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Let cc(G) (resp. cp(G)) be the least number of com-)iete subgraphs needed to cover (resp.
partition) the edges of a graph G . We present bounds on m x {re(G)+cc(G)), max {cp(G)+cp(G)),
mix {cc(G)ec(G)) and mix (cp(G)cp(G)) where the miximt are taken over all graphs G on n
vertices and G is the complement of G in K„ . Several related open problems are also given .

Introduction

Let G be a graph on n vertices and let G be its complement in K,,, the complete
graph on n vertices . If f is a real valued function defined on graphs, what are the
extreme values of f (G) +f (G) and f (G) f (G)? E. A. Nordhaus and J . W. Gaddum
(see e .g . [5]) considered those questions when the function is the chromatic number .
D . Taylor, R. D . Dutton and R. C. Brigham [5] studied the questions for several
other functions. One of those is the clique covering number . That is cc(G), the least
number of complete subgraphs (cliques) of G necessary to cover the edge set of G .
We continue their investigation . We also consider the questions for another func-
tion the clique partition number. That is cp(G), the least number of cliques needed
to partition the edge set of G.

In Theorem 1, we establish the right inequality of [n 2/4]+2_-max {cc(G)+
+cc(G))~(n2/4)(1 +0(1)) where the maximum is taken over all €raphs G on n
vertices . The bipartite graph Kt„t2t .fn/21 assumes the lower bound .

In Theorem 2 we modify the proof of Theorem 1 to show that
max {cc(G)cc(G))-(n4/256)(1+0(l)), where the maximum is taken over all n-
vertex graphs G . D. Taylor et al . [5, Theorem 51 gave an example of a graph F for
which cc(F)cc(F)=n 2(n+8)2/256 . The graph F is obtained from two copies Al
and A2 of K„, 4 and two copies A2 and A3 of KnI , by joining each vertex of A ; to each
vertex of Ai+i (i=1, 2 and 3). When n is not divisible by 4 the construction can
be modified to yield a similar graph. Hence Theorem 2 establishes the conjecture
made in [51, that max {cc(G)cc(G))-n4/256 where the maximum is taken over
all n-vertex graphs G.
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Somewhat weaker results for the clique partition number are obtained in
Theorems 3, 4 and 5. They imply

25 n2 + 0 (n) - max {Cp (G) + cp (G)} C 13 n2 + 0 (n) and

29

	

169
2000

n4+ 0 (n3) : max {cp (G) cp (G)} n
3600

n4 + 0 (n 3)

where the maxima are taken over all n-vertex graphs G .
We state several related open problems at the end of the paper .

Results

Theorem 1 . For some d>0 and all graphs G on n vertices, cc(G)+cc(G)G
<(n2/4)(I +d/log n) .

Proof. Suppose 4° ~-- n/4c 3 . From a sequence 9 _ {Kl, K 2 , . . ., K'} of cliques KJ
in K„ by choosing K` to be a clique in G or in G which covers at least c edges unco-
vered by Kl U K 2 U . . . UK -' . The process halts when such a selection is no longer
possible. Now 1-n2/c . If a vertex has fewer than n/c incident edges in G or in G,
augment Y by adding these edges separately, and continue repeating this step until
there are no such vertices remaining . At most 2n21c new cliques have been added
to 9. Let H, (or Hz) denote the subgraph of K„ induced by the set of edges of G
(respectively G) not contained in the union of the cliques in Y, and put H=H, UH2 .
Let T denote the set of vertices of H with degree at least n/c in both H, and H2 ,
and let U and V denote the sets of vertices in K„-T with degree at least n/c in Hl
and H2 respectively . Note that vertices in U and V have degree 0 in H2 and Hl re-
spectively .

In [2] it is shown that cc(D)-k2/4 for all k-vertex graphs D. Therefore
the edges of H with both ends in U or both ends in V can be covered by at most
IUJ 2/4 or JV12/4 cliques respectively . We further augment 9 by these cliques,
which adds at most n 2/4 cliques to 9.

