Independence of Solution Sets in Additive Number Theory

PAUL ERDÖS

Mathematical Institute Hungarian Academy of Sciences Budapest, Hungary

MELVYN B. NATHANSON

Office of the Provost and Vice President for Academic Affairs Lehman College (CUNY) Bronx, New York 10468

1. INTRODUCTION

Let A be a strictly increasing sequence of positive integers. Let 2A denote the set of all integers of the form n = a + a', where $a, a' \in A$. If $n \in 2A$ for all sufficiently large n, then A is an asymptotic basis of order 2, or, simply, a basis. Let $r_A(n)$ denote the number of representations of n in the form n = a + a', where $a, a' \in A$ and $a \le a'$. An old conjecture of Erdös and Turán [2] states that if A is a basis, then $r_A(n)$ is unbounded. Let

$$S_A(n) = \{a \in A \mid n - a \in A, n \neq 2a\}$$

denote the solution set of n. Clearly, $S_A(1) = S_A(2) = \emptyset$ and $S_A(n) \subseteq [1, n-1]$. Let |S| denote the cardinality of the set S. Then

$$|S_A(n)| = \begin{cases} 2r_A(n) & \text{if } n/2 \notin A \\ 2r_A(n) - 2 & \text{if } n/2 \in A. \end{cases}$$

Let Ω denote the space of all strictly increasing sequences of positive integers. Let $p(1), p(2), \ldots, p(n), \ldots$ be any sequence of real numbers in the unit interval [0, 1]. Let

$$E_n = \{A \in \Omega \mid n \in A\}$$

Copyright © 1986 by Academic Press, Inc. All rights of reproduction in any form reserved. denote the set of all sequences $A \in \Omega$ that contain *n*. Erdös and Rényi [1] constructed a probability measure μ on Ω such that

- (i) $\mu(E_n) = p(n)$, and
- (ii) the events E_1, E_2, \ldots are independent.

Choosing $p(1) = \frac{1}{2}$ and $p(n) = \alpha((\log n)/n)^{1/2}$ for $n \ge 2$, they proved that for almost all $A \in \Omega$ there exist constants 0 < c < c' such that

$$c \log n < r_A(n) < c' \log n$$

for all sufficiently large n. This result solved a problem of Sidon [5], who asked if there existed a basis A such that

$$\lim_{n\to\infty}r_A(n)/n^{\epsilon}=0$$

for every $\varepsilon > 0$. Halberstam and Roth [3] contains a careful exposition of the Erdös-Rényi method.

In this paper we consider probability spaces Ω defined by a sequence of real numbers $p(n) \in [0, 1]$ satisfying the following condition: There exist real numbers α, β, γ with $\alpha > 0$ and

$$\frac{1}{3} < \gamma \le \frac{1}{2} \tag{1}$$

such that

$$p(n) \le \frac{\alpha \log^{\beta}(n+1)}{n^{\gamma}} \tag{2}$$

for all $n \ge 1$. We shall prove that for almost all sequences $A \in \Omega$ the solution sets $S_A(n)$ are "independent" in the sense that $|S_A(m) \cap S_A(n)|$ is bounded for all n > m. If p(n) satisfies (1) and (2), then for almost all $A \in \Omega$ and for all but finitely many pairs (m, n) with n > m.

$$|S_{\mathcal{A}}(m) \cap S_{\mathcal{A}}(n)| \leq 2/(3\gamma - 1).$$

In particular, if $p(1) = \frac{1}{2}$ and $p(n) = \alpha((\log n)/n)^{1/2}$ for $n \ge 2$, then $\gamma = \frac{1}{2}$ and $|S_A(m)| > c \log m$, but

$$|S_A(m) \cap S_A(n)| \le 4$$

for almost all $A \in \Omega$ and for all but finitely many pairs (m, n) with n > m.

