m^{2}+m+\sigma+\sum_{i=1}^{\sigma}\binom{d_{i}}{2}+\binom{e_{i}}{2} .
$$

Differentiation shows that the minimum of the quantities

$$
\frac{\binom{d}{2}+\binom{e}{2}+1}{d e},
$$

where d, e are positive integers and $d e \geqq 1$, is $3 / 4$. This minimum is achieved at $d=e=2$. Now every edge with one vertex in A and the other in B must be covered by some member of \mathscr{S}. Also K^{i} in \mathscr{S} covers exactly $d_{i} e_{i}$ edges joining A to B. Thus

$$
\sum_{i=1}^{s} d_{i} e_{i}=m^{2}
$$

and hence $c p(H) \geqq 7 / 4 m^{2}+m$.
Theorem 3. Let r be the remainder when n is divided by 5. For each $n \geqq 20$

$$
\max \{c p(G)+c p(\bar{G})\} \geqq \frac{7 n^{2}}{25}+\frac{(25+2 r) n-41 r^{2}}{50},
$$

where the maximum is over all graphs G on n vertices.
Proof. Let L be a replica of K_{m+r} and let K be a replica of K_{m}. Define G_{n} to be the graph whose diagram is given in Figure 2 (a). The diagram of G_{n} is given in Figure 2 (b). (We use the same diagrammatic convention here as for Figure 1.)

Fig. 2
The graph $G=G_{n}$ is the edge-disjoint union of $H \equiv H_{m}$ and $H^{\prime} \equiv K_{m+r} \vee \bar{K}_{2 m}$. Since every clique in G has all its edges in H or all its edses in H^{\prime}, we have $c p(G)=$ $=c p(H)+c p\left(H^{\prime}\right)$. Similarly $c p(\bar{G})=c p(H)+2 c p(\bar{K} \vee \bar{L})$. Since $n \geqq 20, m \geqq 4$ and so equations (1) and (2) imply

$$
\begin{equation*}
\frac{7 n^{2}}{25}+\frac{25 n+2 n r-41 r^{2}}{50} \leqq c p\left(G_{n}\right)+c p\left(\bar{G}_{n}\right) \tag{3}
\end{equation*}
$$

When does equality hold in (3)? It is a direct consequence of the following Lemma that equality holds infinitely often.
Lemma 3. [4, proof of Theorem 4, pp. 346, 347]. Let $K(q, k)$ be the complete k partite graph defined by k vertex-disjoint replicas of \bar{K}_{q}. Then the edge set of $K(q, k)$ can be partitioned into cliques of order k if there exist $k-2$ mutually orthogonal Latin squares on q symbols.

With $k=4$, Lemma 3 implies that the edges joining A to B in the graph H_{m} of Lemma 2 can be covered using edge-disjoint replicas of K_{4} for even $m>12$. Therefore when $n>64$ and $(n-r) / 5$ is even, equality holds in (3).
Theorem 4. For each graph G on n vertices, $c p(G)+c p(\bar{G}) \leqq 13 n^{2} / 30-n / 6$.
Proof. Let us construct a clique partition of K_{n} into triangles and edges, each of which is in G or \bar{G}. First select as many edge-disjoint triangles as possible. Then the set of s edges uncovered by any of these t triangles cannot contain the edge set of a copy of K_{0}, for otherwise G or \bar{G} would contain a triangle by an instance of Ramsey's theorem. Therefore, by Turán's theorem (see e.g. [1, Theorem 7.9]), $s \leq 2 n^{2} / 5$. Since $3 t+s=\binom{n}{2}$, it follows that the partition has at most $13 n^{2} / 30-n / 6$ members.

The coefficient of n^{2} appearing in the right side of the inequality of Theorem 4 can be reduced by $1 / 204$ by using K_{4} 's as well as K_{3} 's and K_{2} 's in the clique partition, and bounds on higher Ramsey numbers lead to further improvements. However, this approach cannot lead to an exact determination of $\max \{c p(G)+c p(\bar{G})\}$. The bound in Theorem 3 is probably nearer to the actual value.
Theorem 5. Taking the maximum over all graphs on n vertices,

$$
\frac{39}{2000} n^{4}+O\left(n^{5}\right)<\max \{c p(G) c p(\bar{G})\}<\frac{169}{3600} n^{4}+O\left(n^{3}\right) .
$$

Proof. The left inequality is obtained by using the graph G_{n} of Theorem 3 . The right inequality is obtained from the clique partition of K_{n} constructed in the proof of Theorem 4. It has x of its cliques in G and $\left(\frac{13}{30} n^{2}-\frac{n}{6}-x\right)$ cliques in \bar{G}.

Concluding remarks

L. Pyber proved that the lower bound in Theorem 1 is sharp for n large. Possibly Theorem 3 is close to best possible; that is, $\max \{c p(G)+c p(\bar{G})\} \sim 7 n^{2} / 25$ where the maximum is taken over all n-vertex graphs G. Suppose $G_{1} \cup G_{2} \cup G_{3}=K_{n}$ where the G_{i} are edge-disjoint. If R is the graph diagrammed in Figure 3 with $A=$ $=\bar{K}_{n / 5}$, then we can have $G_{1} \cong G_{3} \cong R$ and so $c p\left(G_{1}\right)+c p\left(G_{2}\right)=2 n^{2} / 5$. (We use the same diagrammatic convention here as in Figure 1.) Probably this is the maximum possible value of $c p\left(G_{1}\right)+c p\left(G_{2}\right)$. The estimate $c c\left(G_{1}\right)+c c\left(G_{2}\right)+c c\left(G_{3}\right)=$ $=2 n^{2} / 5(1+o(1))$ was proved by L. Pyber (see pp. 393-398 of this issue). Perhaps
$\max \left\{c c\left(G_{1}\right)+c c\left(G_{2}\right)+c c\left(G_{3}\right)\right\}=2 n^{2} / 5+5$, taking the maximum over all n-vertex graphs.
Acknowledgements. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under ε rant A4041. The authors would like to thank Prof. W. D. Wallis for several helpful conversations.

Fig. 3

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[2] P. Erdös, A. W. Goodman and L. Pb́sa, The Representation of a Graph by Set Intersections, Can. J. Math. 18 (1956), 105-112.
[3] N. J. Pullman and A. Donald, Clique Coverings of Graphs II - Complements of Cliques, Utilitas Math. 19 (1981). 207-213.
[4] N. J. Pullman, H. Shank and W. D. Wallis, Clique Coverings of Graphs V - Maximal Clique Partitions, Bull. Austral. Math. Soc, 25 (1982), 337-356.
[5] D. Taylor, R, D, D jrrov and R. C, BziכhaM, Bounds on Nordhaus-Gaddum Type Bounds for Clique Cover Numbers, Congressus Num. 40 (1983), 388-398.
D. de Caen

Northeastern Unip.

Boston, Mass.
U.S.A.

N. J. Pullmann

Qucei's University Kingston, Ontario
Canada, K7L-3N6
P. Erdős

Math. Institute
Hungarian Acad. of Sclences Budapest. Hungary H-I053
N. C. Wormald

Univ, of Auckland Auckland
New Zealand