We next show that I T I :n/c. Assume I T I >n/c. Then at least n2/2c2 edges
of H, have at least one end in T. It follows that some set E of at least n/2c 2 such
edges are all incident with some vertex p . Let T'={vET: pvEE} . Then IT'lyn/2c 2,
so at least n2/4c 3 edges of H2 have at least one end in T' . Then a set F of n/4c 3 or
more such edges are all incident with some vertex q . Let T"= {vE T' : qvE F}. Then
IT"I--n/4c3 . By the bound for Ramsey's Theorem given for example in [1, Theorem
7.5], G of G contains a clique K with c vertices in 7 . Therefore the clique spanned
by K and p (or K and q) covers c edges of H, (respectively H2) incident with p (respec-
tively q) . But this contradicts the definition of 9 . Thus JTI Cn/c as claimed. Hence
we can further augment the cliques in 9 by adding all edges of H incident with
vertices in T as separate cliques. There are at most n 2 /c such edges .

The cliques in 6o' now form a clique covering of G and a clique covering of
G, and IYj :n2/4+4n 2/c . For large n we can take 3c::-log n, which gives the
theorem .
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Theorem 2 . For some d>0 and all graphs G on n vertices, cc(G) • cc(G)<
-<n'(1 +d/log n)/256 .
Proof. In the proof of Theorem l, we obtained a clique covering of G using at most
4n2/C+IUI 2/4 cliques, and a clique covering of G using at most 4n 2/c+I V1 2/4 cliques,
where 4cnn/4c 3 and JU1+1VI-n . Hence ce(G)cc(G)!(4n 21C +a2/4)(4n 2/c+b2/4)
where each of these factors is at most n 2/2, and a+b-n. This product is at most
4n 4/c+a 2 � 2/16, hich is ma imised hen a=b=n/2 . Hence cc(G)cc(G)C
-.4n4/c+n 4/256 . Taking 3c>logn as in Theorem 1, e obtain the result .

Corollar . For each graph G on n ertices min (ce(G), cc(G))-n 2/16(1 +0(1)) .

If G, and G 2 are erte -disjoint graphs, then G, V G 2 is the graph formed
from the union of G, ith G2 b adding edges joining each erte of Gl to each
erte of G2 .
Lemma l . [3, Theorem 3] . Let G = A V K9 . If A has p ertices and e edges, and
the edge-chromatic number X'(A) of A is at most q, then cp(H)=pq-e.

W.; note that '(K )=m or m-1 according as m is odd or e en. There-
fore for all m 1,

( 1 ) cp(KmVKm) = m2- 1 2 1
and
(2) CP(Km+PVK2m) = 2m(m+r)-lm2 rl hen 0 : r m.

Let A and B be replicas of Km and let Hn be the graph diagrammed in Figure
1 . There, as in all figures belo , a double line joining t o graphs Gl and G2 indi-
cates that e er erte in Gl is adjacent to e er erte in G2 .

Fig. 1

Lemma 2 . For all m 1, cp(H,,,)
4

rn 2 +m,

Proof. Let W be a clique partition of H=Hm of least cardinalit (so that IWI=
=cp(H)) . Denote the subfamil K 1, K 2 , . . ., K' , consisting of those cliques in
* ith ertices in both graphs A and B, b Y. From subgraphs A' and B' of A and
B b deleting the edges of all cliques in 9 from A and B respecti el . Let d; and e j
be the number of ertices of K' in A and B respecti el . Denote the clique partitions
of ÁV A' and BVB' induced b W-Y b W, and WB respecti el . Thus cp(H)=
- I(e.II+I 6̀sl+a . But

a
CP(AVA') = m2-

(m) +

	

2'
i=1
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b Lemma 1. Similar statements for B impl that

cp(H) m2 +m+a+
A

(2') +(2)
Differentiation sho s that the minimum of the quantities

(2) +(2)+ 1

de

here d, a are positi e integers and de 1, is 3/4 . This minimum is achie ed at
d=e=2. No e er edge ith one erte in A and the other in B must be co ered
b some member of 9 . Also K` in .9' co ers e actl d;e; edges joining A to B. Thus

s
diei =m2

and hence cp(H) --7/4m2+m .