2. NOTATION

We use the following notation. Let m and n be positive integers with m < n. Suppose

$$T \subseteq S_{\mathcal{A}}(m) \cap S_{\mathcal{A}}(n) \tag{3}$$

and |T| = t. Then $T \subseteq [1, m-1]$. If $b \in T$, then $m - b \in A$ and $n - b \in A$. Also, $b \neq m/2$ and $b \neq n/2$. The set T determines three subsets U, V, W of [1, (m-1)/2] in the following way:

$$U = \{a \in [1, (m-1)/2] | a \in T, m-a \notin T \}$$

= $\{a_1, a_2, \dots, a_u\},$ (4)

$$V = \{a \in [1, (m-1)/2] | a \in T, m-a \in T\}$$

= $\{a_{u+1}, \dots, a_{u+v}\},$ (5)

$$W = \{a \in [1, (m-1)/2] | a \notin T, m-a \in T\} \\ = \{a_{u+v+1}, \dots, a_{u+v+w}\},$$
(6)

where |U| = u, |V| = v, and |W| = w. The sets U, V, W are pairwise disjoint and determine T, since

$$T = U \cup V \cup \{m - a \mid a \in V \cup W\}.$$
(7)

Clearly, |T| = u + 2v + w.

The sets U, V, W determine three new sets X, Y, Z. Define

$$X = U \cup V \cup W = \{a_1, a_2, \dots, a_{u+v+w}\}.$$
 (8)

Then |X| = x = u + v + w, and $X \subseteq [1, (m-1)/2]$. Define

$$Y = \{m - a \mid a \in X\}. \tag{9}$$

Then |Y| = x and $Y \subseteq [(m + 1)/2, m - 1]$. Define

$$Z = \{n - b | b \in T\}.$$
 (10)

Then |Z| = t and $Z \subseteq [n - m + 1, n - 1]$. Clearly, $X \cap Y \neq \emptyset$ and

$$X \cup Y \cup Z \subseteq A. \tag{11}$$

Conversely, let $X \subseteq [1, (m-1)/2]$ and let $X = U \cup V \cup W$ be a partition of X into three pairwise disjoint sets. Define T, Y, Z by (7), (9), (10). Then $T \subseteq S_A(m) \cap S_A(n)$ if and only if $X \cup Y \cup Z \subseteq A$.

3. RESULTS

THEOREM 1. Let Ω be the space of all strictly increasing sequences of positive integers with the probability measure μ defined by a sequence p(n) satisfying (1) and (2). For almost all $A \in \Omega$ and for all but finitely many pairs (m, n) of positive integers with $n \ge 2m$,

 $|S_A(m) \cap S_A(n)| \le 2/(3\gamma - 1).$

Proof. Let $t > 2/(3\gamma - 1)$ and $n \ge 2m$. Define

$$\mu_t(m,n) = \mu(\{A \in \Omega \mid |S_A(m) \cap S_A(n)| \ge t\}).$$

$$(12)$$

We shall prove that

$$\sum_{m=1}^{\infty} \sum_{n=2m}^{\infty} \mu_{t}(m,n) = \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \sum_{n=2^{k}m}^{2^{k+1}m-1} \mu_{t}(m,n) < \infty.$$

Then it follows from the Borel-Cantelli lemma that

 $\mu(\{A \in \Omega | | S_A(m) \cap S_A(n)| \ge t \text{ for infinitely many pairs } (m, n) \text{ with } n \ge 2m\}) = 0.$

This is precisely Theorem 1.

First we estimate $\mu_t(m, n)$. Fix a partition of the integer t of the form t = u + 2v + w. Let x = u + v + w. Let $X \subseteq [1, (m-1)/2]$ satisfy |X| = x. There are x!/u!v!w! partitions of X into three pairwise disjoint sets U, V, W such that |U| = u, |V| = v, |W| = w. Fix a partition of X in the form $X = U \cup V \cup W$, and define T, Y, Z by (7), (9), (10). Then (3) holds if and only if (11) holds. Moreover, every set T satisfying (3) is of the form (7) for some partition of t in the form t = u + 2v + w and some partition of X in the form $X = U \cup V \cup W$, where $X \subseteq [1, (m-1)/2]$ and |X| = x. Therefore,

$$\mu_{t}(m,n) = \sum_{t}^{(3)} \sum_{X}^{(2)} \sum_{v,v,w}^{(1)} \mu(\{A \in \Omega \mid X \cup Y \cup Z \subseteq A\}),$$
(13)

where $\sum_{i=1}^{(3)}$ denotes the sum over all partitions of t in the form t = u + 2v + w, $\sum_{X=0}^{(2)}$ denotes the sum over all subsets $X \subseteq [1, (m-1)/2]$ satisfying |X| = x = u + v + w, and $\sum_{U,V,W}^{(1)}$ denotes the sum over all partitions of X in the form $X = U \cup V \cup W$, where |U| = u, |V| = v, |W| = w.

Define T by (7). Then the sets U, V, W satisfy (4), (5), (6). Define the sets Y and Z by (9) and (10). Since $n \ge 2m$, it follows that n - m + 1 > m, hence $(X \cup Y) \cap Z = \emptyset$, and so the sets X, Y, Z are pairwise disjoint. Therefore, using (2), we obtain

$$\mu(\{A \in \Omega | X \cup Y \cup Z \subseteq A\})$$

$$= \prod_{i=1}^{x} p(a_i) \prod_{i=1}^{x} p(m-a_i) \prod_{i=1}^{u+v} p(n-a_i) \prod_{i=u+1}^{x} p(n-m+a_i)$$

$$\leq (\alpha \log^{\beta} n)^{2x+t} \prod_{i=1}^{x} \frac{1}{a_i^{\gamma}} \prod_{i=1}^{x} \frac{1}{(m-a_i)^{\gamma}} \prod_{i=1}^{u+v} \frac{1}{(n-a_i)^{\gamma}} \prod_{i=u+1}^{x} \frac{1}{(n-m+a_i)^{\gamma}}.$$

Since $m - a_i > m/2$, $n - a_i > n - m$, and $n - m + a_i > n - m$, we obtain

$$u(\{A \in \Omega \mid X \cup Y \cup Z \subseteq A\}) \le \frac{c_1 \log^c n}{m^{\gamma x}(n-m)^{\gamma t}} \prod_{i=1}^x \frac{1}{a_i^{\gamma}}.$$

100

This does not depend on the partition of X into $X = U \cup V \cup W$, and so

$$\sum_{\substack{v,v,w}}^{(1)} \mu(\{A \in \Omega \, \big| \, X \cup Y \cup Z \subseteq A\}) \le \frac{c_2 \log^c n}{m^{\gamma x} (n-m)^{\gamma t}} \prod_{i=1}^x \frac{1}{a_i^{\gamma}}$$

Then

$$\begin{split} \sum_{X}^{(2)} \sum_{V, V, W}^{(1)} \mu(\{A \in \Omega \, \big| \, X \cup Y \cup Z \subseteq A\}) &\leq \frac{c_2 \log^c n}{m^{\gamma x} (n - m)^{\gamma t}} \sum_{X}^{(2)} \prod_{i=1}^{x} \frac{1}{a_i^{\gamma}} \\ &\leq \frac{c_2 \log^c n}{m^{\gamma x} (n - m)^{\gamma t}} \binom{(m - 1)^{1/2}}{\sum_{k=1}^{k} \frac{1}{k^{\gamma}}} \\ &\leq \frac{c_3 \log^c n}{m^{(2\gamma - 1)x} (n - m)^{\gamma t}} \\ &\leq \frac{c_3 \log^c n}{m^{(2\gamma - 1)x} (n - m)^{\gamma t}} \end{split}$$

since $\gamma \leq \frac{1}{2}$ and $x \leq t$. There are only a finite number of partitions of t in the form t = u + 2v + w, and so

$$\mu_{t}(m,n) = \sum_{t}^{(3)} \sum_{X}^{(2)} \sum_{U,V,W}^{(1)} \mu(\{A \in \Omega \mid X \cup Y \cup Z \subseteq A\})$$
$$\leq \frac{c_{4} \log^{c} n}{m^{(2\gamma-1)t}(n-m)^{\gamma t}}.$$

If $2^k m \le n < 2^{k+1}m$, then $n-m \ge (2^k-1)m$ and $\log^c n \le c''(k\log m)^{c'}$. Thus,

$$\mu_{t}(m,n) \leq \frac{c_{5}k^{c} (\log m)^{c}}{m^{(3\gamma-1)t}(2^{k}-1)^{\gamma t}}$$