Theorem 3 . Let r be the remainder hen n is di ided b 5. For each n-20

ma cp (G) + cp (G) 3 7n2
25 +

(25 +2r)
50
n -41r2

'

here the ma imum is o er all graphs G on n ertices.

Proof. Let L be a replica of K,,, + , and let K be a replica of K,,, . Define G" to be the
graph hose diagram is gi en in Figure 2 (a) . The diagram of G" is gi en in Figure
2 (b) . (We use the same diagrammatic con ention here as for Figure 1 .)

(a)

Fig . 2

The graph G=G is the edge-disjoint union of H- H , and H'-K,"+,V K2,,, .
Since e er clique in G has all its edges in H or all its ed es in H', e ha e cp(G)=
=cp(H)+cp(H') . Similarl cp(G)=cp(H)+2cp(KVL) . Since n _t20, m 4
and so equations (1) and (2) impl

7n2 25n+2nr-4lr 2
(3)

	

25 +

	

50

	

cp (G") + cp(G") 0

(b)
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When does equalit hold in (3)? It is a direct consequence of the follo ing
Lemma that equalit holds infinitel often .

Lemma 3 . [4, proof of Theorem 4, pp . 346, 347]. Let K(q, k) be the complete k-
partite graph defined b k erte -disjoint replicas of K q . Then the edge set of K(q, k)
can be partitioned into cliques of order k if there e ist k-2 mutuall orthogonal
Latin squares on q s mbols . 1

With k=4, Lemma 3 implies that the edges joining A to B in the graph
H. of Lemma 2 can be co ered using edge-disjoint replicas of K4 for e en m ::- 12.
Therefore hen n>64 and (n-r)/5 is e en, equalit holds in (3) .

Theorem 4. For each graph G on n ertices, cp(G)+cp(G) 13n2/30-n/6 .

Proof. Let us construct a clique partition of K into triangles and edges, each of
hich is in G or G . First select as man edge-disjoint triangles as possible . Then

the set of s edges unco ered b an of these t triangles cannot contain the edge set
of a cop of Ke, for other ise G or G ould contain a triangle b an instance of
Ramse 's theorem . Therefore, b Turán's theorem (see e .g . [1, Theorem 7.9]),

s 2n2/5 . Since 3t I s=(2), it follo s that the partition has at most 13n 2/30-n/6
members .

The coefficient of n 2 appearing in the right side of the inequalit of Theorem 4
can be reduced b 1/204 b using K4's as ell as K3's and K2's in the clique partition,
and bounds on hi her Ramse numbers lead to further impro ements. Ho e er,
this approach cannot lead to an e act determination of ma cp(G)+cp(G) . The
bound in Theorem 3 is probabl nearer to the actual alue .

Theorem 5 . Taking the ma imum o er all graphs on n ertices,

39
2000 n4 +0(n3) C ma cp(G)cp(G) < 369

n4 +0(n3) .

Proof. The left inequalit is obtained b using the graph G of Theorem 3 . The right
inequalit is obtained from the clique partition of K constructed in the proof of

Theorem 4. It has of its cliques in G and ( 30 n 2 -
6
- ) cliques in G.

Concluding remarks

L. P ber pro ed that the lo er bound in Theorem 1 is sharp for n large.
Possibl Theorem 3 is close to best possible ; that is, ma cp(G)+cp(G) -7n2/25
here the ma imum is taken o er all n- erte graphs G. Suppose G I U G2 U G3 =K
here the G; are edge-disjoint . If R is the graph diagrammed in Figure 3 ith A=
=K I,, then e can ha e GI-G2-R and so cp(G 1)+cp(GZ)=2n2/5 . (We use
the same diagrammatic con ention here as in Figure 1 .) Probabl this is the ma i-
mum possible alue of cp(GI)+cp(G2) . The estimate cc(G I)+cc(G2)+cc(G3)=
=2n2/á (1 +0(1)) as pro ed b L. P ber (see pp. 393-398 of this issue). Perhaps
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ma cc(GI)+cc(GZ)+cc(G3) =2n'15+5, taking the ma imum o er all n- erte
graphs .
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