Finally,

$$\sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \sum_{n=2^{k}m}^{2^{k+1}m-1} \mu_{t}(m,n) \leq \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \frac{c_{5}k^{c'}(\log m)^{c'}2^{k}m}{m^{(3\gamma-1)t}(2^{k}-1)^{\gamma t}}$$
$$= c_{5} \sum_{m=1}^{\infty} \frac{(\log m)^{c'}}{m^{(3\gamma-1)t-1}} \sum_{k=1}^{\infty} \frac{k^{c'}2^{k}}{(2^{k}-1)^{\gamma t}}$$
$$< \infty.$$

Both infinite series converge since $\gamma \leq \frac{1}{2}$ and $t > 2/(3\gamma - 1)$. This completes the proof.

THEOREM 2. Let Ω be the space of all strictly increasing sequences of positive integers with the probability measure μ defined by a sequence p(n) satisfying (1) and (2). For almost all $A \in \Omega$ and for all but finitely many pairs (m, n) of positive integers with m < n < 2m,

$$|S_{\mathcal{A}}(m) \cap S_{\mathcal{A}}(n)| \le 2/(3\gamma - 1).$$

Proof. Let $t > 2/(3\gamma - 1)$ and m < n < 2m. Define $\mu_t(m, n)$ by (12). We shall prove that

$$\sum_{m=1}^{\infty}\sum_{n=m+1}^{2m-1}\mu_t(m,n)<\infty.$$

Then the theorem follows from the Borel-Cantelli lemma.

The argument is similar to that of Theorem 1. We use formula (13) to estimate $\mu_i(m, n)$. However, since n < 2m, it is possible that $(X \cup Y) \cap Z \neq \emptyset$. Let us assume that $(X \cup Y) \cap Z = \emptyset$. Then

$$\begin{split} &\mu(\{A \in \Omega \mid X \cup Y \cup Z \subseteq A\}) \\ &\leq \prod_{i=1}^{x} p(a_i) \prod_{i=1}^{x} p(m-a_i) \prod_{i=1}^{u+v} p(n-a_i) \prod_{i=u+1}^{x} p(n-m+a_i) \\ &\leq (\alpha \log^{\beta} 2m)^{2x+i} \prod_{i=1}^{x} \frac{1}{a_i^{\gamma}} \prod_{i=1}^{x} \frac{1}{(m-a_i)^{\gamma}} \\ &\times \prod_{i=1}^{u+v} \frac{1}{(n-a_i)^{\gamma}} \prod_{i=u+1}^{x} \frac{1}{(n-m+a_i)^{\gamma}}. \end{split}$$

Using the inequalities

$m-a_i>m/2$	for	$i=1,\ldots,x,$
$n-a_i > m/2$	for	$i=u+1,\ldots,u+v,$
$n-a_i > a_i$	for	$i = 1, \ldots, u$
$m-m+a_i>a_i$	for	$i = u + 1, \ldots, x,$

we obtain

$$\mu(\{A \in \Omega \mid X \cup Y \cup Z \subseteq A\}) \leq \frac{c_1 \log^c m}{m^n} \prod_{i=1}^x \frac{1}{a_i^{2\gamma}}.$$

Therefore, by (13),

$$\mu_{t}(m,n) = \sum_{i}^{(3)} \sum_{X}^{(2)} \sum_{U,V,W}^{(1)} \mu(\{A \in \Omega \mid X \cup Y \cup Z \subseteq A\})$$

$$\leq \frac{c_{2} \log^{c} m}{m^{\gamma t}} \left(\sum_{k=1}^{\lfloor (m-1)/2 \rfloor} \frac{1}{k^{2\gamma}} \right)^{t}$$

$$\leq \frac{c_{3} \log^{c} m}{m^{(3\gamma-1)t}}.$$

Finally,

$$\sum_{m=1}^{\infty} \sum_{n=m+1}^{2m-1} \mu_{t}(m,n) \le c_{3} \sum_{m=1}^{\infty} \frac{\log^{c} m}{m^{(3\gamma-1)t-1}} < \infty$$

since $t > 2/(3\gamma - 1)$. The proof in the case $(X \cup Y) \cap Z \neq \emptyset$ is similar.

Theorem 1 and Theorem 2 are useful in the study of extremal sequences in additive number theory. For example, they provide a proof of the existence of minimal bases. An asymptotic basis A of order 2 is minimal if no proper subset of A is a basis. This means that for every $a \in A$ there are infinitely many positive integers n such that $n \notin 2(A \setminus \{a\})$. It is not true that every basis contains a subset that is a minimal basis [4]. However, the following result gives a simple criterion for a basis to contain a minimal basis.

THEOREM 3. Let A be a strictly increasing sequence of positive integers such that

(i)
$$\lim_{n\to\infty} r_A(n) = \infty$$
,

(ii) $|S_A(m) \cap S_A(n)|$ is bounded for all m < n.

Then A contains a minimal asymptotic basis of order 2.

Proof. Let
$$|S_A(m) \cap S_A(n)| \le d - 1$$
 for all $m < n$. Define

 $P_A(n) = \{a \in A \mid n - a \in A \text{ and } a \ge n/2\}.$

Then $P_A(n) \subseteq S_A(n) \cup \{n/2\}$. Fix n_1 so that $r_A(n) > d$ for all $n \ge n_1$. Choose $a_1^* \in A$. Let $a_1 \in A$ satisfy $a_1 > \max(a_1^*, 2n_1)$. Let $m_1 = a_1^* + a_1$. Then $a_1 \in P_A(m_1)$ and $a_1^* \notin P_A(m_1)$. Define

$$A_1 = A \setminus (P_A(m_1) \setminus \{a_1\}).$$

Then $a_1, a_1^* \in A_1$ and so $m_1 = a_1^* + a_1 \in 2A_1$.

Let $n \ge n_1$ and $n \ne m_1$. Since

$$A \setminus A_1 \subseteq P_A(m_1) \subseteq S_A(m_1) \cup \{m_1/2\},\$$

it follows that

$$P_{\mathcal{A}}(m_1) \cap S_{\mathcal{A}}(n) \subseteq (S_{\mathcal{A}}(m_1) \cap S_{\mathcal{A}}(n)) \cup \{m_1/2\},\$$

and so

$$\begin{aligned} r_{A_1}(n) &\geq r_A(n) - |(A \setminus A_1) \cap S_A(n)| \\ &\geq r_A(n) - |P_A(m_1) \cap S_A(n)| \\ &\geq r_A(n) - d \\ &\geq 1. \end{aligned}$$

Therefore, $n \in 2A_1$ for all $n \ge n_1$, and so A_1 is a basis. Moreover, $m_1 = a_1^* + a_1$ is the unique representation of m_1 as a sum of two elements of A_1 .

Let $k \ge 2$. Suppose we have constructed integers a_i , a_i^* , m_i , n_i for $i = 1, \ldots, k - 1$ and sets A_1, \ldots, A_{k-1} with the following properties:

(i) $2n_1 < m_1 < 2n_2 < m_2 < \cdots < 2n_{k-1} < m_{k-1}$;

(ii) $A = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_{k-1};$

(iii) $A_{i-1} \setminus A_i \subseteq [m_i/2, m_i];$

(iv) $a_i, a_i^* \in A_i$ for i = 1, ..., k - 1;

(v) $m_i = a_i^* + a_i$ for i = 1, ..., k - 1, and this is the unique representation of m_i as a sum of two elements of A_i ;

(vi) if $n \ge n_1$, then $n \in 2A_{k-1}$.

We now construct a_k , a_k^* , m_k , n_k , and A_k .

Choose $n_k > m_{k-1}$ such that $r_A(n) > d + m_{k-1}$ for all $n \ge n_k$. Choose $a_k^* \in A_{k-1}$ with $a_k^* < m_{k-1}$. Choose $a_k \in A_{k-1}$ such that $a_k > 2n_k > a_k^*$. Let $m_k = a_k^* + a_k$. Define

$$A_k = A_{k-1} \setminus (P_{A_{k-1}}(m_k) \setminus \{a_k\}).$$

Then a_k, a_k^*, m_k, n_k , and A_k satisfy conditions (i)-(v).

We must show that $n \in 2A_k$ for all $n \ge n_1$. Since $A_{k-1} \setminus A_k \subseteq [m_k/2, m_k] \subseteq [n_k, m_k]$, it follows from (vi) that $n \in 2A_k$ if $n_1 \le n < n_k$. Let $n \ge n_k$, $n \ne m_k$. Since $A \setminus A_{k-1} \subseteq [1, m_{k-1}]$, it follows that

$$A \setminus A_k \subseteq [1, m_{k-1}] \cup P_{A_{k-1}}(m_k)$$
$$\subseteq [1, m_{k-1}] \cup S_A(m_k) \cup \{m_k/2\}.$$

Therefore,

$$\begin{aligned} r_{Ak}(n) &\geq r_A(n) - \left| (A \setminus A_k) \cap S_A(n) \right| \\ &\geq r_A(n) - m_{k-1} - 1 - \left| S_A(m_k) \cap S_A(n) \right| \\ &\geq r_A(n) - m_{k-1} - d \\ &\geq 1, \end{aligned}$$

and so A_k satisfies (vi).

Continuing inductively, we obtain infinite sequences a_k, a_k^*, m_k, n_k , and A_k satisfying properties (i)–(vi). Define

$$A^* = \bigcap_{k=1}^{\infty} A_k.$$

If $n \ge n_1$, then $n \in 2A^*$ and so A^* is an asymptotic basis of order 2. Moreover, $m_k = a_k^* + a_k$ is the unique representation of m_k as the sum of two elements of A^* , and so $m_k \notin 2(A^* \setminus \{a_k^*\})$. Here is the key idea for the construction of a minimal basis. In the kth step of the induction, we could choose arbitrarily $a_k^* \in A_{k-1}$ such that $a_k^* < m_{k-1}$. We make these choices in such a way that if $a^* \in A^*$, then $a^* = a_k^*$ for infinitely many k. Then for every $a^* \in A$ there are infinitely many integers m_k such that $m_k \notin 2(A^* \setminus \{a^*\})$. Thus, A^* is a minimal basis contained in A. This completes the proof of Theorem 3.

Let Ω be the probability space of sequences of positive integers defined by $p(1) = \frac{1}{2}$ and $p(n) = \alpha((\log n)/n)^{1/2}$ for $n \ge 2$. By the theorem of Erdös and Rényi [1], there exists c > 0 such that $r_A(n) > c \log n$ for almost all $A \in \Omega$ and all *n* sufficiently large. Theorems 1 and 2 imply that $|S_A(m) \cap S_A(n)| \le 4$ for almost all $A \in \Omega$ and all but finitely many pairs (m, n) with m < n. It follows from Theorem 3 that the sequence A contains a minimal basis for almost all $A \in \Omega$.

4. OPEN PROBLEMS

We do not know whether it is possible to improve the right-hand side of the inequality

$$|S_A(m) \cap S_A(n)| \le 2/(3\gamma - 1)$$

in Theorems 1 and 2. In particular, with $\gamma = \frac{1}{2}$ and $p(n) = \alpha((\log n)/n)^{1/2}$ for $n \ge 2$, we do not know whether $|S_A(m) \cap S_A(n)| \le 3$ for almost all $A \in \Omega$ and all but finitely many pairs m < n. We can prove that for $k \ge 2$ and almost all $A \in \Omega$ there exist infinitely many pairwise disjoint k-tuples $m_1 < \cdots < m_k$ such that

$$|S_A(m_1) \cap S_A(m_2) \cap \cdots \cap S_A(m_k)| \ge 2.$$

We do not know whether condition (ii) in Theorem 3 is necessary. It is possible that there exists a sequence A of positive integers that does not contain a minimal basis but does satisfy the condition $\lim_{n\to\infty} r_A(n) = \infty$.

REFERENCES

- P. Erdös and A. Rényi, Additive properties of random sequences of positive integers. Acta Arith. 6, 83-110 (1960).
- P. Erdös and P. Turán, On a problem of Sidon in additive number theory, and some related problems. J. London Math. Soc. 16, 212-215 (1941).
- H. Halberstam and K. F. Roth, "Sequences," Vol. I, Oxford Univ. Press, London and New York, 1966.
- M. B. Nathanson, Minimal bases and maximal nonbases in additive number theory. J. Number Theory 6, 324-333 (1974).
- S. Sidon, Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihe. Math. Ann. 106, 536-539 (1932).

105